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Section 1. Introduction

In [19] simple conditions on “categorical simplices” are given so that, up to
homotopy, the only reasonable assignment of a (semi-) simplicial set to a small
category is the standard nerve embedding. In this paper, more complicated
conditions on “categorical simplices” are given so that certain cocontinuous
functors from simplicial sets to small categories are homotopy inverses for the
standard nerve embedding, and induce the “surprising” (adjoint, in certain
cases) homotopy equivalence between the categories of simplicial sets and small
categories. The results in this paper are only part of the larger long-term
program to develop “useful” algebraic topology for small categories.

At least, since Gabriel-Zisman’s seminar [10], it is known that the category
%at¢ of small categories is a full reflective subcategory of the category J¢ of
simplicial sets via the standard nerve embedding

N:Cat > A

and thus it inherits the elementary notions of homotopy theory, like weak
homotopy equivalence (WHE), from 2. The “real” reason for this paper is that
the reflector for the nerve embedding, categorical realization

c: A —>Cat

is “wildly” wrong with respect to weak homotopy. For instance, it maps certain
simplicial spheres to contractible small categories:

Nec(A[K)/A[KD)=A[0]  for k=2 (1.1)
Ne(SAALK)/ATK])=A[1]  for k=2 (1.2)

where A[k] is the standard k-dimensional (representable) simplicial set, A[k]
represents its boundary, and

Sd: A — A

0025-5874/81/0177/0147/$06.60



148 R. Fritsch and D.M. Latch

is the (first) barycentric subdivision functor [13; 7]. (For k=1:

c(A[1]/A[1])~ N =“natural numbers”
Nc(SdA[1]/A[17)=Sd(A[1]/A[1]).

NN is not a sphere, but it is well known (e.g. [3; X. Cor. 4.2] or [23]) that the
classifying space of the natural numbers still has the homotopy type of a 1-
sphere). Moreover, Gabriel and Zisman show [10; IL4] that the categorical
realization ¢X of any simplicial set X depends only on X2 the 2-dimensional
skeleton of X. Therefore, many workers believed for a long time that small
categories were nearly homotopically trivial. But then, L. Illusie [11], M.J. Lee
[20], and Latch [17] showed that the small categories AX and I'X have the
homotopy type of X, for any simplicial set X (ie. NAX and NI'X are both
naturally weak homotopy equivalent to X). From the geometric point of view,
both functors

A: A —>Cald and I': A —>Cal

are not quite satisfactory: NAX and NI'X are both infinite dimensional
simplicial sets for every simplicial set X, even the trivial simplicial point A[0].
Then R. Thomason conjectured that the “finite dimensional” construction

cSd*: A —Cat,

where Sd*: # — A is the twofold barycentric subdivision [13; 3], would
preserve homotopy type. This appears astonishing at first; but results of J. Segal
[29] and Fritsch [7] show, that after a suitable subdivision, the new 1-skeleton
contains a lot of- information about X. The conjecture was proved by R.
Thomason [30] and independently by Fritsch using different methods. The first
proof used an earlier version of Theorem 6.3 in this paper, while the second,
depends directly on Theorem4.11 here and is presented in Example 4.12(iv) and
(v). Moreover, this second proof shows that every simplicial set after geometric
realization is homeomorphic to the classifying space of a small category in the
sense of G. Segal [28] (see Remark 4.13).

The starting point for this paper is the question, why do Lee’s, Latch’s and
Thomason’s constructions work and why other cocontinuous functors (particu-
larly categorical realization ¢: A — %af) from A to €as do not? The functors

Iyt A —>Cat

from A" to €as considered are cocontinuous (ie. preserve colimits) and are
completely determined by their behavior on the contractible standard simplicial
sets A[k] (for k=0), yielding the weakly contractible “categorical simplices”

O[k]=I,A[K].

The main result (see Theorem4.5) shows that such a cocontinuous functor I;:
A —%at preserves homotopy type, whenever the canonical natural transfor-
mation

pi Iy > NIy A —> A
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is a natural WHE. But this global condition sometimes can be replaced by a
local condition on the categorical simplices. A sufficient condition for this
purpose in given Theorem 6.3. Roughly speaking it says that the objects in the
boundary of a categorical simplex causing trouble under degeneracies can be
collared in a suitable way. The geometric intuition for these collars is illustrated
in the following picture of ¢Sd2A[2]:

This last problem can be better understood by referring to the skeletal
decomposition of simplicial sets and the process of attaching simplices [10;
I1.3]. Categorical realization c: # — % is left adjoint to nerve N: €as— X,
and thus it preserves attachings, but in a strange way, due to the “ugly” form of
pushouts in ¥«¢. The functor associating to a small category A its morphism set
Mor A does not preserve pushouts (compare the difference between the co-
product of two groups and the disjoint union of the underlying sets). In contrast,
there are cocontinuous functors from ¢ to the category &ss of sets which
preserve pushouts and hence attachings, and which yield all information about
the original simplicial set. Thus, in order to get a small category I; X having the
homotopy type of a given simplicial set X (ie., so that NI X and X are
naturally weak homotopy equivalent), it is necessary that to the k-dimensional
simplices of X, there be associated categorical simplicies 0[k] for which the
attaching process is preserved, at least up to weak homotopy equivalence. We
study the behavior of attachings under nerve in Sect.5 as far as it is necessary
for the theorems in Sect. 6.

The authors would like to thank A. Heller, S. MacLane, J. Moore, D. Puppe, J. Stasheff, R.
Thomason, W.S. Wilson for useful conversations; D. Raper for technical artistic aid in preparing the
manuscript; and Princeton University, North Carolina State University, Universitit Konstanz,
DAAD (Deutscher Akademischer Austauschdienst) for partial support during this work. We would
like to extend special thanks to the referee for so carefully reading the first version of the paper, for
suggesting the elegant organization, and for contributing many alternative (and usually simpler)
arguments.

Section 2. Preliminaries

This section contains notations, definitions and theorems which are well-known

or have appeared in detail in other papers, and which will be used here and in
subsequent sections.
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2.1. Notation. The following large categories are denoted by:
(i) &#a0=the category of sets and functions;
(ii) A =the category of (semi-)simplicial sets [10; I11.2];
(iif) # =the category of spaces of homotopy type of a CW-complex [10;
VIL1];

(iv) ¢ =the category of small categories [22; [.3].

2.2. Notation. Small categories will be represented by A, B, etc., while f: A—>B
denotes a functor, a morphism in a¢. For each small category A,

|A|=set of objects of A;
and if S is a subset of |A|, then
{S> =full subcategory of A generated by S.
If p,qe|A|, then
A(p, g)=set of all morphisms a in A with dom a=p and cod a=gq.

If f, ge€at(A,B), ic. f and g are functors with dom f=A and cod f=B, then a
natural transformation x from f to g is denoted by

n: f—g:A—B.
(Similar notation is used even when one or both of the categories are not small.)

2.3. Proposition. Let 0: D —% be a functor with De|€at| and € cocomplete, and
let D: D—[D°P, §x4] be the Yondeda embedding [22; X.6].

