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FRITSCH RUDOLF (Saarbrücken, Germany) 

O N SUBDIVISION OF SEMISIMPLICIAL SETS 

§ 1 Introduction 

The regulär subdivision A' X of a semisimpHcial set X can be easily def-
ined in a purely combinatorial way; this has been done by Barratt [1] and Kan 
[7]. To investigate the geometrical meaning of this let us first consider especi-
ally the two degeneracy maps from a 2—simplex to an 1 —simplex and their 
subdivisions. We find out that there can't be a natural homeomorphism bet­
ween the geometric realizations of a semisimplicial p—simplex and its regulär 
subdivision, although the underlying spaces are nothing but geometric p—sim-
plices. As the category S of semisimplicial sets and semisimplicial maps is the 
completion of the category of semisimplicial simplices and semisimplicial maps 
with respect to colimits, such a natural homeomorphism would be necessary and 
sufficient for the existence of a natural homeomorphism between \X\ and | A ' X \y 

the geometric realizations of a semisimplicial set X and its regulär subdivision 
L'X. So we have 

Theorem 1. There exists no natural equivalence between the functors 
\?\:S->CW and | A ' ? | : S - * C W ("CW" denotes the category of CW-comple~ 
xes and continuous maps). 

Now the question arises if there is any homeomorphism between \ X\ and 
| A'Jif |. The answer to this question is in my mind far away from being trivi­
al—as many people believed a long time—and is first given in my paper [3J 
as a special case of a general result on a class of various subdivisions. Subs-
sequent to this Puppe has found an explicit formula, which—as we proved in 
[4]—gives a homeomorphism in the regulär case. 

The question mentioned above has also suggested my paper [2] and my 
aim here is to outline the content of [2] and [3]. 

2 Standard division functors 

Standard division functors are introduced in [2]. 

Definition 1. A "Standard division functor" is a pair (U, ü) consisting of 
a functor 

U : A - * S 

156 
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and a family 

u=(up/ p non—negative integer) 

such that the following conditions are satisfied: 

(/) up is a homeomorphism | U [p] \-+Ap for each non—negative integer p 

(ii) M i f f l o U p - v H U j & l 

for each injective map ß:[p]->[q] of A. (Here the notation must be explained: 
A denotes the category of non—empty finite ordered sets and weak order 
preserving maps and [p] the set of the numbers 0, 1 , 2 , t h a t means 
the ordered set of p+1 elements, for each non—negative integer p; the 
maps of A are symbolized by small greek letters; we shall briefly write "ß^A" 
to indicate that ß is a map of A. A: A-+S means the functor which assigns to 
each object [p] of A the semisimplicial p—simplex A[p] and to each ß^A the 
the semisimplicial map Aß; it is the simplest example for a Standard division 
functor. Finally Ap denotes the geometric p-simplex.) 

Given a Standard division functor (U, u) one can identify each |U[/?]| 
with Ap by means of (/). Then we have two CW—structures on Apy the one 
is induced by the simplices of A[p], the other by the simplices of \J[p]l the 
same is to say that the underlying spaces of the CW—complexes |^lf/?]| and 
| U [p] | coincide. From this point of view (/ /) assures that | U [p] | is a CW— 
— subdivision of |^[/?]|, that means that each cell of | U[p]\ lies in a cell of 
| A [/>]). 

Each Standard division functor (U, u) can be extended uniquely to a con-
tinuous functor from S to itself, which we denote—by abuse of notation—also 
by " U " . Such a so —called "division functor" has the following properties: 

Proposition 1. U preserves the fundamental group and the homology gro­
ups up to natural equivalence. 

Proposition 2. U preserves coverings. 