(i) There is one and only one cocontinuous functor

I: [D?,8ns]—€
such that the triangle
[D°P, £s5]

D L

D——¢%
commutes [22; X.3].
(i) I has a right adjoint, the 6-singular functor,

Sg: €— D, Ena],
explicitly defined by
(8,C)d=%(64d, C)

where Ce|€| and de|D} [22; X.5, dual Cor. 4].
(iii) The counit
e [Sy>1dy: €—F
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is an equivalence (a) iff S, is full and faithful [22; IV.3, Prop. 1], or alternately (b)
iff 0 is dense; ie. every object in € is a colimit of a diagram with vertices and
edges in the image of 0 [22; X.6, dual of Prop.2]. [

2.4. Remarks. I is called the left Kan extension of 6 along D. It is given on
objects X e[D°?, &»4] by

[X=colim0d [22; X.3(10)]

xeXd

d
=(Xd-0d [22; X4(1)].

In the case ¥ =d&xs, the elements of I, X can be described explicitly as equiva-
lence classes [x,a] of pairs (x,a)eXdx0d where the equivalence relation is
generated by

(x-X8,a)~(x,0(0)a)

for xeXd, ac0d' and 5eD(d', d).
We now specialize the above abstract category theory.

2.5. Notation. The following small categories are used:
(i) A =category of finite ordinals

[kKl={0<1<...<k}

(in [22; VIILS] denoted by A™*), whose morphisms decompose into surjective
degeneracy operators and injective face operators; it is considered to be a full
and dense subcategory of ¥« ([10; I1.4.1] or [19; 2.5]).

(ii) M=subcategory of monomorphisms u: [p]>>[k] of A with canonical in-
clusion

U: MsA.

Each small category yields a canonical functor category:
(iil) " =[A°P, xs] = category of simplicial sets [10; 11.2].
(iv) L=[M°*, &xns]=category of nondegenerate simplicial sets [26].
The inclusion 1: A—>%a¢ induces:
(v) c=1: A — ¥ as =categorical realization (in analogy to the classical notion of
geometric realization) and
(vi) N=S,: ¥af/— A =nerve. (Name derivation: Classically, the nerve of a
covering of a topological space is an ordered simplicial complex. From the given
covering, one forms a poset which can be considered as a small category C ([22;
1.2] or [10; 11.4.1]). The nerve of the category C, NC, is nothing but the classical
nerve of the covering).
The inclusion U: M<—A composed with the Yoneda embedding A: A— X"
yields the pair of adjoint functors:
i) J=T;: > A
(viil) P=S,y: A - Z.

Proposition 2.3 implies:
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2.6. Corollary. (i) Nerve is a full and faithful embedding, given by:
(NC) =(NO)[K={p <™= Ppy_1 <. P2 <Py <™= Po}

for all Ce|€as| and k=0.

(it) The counit .
e:cN—ldg,,: bat—Cat

is an equivalence [10; 11.4]. [J
Moreover, we have:
2.7. Lemma. P forgets degeneracies; i.e.,
PX =X/M°P
forall Xelx'|. O
Thus P is not only continuous (as a right adjoint), but in addition:
2.8. Corollary. P is cocontinuous [8; Satz1b]. [

Each of the categories A", ¥ and %a¢ inherits homotopy theory from
the category #  via the classical geometric realization functor |—|: A —»W%
([24, 287):

2.9. Definitions. Let € represent either " or % or %/ (in this order).

(i) A morphism fe¥ is a weak homotopy equivalence (WHE) in € iff | f]|, resp.
|[Jf], resp. INf| is a homotopy equivalence in # .

(ii) An object C in ¥ is weakly contractible (WC) in %, whenever the terminal
morphism C— - is a WHE in 4.

(ili) Let ¢’ be an arbitrary category. A natural transformation
¢:F>G: ¢ —%
is a natural WHE in € if, for every object C’ in 4, the corresponding morphism
¢C:FC'—->GC
is a WHE in 4.
A tool used to attach simplices, and hence to do skeletal inductions, is the:

2.10. Glueing Lemma. If

Xev vy ,pew 57,1 x

AAAN,

Xet §—L P -7 I X

is a commutative ladder in A" or & with the rows pushouts, with u, i inclusions,
and with p,, p,, p; WHE’s, then

p: P—>P
is also a WHE [2;75.7]. O
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One application of this lemma yields the following theorem which in embryo
form, was used in connection with subdivision problems (e.g. see [8; 4.1. Satz2]).

2.11. Comparison Theorem. Let €' and € each either be A" or ¥. Suppose F, G:
% — % are cocontinuous functors which also preserve injections. In addition,
assume

¢:F5G: ¢ —>%

is a natural transformation such that its composition with the corresponding
Yoneda embedding is a natural WHE. Then ¢: F — G is itself a natural WHE. [

In particular, one verifies that the counit

JPASA A— A
is a natural WHE.

2.12. Proposition. The counit and the unit of the adjunction J— P
g JPSIdy: A — A
fi: ldy >PJ: > %

are both natural WHE’s [5; 3.4]. [0

2.13. Corollary. P and J both preserve and reflect WHE’s (i.e., Pf is a WHE in &
iff fis a WHE in A, and similarly for J). [

2.14. Remark. N and J both are inclusions. Thus ¥«¢ and £ both, can be
considered as subcategories of 2. The essential difference lies in the fact that J
is a left adjoint, while N is a right adjoint. Therefore, the Glueing Lemma and its
consequences are only available for &, but not for ¥a¢. This is the reason for
many of the difficulties in this paper.

The adjoint pair J—{P is an example for the notion of “homotopy inverses”
appearing in the title of this paper. More precisely:

2.15. Definitions. Let €’ and € be each either A, £ or Galf.
(i) Two functors F, G: €' — € are called WHE, denoted F~G, if there exists a
zig-zag of functors F;: € > %', 0<i<n and natural WHE’s

F=F,»F,&F,..5F,_,<F=G

connecting F and G.

(i) Two functors H: ' —% and G: € — %" are homotopy inverses for each other
or H is a homotopy inverse for G, if:

(a) at least one functor, both preserves and reflects WHE’s;

(b) GH ~1d,. and HG~Id,.

2.16. Remark. 1t is easy to see that both functors in a pair of homotopy inverses
must preserve and relfect WHE’s. Thus =~ is an equivalence relation on the class
of functors.

For later use, we fix the notation for some special functors 0: A —»%«¢ and
list some relations among them.
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2.17. Notations.
(i) E=cA': A—>Cal
where A': A— " denotes the barycentric subdivision in the sense of Kan [13].
Note that we interchange the meanings of & and &°P in [19; 5.1].
For any k=0
SLk1=M|[k]

in the language of comma categories [22; I1.6]. Adopting Kan’s notation [13; 7]
Sd=T,. A —> XA,
we introduce more generally, for any n>1
'=cSd" " 'N=cSd"A: A—>Cal.

(ii) Y=Al A bat;
that is
y[k1=A|[k]

for all k=0. I: A —%at is the “category of simplices functor” which is a
homotopy inverse to nerve ([11], [17]).

(iif) w=U|_ :A>%bat

extends to
A= A —>Cat

which is also a homotopy inverse to nerve [20].

2.18. Relations. (i) For all n>1,
L.=cSd": A" > Cat.

(i) NE=Sd"'N: A X,

and consequently, for alln=1,
Iyen=8d": A — A

(iii) NA=Sd-J-P: A —> A
[17; correction].

(iv) A=IyP: A —>Cat

) Iy=cSdJ: —>%at. O

Section 3. Homotopy Inverses for N=PN: €af—> %

The category % lies “between” the category of ordered simplicial complexes
and the category ¢ of simplicial sets. From the geometric point of view, & is
the more interesting category, but ¥ has some better formal properties. Thus
some classical results for 4" are proved via % (see e.g. [5; 3.8]). Similarly, in our



Homotopy Inverses for Nerve 155

context, to find homotopy inverses for nerve, it is useful to first study nerve
without degeneracies, i.e., the composed functor

N=PN: Gat— .
Although N is a right adjoint, its left adjoint
cJ: > bat
fails to be a homotopy inverse for nerve. For example
NcJP(A[K]/A[Kk])= PJPA[O]

for k=2; but Proposition 2.12 guarantees that P(A[k]/A[K]) has the homotopy
type of a sphere, while PJPA[0] is WC.

In order that the possible homotopy inverse category I'X reflect the original
simplicial structure of X, we restrict our search for homotopy inverses for N to
cocontinuous functors I': % — €a¢, which automatically preserve attachings.
From Proposition 2.3 (i), such a functor I': ¥ — €« is completely determined
by its restriction to M (via the Yoneda embedding M)

f=I'M: M- %at.

Obviously, whenever I' is a homotopy inverse for N, it is necessary that
0=T'M: M>%as be WC; ie., for each k=0, 0[k] is WC. In particular, 0[k]
would be WC whenever all the canonical simplicial maps arising in the string

NO[k] «—JNO[k]=JNIM[k] ... —>IM[k]=A[k]— A[0]

are WHE’s.
To go further, we recall some familiar terminology form geometric simplices:

3.1. Definitions. Let € be either A, Z, €at, or Exs and let 0: M—% be a
functor.

(i) A simplex (object, morphism, element) ae6[k] is called interior if it is not in
the image of any 0u with ueM~|M| (i.e. x a nonidentity injection in M). The
collection of interiors is denoted by 0[k].

(ii) @ has normal forms if the (always existing) representation of aef[k] as

a=0u(b)
with ueM and bef[dim 1], is unique.

3.2. Remark. The condition for a functor 6: M — % to have normal forms can be
rephrased more categorically: First, augment the small category M to a small
category M, by adjoining an initial object ¢; then M, has pullbacks.
Next, extend 0 to 6,
M
K
{ a%
g

0y,
Ve

M)
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by mapping the initial object of M, onto the initial object of 4. Then 6 has
normal forms iff 6, preserves pullbacks. Thus a composition Q6 of 6 with a
functor Q preserving finite limits and having suitable codomain, has normal
forms whenever 6 has normal forms.

The essential feature of normal forms is given in:

3.3. Lemma. Let € be either A", &, or Ens and let 6: M— € have normal forms.
Then I: ¥ — € preserves injections. []

3.4. Remark. The statement of this lemma is not true for ¥=%a¢. To see this,
note that the inclusion

1U: M>%ad
(notation introduced in 2.5) has normal forms and consider the injection
M[2]—M[2],

where M[2] denotes the boundary of M[2] which is defined in the obvious way.
The image of M[2]—~M[2] in €a¢

b 2 2
%/.:k b%: X

Ly(M[2]) L(M[2))

is clearly not an inclusion. But there is an extra condition insuring that
I,: ¥ —>%at preserves injections (see Corollary 3.11).

Proof of Lemma 3.3. Let X be a nondegenerate simplicial set. From Remarks
2.4, every element of I X can be represented by a pair (x,a) with xeX and
a€f[dim x]. If 6 has normal forms, then this representation is unique, whenever
a is required to be interior. Suppose f: XY is injective in X, then

I f(x,a)=I;f(%,4)

fx=f% and a=a

implies

if a, aef[dim x]; and the injectivity of f implies
x=X.
Thus
(x,a)=(%,4)

insuring the injectivity of I, f. [

We now state the main result of this section, which in the generality given, is
due to the referee.

3.5. Theorem. Let 6: M—%a¢ be a functor which is WC and has normal forms.
Then Iy: & — % at is a homotopy inverse for N: €aé — & whenever the canonical
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natural transformation
p: iy~ NI > &
is a natural WHE. [
The key to this theorem lies in the following:
3.6. Lemma. Let 0: M— " be a functor which is WC and has normal forms. Then
L= > A
(in the sense of Definition 2.15).

Proof. Let Ex®: A — A be Kan’s extension functor [13;4] turning every
simplicial set into a WHE Kan set under the naturat WHE

e®: Idy S Ex®: A — X,
Then any simplicial map A[k]— Ex®0[k] has an extension

ATkl —— Ex“’ 6[k]

e
4
e
'

//
A[K]
Using these extensions, one constructs easily (by induction on k) a natural WHE
AU 5 (Ex®0=0): M— X .

On the other hand, the restriction of e® to the image of 0 yields the natural
WHE

0560 M—> 1.
Cocontinuous extension produces the zig-zag
I, > L« Ly=J

of natural transformations.

Now note that Ex®: A — X is a colimit of continuous functors but is not
continuous itself. Nevertheless, it preserves finite limits [10; IV.3.2]; thus, in
view of Remark 3.2, 6’ also has normal forms. From Lemma 3.3, both I, and I,
to preserve injections. Therefore, the Comparison Theorem, Theorem 2.11,
applies and gives the desired result. []

From this, we get the:

Proof of Theorem 3.5, Part 1. We show

By assumption,
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Next, note that since 8: M — %a¢ has normal forms, the same holds for NG:
M — " (see Remark 3.2); hence the preceding lemma implies

Ing=J: - A,
and thus

1%’9=PFN0(2§3) (2%2)“‘7' =

3.7. Remark. A proof of the second part of Theorem 3.4 would consist of showing
I;N = Id‘gal’

This is very easy, provided that there exists at least one homotopy inverse I':
L —>Catfor N:Cat— L.

Then one simply forms
ILN~IN[LN~IN=~Id,,,,

using NI,~Id, and the fact that I" preserves WHE’s (sec Remark 2.16). Any
homotopy inverse I': & — Gt for N: $as— A" (see Notation 2.17) gives rise to
a homotopy inverse I for N; namely

I'srJ: $—%at;

and such I'’s can be found in the literature!

But our intention is to give a self-contained theory for homotopy inverses for
N, N respectively. Thus we will also prove explicitly the second part of
Theorem 3.4 for a special functor 6 at the end of this section (see Lemma 3.14).

Before doing so, we describe a condition on functors 0: M —%«¢ which
assures that p: I,— NI, is a WHE, the required hypotheses in Theorem 3.5.
This condition is fulfilled in all known examples.

3.8. Definition. A functor 0: M — %« is called divided, if
(i) it has normal forms, and

(ii) the functors 6 u are inclusions of right (left) ideals for all face operators ueM.
(Recall that a subcategory A of a category B is a right ideal in B, iff acA, beB
implies abe A, whenver the composition is defined.)