A semisimplicial map / is said to be a "weak homotopy equivalence" if / 
induces an isomorphism of the fundamental groups and / , the universal cover-
ing of / , induces isomorphisms of the homology groups. This definition is justified 
by the fact that the geometric realization of a semisimplicial weak homotopy 
equivalence is indeed a homotopy equivalence. From the propositions 1 and 2 
now it follows at once 

Proposition 3. U preserves weak homotopy equivalences. 
Much deeper is the following result: 

Theorem 2. If X is a semisimplicial set, then the CW—complexes \X\and 
|UJSf| have the same homotopy type; more precisely: if [?]: CW~^CWh denotes 
the projection onto the homotopy category of CW—complexes, then the functors 
[| U ? |] and [\ ?\] are naturally equivalent. 

To obtain this result we need an interesting device, which is explained in 
the following section. 

file:///X/and
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§ 3 Non—degenerate semisimplicial sets 

Definition 2. A semisimplicial set X is "non—degenerate" if no non—de-
generate simplex of X has a degenerate face. If X and Y are non—degenerate 
semisimplicial sets, a semisimplicial map f: X-+Y is "non—degenerate" if f maps 
non—degenerate simplices of X on non—degenerate simplices of Y. 

Non—degenerate semisimplicial sets and non—degenerate semisimplicial 
maps from a subcategory P of S and one can prove: 

Proposition 4. P is a reflective subcategory of S. 
That means that the embedding functor E.P-+S is left adjoint to a functor 
S-+P, the reflector R. To prove this one has to define to each semisimplicial 
set X a non—degenerate semisimplicial set RX and a semisimplicial map 
X.RX-+X such that for each semisimplicial map/: Y^Xmih Ynon — degene­
rate there exists a unique non—degenerate semisimplicial map f':Y-*RX with 
/ = r ! o / ' i). 

Having done this, a simple straightforward computation yields 

Proposition 5. rX induces in a natural way isomorphisms of the funda­
mental groups and all homology groups, and 

Proposition 6. R preserves coverings. 
From this two propositions it follows at once 

Theorem 3. rX is a weak homotopy equivalence 2>. 
In our context the meaning of the category P is due to 

Proposition 7. If X is a non—degenerate semisimplicial set, then the Spa­
ces \X\ and | U J§T] are homeomorphic; more precisely: the functors \E?\:P-+CW 
and \ XJE?\:P-+CW are naturally equivalent. 

We omit the proof of this proposition; now theorem 2 is an easy conseq-
uence of theorem 3, proposition 3 and proposition 7. 

§ 4 Examples 

1) The "regulär" or "barycentric" subdivision of the semisimplicial sim­
plices induces a Standard division functor. It was already descrided by Kan [7]; 
he uses the symbol " A ' " for the functor A^S, but the symbol "Sd" for the 
extended division functor, which we according to our Conventions denote also 
by " A " ' ; we mentioned it in § 1. 

0 For this Situation the terminology "coreflective" seems to become Standard; but 
obeying the demand for logical consistency we use "reflective" in accordance with the book 
of Mitchell [9]. 

2) In some papers Giever [5] and H u [6] have studied the space \RX\; they denoted it 
by "PX" and called it "geometric realization of X"> but they had not defined the semisim­
plicial set RX explicitly. Then Kodama [8] has constructed the map \rX\ —he denoted it by 
"pX"—and a homotopy inverse to it, but by using the fact that can be interpreted as 
CW—subdivision of \X\9 which was not proved at that time. 
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2) The "natural" subdivision. We denote the corresponding functor S 
by " A v " . Its effect on [2] and the two degeneracy maps (e = 0,l) 
can be illustrated by the following pictures: 

(The fully traced line segments indicate the cell structure of Zl 2=|A v[2]|; | A v a 0 

resp. lA'ffjl identifies the dotted line segments and just so their parallels to a 
point.) 

In this case the condition (ii) of definition 1 is satisfied for all ß€zA> 
not only for the injective ones. The name "natural" is justified by the fact 
that for all semisimplicial sets X \ht CW-complexes \&X\ and \X\ are naturally 
homeomorphic. The disadvantage of this functor is that we know no method to 
approximate continuous maps by semisimplicial maps by means of it. The 
approximation constructed by Kan [7] can't be transferred. 