3.9. Note that in the presence of (ii), condition (i) could be weakened to requiring
normal forms for the composed functor

[6]: M — &sa.

3.10. Lemma. If 0: M — %« is divided, then for any nondegenerate simplicial set
XeX, each morphism of I, X has a unique representation by pairs (x,a) with xeX
and acf[dim x] (see Remarks 2.4).

Proof. We assume 6 u to be an inclusion as a right ideal for each ueM. Then we
have, for each interior morphism aef[k],
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(i) cod acf[k]
(i1} doma has a unique representation

doma=0u(p)
with pef[dim u]

(iii) aoOu(b)eO[k], for all ueM and bef[dim ] for which the composition is
defined in O[k].
Now consider the set

X ={(x,a)|xeX, a an interior morphism in 8[dim x]}
and provide it with a category structure by defining:
cod (x,a)=(x, cod a)
dom (x,a)=(xu,p)
where dom a=6 u(p) as defined in (i), and composition by
(x,a)o (xp, b)y=(x,a0 0 u(b)).
The resulting category is easily seen to be isomorphic to I;X. [
From this, it follows directly that

3.11. Corollary. If 6: M— G« is divided, then I;: & — € ad transforms injections
into inclusions of right (left) ideals and p: Iy,— NI is a natural equivalence (not
just a natural WHE). If, in addition, 0 is WC, then I is a homotopy inverse for
N. O

In order to justify the terminology “divided”, we show that there is a strong
connection between divided functors and geometric subdivision processes. Re-
call the functor &é: A— %a, derived from the barycentric subdivision of stan-
dard simplices (see Notation 2.17(i)). Its restriction (see L.emma 2.7)

EM=(U: M—>%ar

is not only divided, but it also has a universal property among all divided
functors 6: M—> @ a.

3.12. Proposition. A functor 0: M — @at is divided iff it has normal forms and
there exists a (necessarily unique ) natural transformation
$:05EU: M>%bat

Q
~~

(or ¢: 68— EPU) which preserves interior objects, ie. ¢ (p)e|EU[k]| for all
peld[kl. O

Besides giving authenticity to the term “divided”, the functor U also has
another useful property. The natural transformation (“last evaluation”)

(3.13) SN SN A>A
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considered by Kan [13; 2.2] induces a natural transformation
¢: EUS1U: M>Bat
which extends to a natural transformation
I Ly > (Ly=cJ): £ —>%at.

This allows us finally to prove:
3.14. Lemma.

Ly N ~Idg,,.

Proof. We connect I;yN and Idy,, by the following composition of natural
transformations:

IEUN—E:?»(CJ=CJPN) ~—>cN—1dg,,.

cEN £

Next, note that a natural transformation ¢ between endofunctors in %/ is a
natural WHE in €« ¢ (see Definition 2.9(iii)) iff N® is a natural WHE in % ; and
that Corollary 2.13 insures this is the case, iff PN¢=N® is a natural WHE in
. Thus it is sufficient to show that

N(socéNoI},N): FwoN——;N: Cat— &L
is a natural WHE in %.

To this end, consider the diagram

NIyN——> NI N=PNc¢JPN — > PNcN ——PN=N

@

PNCEN
N] 5&% = Pr,JPNI- PnNL Z

I}VCUNWFﬁtUN= PJPN WPNEN

™

The universal property of Kan extensions [22; X.3] insures that the two
lefthand squares commute. The third square commutes by the naturality of the
unit

n:1d, > Nc: A — A,

Lastly, the triangle on the right is (up to P) just one of the adjunction equalities
[22; IV.1]. Corollary 3.11 insures the left vertical arrow is an equivalence.

Both J=Iy,, and SdJ=Iy,, preserve injections; thus I3, =PIy, and
SdJ =TIy, also do. Moreover,

(Pé=IyM):(I;uyM=PA) > (PA=I;,yM): M> %

is a natural WHE in Z; hence, the Comparison Theorem, Theorem 2.11, applies
and I3 ¢N is a natural WHE. Proposition 2.12 and Corollary 2.13 guarantee that
PEN is also a natural WHE. Hence, the proof follows (again) from Corol-
lary 3.11 and from Proposition3.12. []
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3.15. Remark. Thus we have shown that
cSdJ=Iy: £ >Cat
is a homotopy inverse for N. Moreover, for all n>1,
cSA"IM: M—bat
is divided. Hence, all the functors
cSd"J: ¥ >Cat

are also homotopy inverses for N.

Section 4. Homotopy Inverses for N: A —€as

In this section, we study homotopy inverses for nerve, up to crucial conditions
which will be analyzed in more detail in Sect. 6. Note first that any homotopy
inverse to N gives rise to a homotopy inverse for N.

4.1. Proposition. Let [': #—%at be any homotopy inverse for N: €at— L. Then
I'P: A" —>%at is a homotopy inverse for nerve, N: €at— A

Proof. (i) FPN=IN=~Id,,,

(i) NFP(ﬁZ)JPNFP=JNFP(2%3)JP(27~f2)Idx. O
4.2. Remarks. (i) The homotopy inverses for nerve generated by the preceding
proposition are quite unsatisfactory from the geometric point of view, since the
functor P associates with every nonempty simplicial set, even the point A[0],
an object of infinite geometric dimension. This motivates the search for other
homotopy inverses for nerve which “preserve” geometric dimension.
(i) If I': #—%at is a homotopy inverse for nerve of the form I'=I'J: ¥ —%at
for some functor I': H —%af, it does not necessarily follow that I' is a
homotopy inverse for nerve. In particular, the functor

I'=I,

U (2.1—_§(v))CSdJ: L ->Cat
was shown to be a homotopy inverse for N (see Remark 3.15); however,
I;=cSd: A >Cat

is not a homotopy inverse for N (see Eq. (1.2)). 3
(i) If I': £ —>%at is cocontinuous, Corollary 2.8 insures that '=I"P is also
cocontinuous. By Proposition 2.3(i), I" may be written in the form I'=1I; with

0=IPA: A>%Bat.
In particular, for I’ =Ty, we get from 2.17(iii) and 2.18(iv) that

§=I PA=0: A~%at.
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Thus, from the notation introduced in 2.17(iii),
I'=A: A >%at

is the homotopy inverse for nerve defined by Lee [20].
From another point of view, we start from a given functor

0: A>Cat
and determine conditions under which
Iy A —>Cat
is a homotopy inverse for nerve.

4.3. Definition. The functor 8: A—> %t has normal forms (is divided), if its restric-
tion /M =0U: M—%a¢ has normal forms (is divided). [

That 6 has normal forms, is a rather mild restriction, because of the
following result.

4.4. Proposition: For a functor 0: A—>%atto have normal forms it is sufficient that
(06%a=(06")a

for every morphism acf[0]. (Here 6° and &' denote the two elements of
M([03,[1]D) O

The straightforward proof is left for the reader. The statement is essentially
due to D. Puppe (unpublished) and may be also found in the paper [27] of
C. and R. Ruiz Salguero, which deals, in great detail, with the question of normal
forms for functors 0: A— &0

There is an analogue of Theorem 3.5 in this case:

4.5. Theorem. Let 0: A—>%at be a functor which is WC and has normal forms. Then
I,: A >%at is a homotopy inverse for nerve whenever the canonical natural
transformation

p: Ing> NIy A=A
is a natural WHE. [

4.6. Remarks. (i) Although this appears to be literally the same as Theorem 3.5,
it is quite different in content. The condition that p be a natural WHE is much
stronger than the condition on p in Theorem 3.5. If the functor U: M —%af is
divided, then g is always, not only a natural WHE, but even an honest natural
equivalence (see Corollary 3.11); nevertheless, in this case p may fail to a natural
WHE. In particular, from Remark 4.2(ii), it follows that, for £=cSdA: A—>%Bast
and k=2,

p(ATKY/ATKD: (I ATKI/ALKD, =, SAALKI/ALKD)
~(NI(AK)/ATK]) = NeSd(ALK)/ATK), =, AL1D);

(1.2)
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but A[1] is WC and Sd(A[k]/A[k]) is WHE to the k-dimensional simplicial
sphere [13; 7.5].
(i) If one strengthens the assumption WC to the existence of a natural
transformation

¢:051: A>bat

such that ¢[k]: A[k]—1[k] is a strong homotopy equivalence, in the sense of
[19; 3], then by the Main Theorem of [19], the right adjoint S;: ¥a¢— A" of
Iy A" —%as is connected to nerve by the natural WHE

S¢p: (N=S)>S,: Gat>A.

Thus S, becomes a homotopy inverse for I,. Moreover, the proof of Corol-
lary 4.7 in [19] applies to such a 0, instead of to just y appearing there, and
guarantees that both the unit and counit of the adjunction I, —|S, are natural
WHE’s. Thus we have an adjoint homotopy equivalence between the categories €a
and . Note that such a natural transformation ¢ exists for 0e{y,w, ", n=1}
(see [19: 5.13, 5.16, and 5.4].)

The formal analogy between Theorem 3.5 and Theorem 4.5 extends to their
proofs. The “key” to Theorem 4.5 is a suitable reformulation of Lemma 3.6:

4.7. Lemma. Let 0: A— %" be a functor which is WC and has normal forms. Then
Iy~1d,,. In particular, Iy preserves and reflects WHE’s.

Proof. From Lemma 3.6,
I =Ty~J.
The functor I, preserves injections, since 68U has normal forms (see Lem-

ma 3.3); and also the composition I;JP does, since P is a singular functor
(right adjoint). Moreover, for each k=0

I, JJPATK] :JPA[k]( ~ )A[k];

2712
thus both
ILJPA: A—»A and [A=60: A-XH
are WC. Therefore

LEA: [LJPASTA: A A
is forced to be a natural WHE. Hence, the hypotheses of the Comparison
Theorem, Theorem 2.11, are satisfied for the natural transformation
LE LIPS A —A,
and it is a natural WHE. Thus
FG:F,,JP(%)JP(Z;;Z) Id,. O

Proof of Theorem4.5. The preceding lemma implies Iy,~Id,. Thus the hy-
pothesis on p gives

NI,~Ty,~1d,.
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There are homotopy inverses for nerve (see, e.g., Proposition 4.1). Thus, in the
same way as in Remark 3.7., we get

IgN~Id,,. O

In contrast to the situation in Section 3, the assumption “divided” does not
imply the hypothesis on p in Theorem 4.5; its role is clarified in the following
statement which is due to the referee.

4.8. Theorem. For a divided functor 0:A—%a¢ the following conditions are
equivalent:

(i) I is a homotopy inverse for nerve;
(ii) 0 is WC and I, preserves WHE’s;
(iii) 6 is WC and
p:Ing o NIy A >
is a natural WHE.
Proof. (i)=>(ii) is trivial.
(ii)=>(i) was actually proved as part of the proof of Theorem 4.5, because to show

(i), we needed only (a) that I, preserves WHE’s and (b) that N and I, are
homotopy inverses of each other which is guaranteed by Corollary 3.11.

(iii)=>(ii) was also shown in the proof of Theorem 4.5
(11)=>(iii): Consider the commutative square

(Tgou P =I5J P) _FN;E—’ (Iyg=PIye)
pP | Pp
(NIyP=NIJP) —— (NI,=PNI).

The lefthand vertical arrow is a natural equivalence by Corollary 3.11.
Lemma 4.7 guarantees that I;,=PI,, preserves WHE’s; thus the top arrow is
a natural WHE. The functor I, preserves WHE’s by hypothesis; so does NT;.
Therefore, the bottom arrow is also a natural WHE. Hence, Pp is a natural
WHE; and since P reflects WHE’s, the assertion follows. [

There is another interesting variant of Theorem 4.5 and Theorem 4.8. In
order to state it, we first recall:

4.9. Definition. A simplicial set X is said to be regulated (see [21; 111.8]), if for
any nondegenerate simplex x and any pair of face operators p+ fie A[dim x]
with Oelm g,

xpExp. [
4.10. Remark. If X is any simplicial set, then Sd°PX is regulated. Here,
Sd®: A > A
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denotes the cocontinuous functor which is obtained from Sd by reversing the
ordering of barycenters.

4.11. Theorem. Let 6: A—>%at be a functor which is WC and divided. Assume the
canonical natural transformation.

p: Ing NIy H > A
gives a WHE for every regulated simplicial set. Then the composition

I,Sd°®: A >Cat
is a homotopy inverse for nerve.
Proof. Define
¢ =I,Sd"A: A>%at.

Then Proposition 2.3 implies I, Sd°®=1I,.. Furthermore, note Sd°°A[k] is in
the image of J: L—- for all k=0 [21; IIL.7]; thus by Corollary 3.11,
(NO'=NI,Sd®A=T,,Sd°°A): A—>%Bas. But

p'=pSd®®: (Iyy =IyySd®)>(NI,Sd® =NT,)): X >A"

is a natural WHE; and the result follows from Theorem 4.5. [J
This ends, for the moment, the abstract theory. Let us now consider:
4.12. Examples. (i) The functors
Ey, w: AoCal
introduced in Notations 2.17, all are divided.
(ii) We already proved that
I=A: A >%at

is a homotopy inverse for nerve (see Remark 4.2(iii)). Theorem 4.8 implies that
the canonical natural transformation

p: Ty >(NI,=NA): A >

is a natural WHE. It is not hard to see that it is even a natural equivalence,
which will follow from the later development (see Remark 6.7).

(iii) The natural transformation

p: Iy, NL: A —>A

is a natural equivalence. To see this, we refer, for the moment, to [17;
Lemma B], from which this statement is an immediate consequence. In the next
two sections, we improve this result (see Remark 6.7). Consequently, I: 4 —%as
is a homotopy inverse for nerve, as mentioned before.
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(iv) As already mentioned (see Remark 4.2(i1)), the functor
I.=cSd: A" >Cat

is not a homotopy inverse for nerve; thus, by Theorem 4.8, the corresponding
p: (Iye=8d)>(NcSd=NI): A >A

cannot be a natural WHE. But it fulfills the weaker condition in Theorem 4.11.
To see this, we prove the following proposition. We assume that X is a regulated
simplicial set.