3) The "r-skeleton-preserving" subdivision (r non-negative integer) has 
got its name from the fact that for all semisimplicial sets X there is a 
natural semisimplicial isomorphism between U f ( X r ) and Xr, where U r denotes 
the corresponding division functor and Xr the r-skeleton of X. The effect 
of \JX on [2] and the two degeneracy maps <V[2]->[1] (e = 0J) can be illust­
rated by the following pictures: 
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(Again the fully traced line segments indicate the cell structure, here that of 
^2 = | U i [2] | ; | Ux cr01 resp. l U ^ I identifies the dotted line segments and just 
so their parallels to a point; moreover | Uj ^ | identifies the whole left upper 
triangle to one point.) 

§ 5 Natural transformations 

One can ask now if the natural equivalence in the category CWh of the­
orem 2 is induced by a natural transformation in CW. We are not able to 
give a general answer to this question. Here we list the partial results we 
have obtained. 

Proposition 8. Each natural transformation between | U ? | and \ ?\ induces 
natural equivalence in the homotopy category CWh. 

Proposition 9. The natural transformations between | U ? | and \ ?\ and bet­
ween | U A ? | and | A ? | correspond in an one-to-one fashion. 

So it suffices to consider natural transformations between the functors 
| U A ? | and A ? | . We know almost nothing about natural transformations 
| A ?|-*- | U A ? , therefore let us deal with natural transformations | U A ?|->JA ?|. 
Such a natural transformation can be given by a sequence t0, tj9 t29... of maps 
ti\Ai->Ai such that certain commutativities hold. Then one can prove: 

Proposition 10. Each natural transformation t0,t1,t2, . . . is uniquely determi-
ned by tx. 

The essential device for proving this is the following almost trivial 

Lemma. Let V be a topological space, f g: V—> A n continuous maps, iQ, i \ 
distinct elements of [n—\] and 

|Aa / , | o /= |Ao^ |os , for e = 0,l 

{<*ie • [n]->[n—1] denotes the ie— th degeneracy map). Then holds: f=g. 
This lemma also yields 

Proposition 11. Each triple t0, tv t2 with 
\&ß\otm=tno\Vß\ 

for 0<m9n< 2 and jSGA such that \Aß\otm and tno\XJß\ are defined can be 
extended to a natural transformation | U A ? | - * | A ? | . 

We can also give necessary and sufficient conditions that a continuous 
map tx induces a natural transformation. But we do not know if for each 
Standard division functor (U, u) there exists a map tl9 which satisfies these 
conditions. This may at most depend on certain hypotheses about Ucre in case 
dim cre = 2 (e = 0,l). In our example the existence of such natural transformations 
can be asily established; there are even natural transformations U ^ - A . To end 
this section we mention that there is an infinite number of natural transfor­
mations | U A ? | - H A ? L if there is one. 
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§ 6 Standard homotopies 

Now we turn to the main problem: We want to show that under cert­
ain further assumptions on a given division functor U the CW—complexes 
\HX\ and \X\ are homeomorphic X being any semisimplicial set. Such a hom­
eomorphism will be constructed inductively, so we arrive at the problem to 
continue a given map of the boundary of An onto itself over the whole geo­
metric simplex An such that the interior of An is mapped homeomorphically 
onto itself: We have to stuff holes. To this end we need 

Definition 3. Let V be a topological space. A homotopy ht:V-+V is "stuf­
fing" if A0 = i d F and ht is a homeomorphism for all t<\ 

By means of a stuffing homotopy one can stuff holes: 

Proposition 12. Given a stuffing homotopy ht:Sn-+Sn there exists an ext-
ension h: Bn+l Bn+1 of hx such that the interior of Bn+1 is mapped homeomorp­
hically onto itself Moreover there is a stuffing homotopy Ht:Bn+1-+ Bn+i such 
that Hx =h and Htv = htv for all vESn and *£[0,1]. ("S*" denotes the n-sphere 
and the (n+l)-baü.) 