Proposition. The small category I X is a poset.

Proof. Using the explicit description for categorical realization
c: H —>Cat

given in [10; 11.4.2] and the existence of normal forms for
Sd: A —->A

(see Proposition 3.12), it is clear that objects of ¢cSdX can be identified with the
nondegenerate simplices of X. By similar reasoning, each morphism from y to x
in ¢SdX is an equivalence class of face operators

w: [dim y]»—[dim x]

such that xu=y. To show that ¢SdX is a poset, it is sufficient to show that if the
equivalence classes [1] and [v] are both in ¢SdX(y, x), then [u]=[v]. If such
[1] and [v] are given, then let

puv: [m]—[dim x}
denote the unique face operator in A satisfying
(Im ) U (Im v)=Im(uu v).

Note that y is also the unique nondegenerate part of x(uu v). The result follows
from the description of ¢: A —>%a¢ in [10; 11.4.2] and the consideration of the 2-
simplices in SdX represented in normal form by

(x5 (1 1OV, Ldigim )
and ’

05 (v, BV, 1dgim ),

where (4, UV, 1d 40, and (v, pUV, 1d g, ) are in A'[dim x],. (For the explicit
form of A'{dim x] used here see [13; 1.2].) [

Now, the proof of this proposition implies, in addition,

NILX=*X,
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where *: # > is the old “star” functor originially defined by Barratt [1] (or
see also [21; 111.9]) in order to prove that geometric realizations of simiplicial
sets are triangulable [6]! The natural map

LX: L X—X

(for the definition of § see (3.13)) is a WHE by the Comparison Theorem,
Theorem 2.11, and decomposes into

LX=yopX

where || is homotopic to a (non-natural) homeomorphism (see [1] or [21] in
connection with the corrections given in [6]) and thus ¥ is a WHE. Hence pX is
a WHE.

(v) From (iv), we know
I.Sd®=cSdSd®=cSd*> =I};: A >Cat

to be a homotopy inverse for nerve. According to Theorem 4.8, the canonical
natural transformation

p* Qoo NI A > A

is also a natural WHE. An inductive argument, using Theorem 4.11, insures that
all the canonical natural transformations

o I}vp—'»NQn: H>H
for all n=2, are natural WHE’s.

4.13. Essential Remark. The considerations, in Example 4.12(iv), lead to another
interesting interpretation. According to [5; II], we have |X| homeomorphic to
|Sd°?X|, for every simplicial set X.
Thus
| X|~|SdPX|~|*Sd** X | =|NI,Sd°*X|=B(I,Sd°* X)

where B=|N_|: ¥a¢/—#  denotes the classifying space functor as introduced by
G. Segal [28]. We can interpret this as follows: an arbitrary simplicial set has
not only the homotopy type of a small category, but its geometric realization is
also homeomorphic to the classifying space of a small category. Roughly
speaking: ¥ is (via N) not a “thin” subcategory of £, but it exhausts 2 up to
homeomorphism!

Section 5. Intermezzo: Nerve and Pushouts

This section contains technical definitions, lemmas, and hypotheses under which
nerve does preserve certain pushouts up to isomorphism or WHE. These
conditions will be summed up in Sect. 6 to a condition on a divided functor
0: A—%as assuring that the canonical natural transformation

p: Ly > NI A >
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is a natural WHE. Many of the tedious details are left for the reader. Further-
more, each of the hypotheses, and most definitions have dual formulations; these
are also left for the reader to complete.

Throughout this section, let the square

A—""1LB

(5.1) fl lr

c— 5D
be a pushout in ¥a¢ with i an inclusion.
5.2. Proposition. If i is full, then i’ is also a full inclusion.
Proof. D can be viewed to be the following category. As object set, we take
ID|=|C|u (IBI~]A])

(where Ls represents the disjoint union of the sets in question). In order to get
the morphism sets of D, we first set

D(p,9)=C(p,q)

for p, geC. In the case where pe|C|, g€|B|~|A|, we consider pairs

(b, c)eBxC
such that
dom c=p,dombe|A|, f domb=codc,cod b=gq.

On the set of pairs, generate an equivalence relation by the relation
(bea,c)~(b, facc)

for aeA such that the compositions involved are defined. Now, let D(p, g) be the
set of the corresponding equivalence classes. The case peB~ A, gqeC is dual.
Finally for p, geB~ A, define D(p, q) to be equivalence classes of the set

B(p’ q) L {(bl’ c, bZ)EB X C X BI

codb, =q,dom b, €A, f(dom b,)=cod c,}

domb,=p,cod b,€A, f(codb,)=domc ).

Here, the equivalence relation is generated by the following three relations:

bjeacb,~(by, fa,b,)
(byoa,c,by)~(by, facc,b,)
(bp c»a°b2)~(b1’ c0fa, bZ)

for aeA such that the compositions involved are defined. Now the assertion is
clear. [J
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5.3. Remarks. (i) The question arises: Is the condition that i is an inclusion
sufficient for i to be an inclusion? The following picture, inspired from an
example, due to Kimura [15], concerning semigroups, shows that this is not
true. (All triangles involved commute.):

But there are situations with i inclusion without i being full. One trivial case
occurs when C is a discrete category. More interesting is the classical result if A,
B, C are groups and f is an inclusion, then D is the “amalgamated product” of B
with C. It seems that weakening the condition on the fullness of i requires a
condition on f in order to force i’ to be an inclusion. The example given above
also demonstrates that, in contrast to the group case, the assumption “f
inclusion” is not enough.

(i) Already, the example in (i) above shows that nerve does not preserve
pushouts. Requiring fullness for i does not help. Consider the following situa-
tion:

esah21= AN AN —esanr
AR PEONY
f

¢SAA[0] =

The pushout in ¥a yields a 1-simplex (after embedding in ¢ via nerve); the
pushout in £ leads to a 2-sphere (see Remark 4.2(ii)).
(iii) Finally, note that since cN ~Id,,, N: ¥as— A" reflects pushouts.

A careful analysis of the proof of Proposition 5.2 yields the following
variation on this result:

5.4. Proposition. If A is a right (left) ideal in B (see Definition 3.8(ii)), then C is a
right (left) ideal in D. [

The example in Remark 5.3(ii) also shows that not only fullness, but also
ideal preservation properties, do not insure that a certain pushout in %a¢ is at
least a homotopy pushout in . For this reason, the condition of being divided
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for a functor §: A—>%at is not enough to insure that I;: A —>%«f is a homotopy
inverse for nerve, as explained in Sect.4. Some of the necessary stronger
conditions are described in:

5.5. Definition. An object peA is said to be f-regular, if f induces an isomor-
phism pA -5 fpC between the principal right ideals pA, fpC generated by p, fp
resp. in A, C resp. Dually p is f-coregular, if f induces an isomorphism Ap-
%, Cfp between left ideals.

The first result, in the desired direction, is now contained in:

5.6. Proposition. Assume there are subcategories A’, A" of A such that:
(1) |A'TUIA"|=|Al;

(i) fIAINfIA"|=¢;

(il)) A'(A") is a right (left) ideal in B;

(iv) Each object in A'(A") is f-regular ( f-coregular ).

Then the nerve of square (5.1) is a pushout in A .

Proof. Pushouts in " are computed pointwise. Therefore, it is sufficient to note
that under the given assumptions, a string of morphisms in D is of one of the
following forms:

. [} Cn .

() Po——— Py .2 Py — P GEC

.. fay Sar br+1 b
(i1) Po—P1 -+ Dr_1 D Dkp1 ™ T Py T

Jam Sfan
Bn—_‘i’}?nn_’---’"’ﬂ-l—’l% a;€A, beB;

where the ¢; are uniquely determined if all the p; belong to C, and otherwise, the
a; and b, are unique. [

5.7. Remark. That the functors I', and I' ,= /A may serve as homotopy inverses
for nerve depends on the fact that in the pushouts involved, the corresponding
regularity conditions are fulfilled. On the other hand, in the case of cSd"(n=2),
one can neglect regularity and use further properties of the inclusion i. The
following considerations shall show how one can compensate “f-singularities” by
stronger assumptions on i.

5.8. Definitions. (i) An object peA is said to be f-singular, if it is not f-regular.
By S, we denote the set of f-singular objects, which is a subset of |A|, and also a
subset of |B| via i.

(i) The singular collar W, of f in B is the smallest full subcategory of B
containing A and containing BS , the left ideal of B generated by S .

Now we are able to state the main result of this section:
5.9. Theorem. Suppose

(i) A is a right ideal in B;
(ii) A is a coreflective subcategory of the singular collar W .
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Then the canonical simplicial map
p: NCI[[NB— ND
NA

isa WHE inX'. [

For the proof, we need three lemmas.

5.10. Lemma. The nerve of the pushout

Ce——s

s

is a pushout, up to homotopy, in A" ; i.e., the canonical simplicial map
p: NC]] NW,— NE
NA

isa WHE.

Proof. Since A is coreflective in W,, so is C in E. A natural transformation

¢: F5G in ¥as can be viewed as a functor domF x 1[1]—cod F; thus the

classifying space [NA| of A becomes a strong deformation retract of [NW sl For

the same reason, [NC]| is a strong deformation retract of |[NE|. Since pushouts in

W preserve strong deformation retracts, [NC| is also a strong deformation

retract of |NC]JNW sl Since p composed with the embedding
NA

NCC—»NCHNWf yields the embedding NC<— NE, p itself must be a
NA

WHE. (O

5.11. Lemma. The commutative diagram

NW =—— NR

L]

NWf<'—~> NB

s

with R, ={|B|\S ) (see Notation 2.2) and W=W_ nR,, is bicartesian in A';
i.e., it is both a pullback and a pushout. [

Before giving the proof, we indicate by an illustration what is happening. Let
A=cSd*A[2], B=cSdA[2], C=cSd>*A[0]=: [0].

We draw B as follows: the objects of R, are marked by small circles O; the
objects of W, are represented by x ; and thus the objects of W bear tensor ®.
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X\ f
O
X X
074 X
() (J
[ ]
L—® Ry
C O @

& / X X X

Proof of Lemma 5.11. The pullback property follows from the definition of W
and the adjointness of nerve. Since pushouts in % are computed
pointwise, it is sufficient to show that any string of morphisms

bn by
I Pn_g oo Py ¢ Po

in B has a unique preimage either in R, or in W . Since all functors involved are
inclusions, the uniqueness is clear. If all the objects p; belong to R,, then there is
a preimage for the string in R, by the fullness of R in B. If one p; is not in R,
then it is in A and f-singular; thus p; is in W . Since A is a right ideal in B, all
the objects with i<j belong to A, and thus also to W . Since W, contains the
left ideal of B generated by p;, all the objects p; with i>j, also belong to W .
Now, from the fullness of W in B, the whole string lies in W,. [

Since nerve reflects pushouts (see Remark 5.3 (iii)), the diagram

We—— R,
W,=—— B
is bicartesian in ¥2¢. We compose this diagram with the induced pushout
We—5B
E——D
to show:

5.12. Lemma. The composed diagram
We—-— R,

|

E—D

is not only a pushout in Gat, but, after embedding via nerve, also a pushout in A'.
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Proof. We check the hypotheses of Proposition 5.6 by taking
A'=WnA, A=W\ AD.

(Confused? Check the illustration after the statement of Lemma 5.11.) The only
problem is to verify the regularity conditions, hypothesis (iv).
First, consider an object peA'. It is f-regular, and thus

pW=pA=fpC=fpE

via canonical isomorphisms; the last follows from Proposition 5.4 and the fact
that C is a right ideal in E.
For an object peA”,

Wp=W,p and W pnA=¢.
The constructive proof of Proposition 5.2 insures that
W, p=Ep. O
Finally, the
Proof of Theorem 5.9. Consider the diagram

NWe— NRf

| o |

NA=— NW = NB
o [Ta
NC= NE =—— ND.

By Lemma 5.12 the vertical composed rectangle @o(Q) is a pushout, and from
Lemma 5.11, square Q) is a pushout; thus, square @ is also a pushout. Lemma
5.10 implies square (D is a pushout up to homotopy. Finally, from the Glueing
Lemma, Lemma 2.10, the rectangle @o(@, composed of a pushout up to
homotopy and a real pushout, is a pushout up to homotopy. [

5.13. Remarks. We developed our collaring condition from ideas of
R. Thomason. He proved Theorem 5.9 under the stronger hypothesis that A is a
coreflective subcategory, not only of the singular collar W, but also of the
complete left ideal in B generated by A (see [30; Prop. 4.3]). Our proof is
modeled on his; but we need the more subtle condition 5.9 (ii), since his
condition is not fulfilled for the pushouts occurring in dealing with I and I,=4
(see Remark 5.7).

There are also other pushouts in ¥, which are, via nerve, pushouts up to
homotopy in #". We mention the classical result of J.H.C. Whitehead [32;
Theorem 5] for the case A, B, C groups and f injective. Moreover, J. Hardy and
D. Puppe found the following assumptions to be sufficient for this purpose: A
=|B|, C=|D| and B a groupoid (still unpublished). The methods in these cases
are quite different from ours; nevertheless, we hope, by combining all these
methods, to find a general theorem as a common cover for the above results.
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Section 6. Divided Functors 0: A - Gal

Throughout this section let 8: A >%af be a divided functor. Without loss of
generality we assume that all functors

Ou: 6[pl—0[k]

to be inclusions of right ideals (see Definition 3.8(ii)), for every u:[p]— [k] in M.
First note (In contrast, see Lemma 3.3.):

6.1. Proposition. The cocontinuous extension
Iy A —>Cat
of 0: A—>®Bat transforms injections in A into inclusions of right ideals in Gat.