Now let be given a fixed division functor U ; we describe the additional condition: 

Definition 4. A "Standard homotopy {for U " is a family (kßjß^A) of 
stuffing homotopies hß'Adimß -> A d i m ß ß such that the following conditions are 
satisfied: 

(10) It(id) = id, 

(11) \£iß\°lt(aß) = ltao\l±ß\ for injective ßeA 

(12) h(aß)°(ltß)~1 single-valued (and therefore a continuous map)? 

(13) \&ß\ol1(aß) = llao\lJß\; 

from (13) it follows that (for all suitable degeneracy maps at^A) lx (ßcr^o^ (cr^)-1 

maps each line segment parallel to the line segment between the i-th and (i + l)-st 
vertex of Zl n = |A[«] | on such a line segment We demand further: 

(14) for each such line segment this map is weakly monotone. 

We do not know if there exists a Standard homotopy for each division 
functor U . If there is a Standard homotopy for a given Ü, then it follows at 
once that the sequence 

' i ([0] - [0]), /, ([1] [0]), h ([2] - * [0]),... 

represents a natural transformation | U ? | - > | ?|, which we call the "correspon­
ding natural transformation". 

l i 
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§ 7 The main theorem 

Main theorem. Let U be a division functor with Standard homotopy. Then 
X being any semisimplicial set there is a homeomorphism | U X\ -> | X \ which is 
homotopic to the map \ U X\—>\X\ deduced from the corresponding natural tra­
nsformation. 

Here we can only give the idea of the proof. To do this we need a more 
explicit description of the Spaces | U X | and | X | for a given semisimplicial set 
X. They are quotient Spaces of FX=yLpXv x Ap, where Xv denotes the set of 
^-simplices of X provided with the discrete topology and 2 the topological sum. 
We obtain | U J f | by taking the equivalence relation which is generated by 

(xß,v)~(x,\XJß\v) 

and \X\ by taking that which is generated by 

(*j8,v)~(*,|V|v) 
for x^Xq> ß:[p]-+[q] in A (as X is a semisimplicial set, ß induces a map from 
Xq to Xv and xß denotes the image of x under this map). 
Therefore a continuous map | U X | —> | X | can be constructed if there is given 
a family (hJx^X) of continuous maps hx : A d i m x ^ A d i m x with \Aß\ohxß = 
= hxo\Uß\ for all x£X and all ß^A such that xß is defined. It is easy to 
show that a map | U J f | - > | X\ constructed in such a way is a homeomorphism 
iff hx maps the interior of Ap homeomorphically onto itself for each non-dege-
nerate x£X p . In order to establish the first part of the main theorem one has to 
construct such a family (hJx^X) and it is obvious that the given Standard 
homotopy plays an essential part in this construction. 

§ 8 Examples of Standard homotopies 

We indicate how a Standard homotopy for the regulär subdivision can 
be given. Let be ß^A and p^dimß. lxß maps the cells of | A ' [p] | = AP— they 
are simplices—linearly and ltß is the linear connection between the identity and 
/j ß. So it suffices to show as lx ß maps the vertices of | A' [p] \. Any Vertex b 
of |A'[/?]| corresponds to a 0-simplex of A'[/?] that is an injective map//:!/??] 
-+[p] of A. As p = dimß the composition ßft is defined; ß/u can be uniquely 
decomposed in an injective and a surjective part; let us denote the latter by Q. 
We define a right inverse p to Q by setting 

p (/) = max Q~l (/). 
Then we take 

(we interpret fi p to be a O-simplex of A ' [p] and denote by | \x p | the cor­
responding vertex of | A ' [p] \, which is obviously a point of Ap)y 

For the other examples of Standard division functors we have given there 
exist Standard homotopies, too; in the case of natural subdivision it is easy to 
see that one can take the identity. 
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