Proof. Let i': XY be an inclusion in ). Using the standard skeletal induction,
it is sufficient to assume i’ can be embedded in a pushout in " of the form

A[k]=—"— A[K]
f S

Next, i=Ji for the inclusion i: M[k]—>M[k] in #; thus it follows from
Corollary 3.11 that

Li=IJi=IyT: (0[K] = ALK (I, A[K] = 0[k])

is an inclusion of a right ideal.
Apply the functor I to the above pushout. This yields a pushout in €a¢ with

Li: L[ X—>LY
an inclusion of a right ideal from Proposition 54. [

In order to describe the extra condition on : A—%a¢ which we need, some
further:

6.2. Notations. (i) For a fixed k>0. Let
t: A[k]-A[0]
denote the terminal simplicial map in %", and set
t=I,t: I,A[k]—-L,A[O].
(i) The functor ¢ can be embedded in the pushout (in €a¢)
lk] =T A[k] =—— LA[K]=0[K]
t

0[0]=1,A[0] =—— L(A[KI/A[K]),
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and thus it gives rise to a singular collar W,, in the sense of Definition 5.8(i1).
(Note, Proposition 6.1 insures that the top arrow in this pushout is an inclusion
of a right ideal.)

Next, we state the main result of this section:
6.3. Theorem. The canonical natural transformation
p: Iyg > NI H > A

is a natural WHE, whenever 0[k] is a coreflective subcategory of W,, for every
k>0. O

6.4. Remark. In the cases of 0=1, w,
W, =0[k];

so the condition in Theorem 6.3 is trivially satisfied. It is also easy, but tedious,
to verify this condition for 0=¢" n>2; we therefore refer the reader to the
“picture” after the statement of Lemma 5.11. For the case 6=¢, we find that W,
=0[k]; thus the condition is not satisfied.

For the proof of Theorem 6.3, note that the composed functor NIy A -,
although not cocontinuous, preserves the simplicial decomposition of a sim-
plicial set; more precisely:

6.5. Lemma. Let X be a simplicial set. Then NI, of the following pushout in A~

[J Gy [T<x

xeXi xeXj

Xk-te X

is again a pushout in A, where {x) represents the subsimplicial set of X generated
by the simplex x and {X) the subsimplicial set of X generated by the boundaries of x.

Proof. Since Iy: A —%at is cocontinuous, I}, of the above square is a pushout in
%at. From Proposition 6.1, the top arrow is an inclusion of a right ideal.
Proposition 6.1, also insures that I<{x><I;X*~! are inclusions of right ideals.
Thus every object in

o1 =11 R

x€ X xeXk
is regular, and the conclusion follows from Proposition 5.6. []

Proof of Theorem 6.3. Since any simplicial set is the sequential colimit of its
skeletons and a sequential colimit of WHE’s is a WHE ([10; I3 and VIL.1]), it
suffices to consider

pX: I X->NILX

for finite dimensional simplicial sets X. Thus, we use an induction on dim X.
The induction begins with

FN9¢=¢=NF9¢-
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Next, assume dim X =k, and consider the following commutative ladder

[ Gied>=—— [] Ine<x) —— IyeX — DX e—— [ Iye<x>

x€Xx xe Xk xe Xy

Jm Jpz Ip Jps lm
[ NLGEye— [] NL(x)—— NLX = NLX*' e—— [[ NGO

xe X xeXi xe Xy

By the cocontinuity of I, the top row is a pushout (in %"). Lemma 6.5 and the
fact that nerve preserves coproducts together imply that the bottom row is also
a pushout. By induction hypothesis, p,, and p; are WHE’s. Thus, in view of the
Glueing Lemma, Lemma 2.10, it suffices to show the map

p<x): Iyg<xy > NIp(x)
is a WHE, for all xeX,.
Fix xe X, and apply I, to the pushout

Alk]=—— A[K]

(6.6) fJ
Xy = <Kx

which yields a pushout square in %as. Let i=1I,i and f=1I,f. Proposition 6.1
insures that the functor i is an inclusion of a right ideal. Hence W, is a
subcategory of W,; and therefore, it contains O[k]=TI,A[k] as a coreflective
subcategory. Thus Theorem 5.9 applies and gives the induced WHE

Y1 (Y=NOCKD [] (NLK3) > NI(x).

NO{k]
Next, note that Nf factors into
Nf =p<x)olyef;
and thus we get the following composition of pushouts
NO[k] = NO[k]
InvoS

Iye{xy = NO(x)

o)

NIg(xy=— Y.

By induction hypothesis, p{(x)> is a WHE; thus, so is Y (using a special form of
the Glueing Lemma, Lemma 2.10). Clearly, since WHE is closed under com-
position,

is a WHE. (x> =yroy): Tyg<x) > NIKx)
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6.7. Remark. If the pushout in 6.2(ii) does not contain singular objects, then one
is able to use Proposition 5.6 instead of Theorem 5.9; and the natural transfor-
mation p of Theorem 6.3 becomes a natural isomorphism, not only a WHE.
This, for instance, applies in the cases 0=1y, w.

In view of Theorem 4.11, it seems to be interesting how the condition in
Theorem 6.3 can be weakened to assure only that pX is a WHE for a regulated
simplicial set X [21; I11.8]. To this end, we introduce the following:

6.8. Notations. (i) For a fixed k>0, let
6% [k—1]—[k]
denote the unique injective map with 0¢Im 6°.
(ii) If T: A[k—1]—»A[0] denotes the terminal simplicial map, let
t="Iyt: (0[k—11=I,ALk—11)~(I, A[0] = 6[0])

denote its image in Gar.
(iii) The functor 7 can be embedded in the pushout

Olk—11=—2" 6[Kk]

"J |

0[0] =——0[k] ] 6r0]

ofk— 1]
and it generates a singular collar W;.

Theorem 6.3 can be replaced by:

6.9. Theorem. The canonical natural transformation

p: Ly NIy A >A
is a natural WHE, at least for regulated simplicial sets, whenever 0[k—1] is a
coreflective subcategory of W;, for every k> 0.

Proof. The proof of this theorem is a slight modification of the proof of
Theorem 6.3. In this case, consider, instead of pushout (6.6), the square

Alk—17=22 A[K]

.y

(x6%) = (x)

which is a pushout whenever x is a nondegenerate simplex of a regulated
simplicial set. [J

6.10. Picture. For 0=¢: A—>%af and k=2, the objects of W, are marked by
crosses:
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AN
LN

T XN

6.11. One More Example. In [7], the functor ¥: A— X is defined; it “sub-
divides” a simplex by plugging into its interior, a standard simplex of the same
dimension. We picture %[2]:

€ — XN

I

(o] - - 1

The functor
A=c%: A>Cat

is explicitly described in [19; 5.10]. As in the case of 0=¢, we find W,=Ai[k]; so
the condition of Theorem 6.3 is not fulfilled and I',: # —%a# is not a homotopy
inverse for nerve (in particular, NI,(A[2]/A[2])=A[3]). But again, Im 16%is a
coreflective subcategory of W; (the vertices corresponding to objects of W, are
marked by crosses, X, in the picture above).

Note that there exists a commutative diagram

¢

of natural WHE’s. Thus 4 can be viewed as “sitting” between ¢2 and & Hence &°
“seems” to be the “smallest” functor having its cocontinuous extension [,
=c¢Sd?*: A —>%at, a homotopy inverse for nerve.
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Added in Proof. We note that D. McDuff developed another type of homotopy inverse for nerve
in: On the classifying space of discrete monoids. [Topology 18, 313-320 (1979)].
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