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FRITSCH RUDOLF (Saarbriicken, Germany)

ON SUBDIVISION OF SEMISIMPLICIAL SETS

§ 1 Introduction

The regular subdivision A’ X of a semisimplicial set X can be easily def-
ined in a purely combinatorial way; this has been done by Barratt [1] and Kan
[7]. To investigate the geometrical meaning of this let us first consider especi-
ally the two degeneracy maps from a 2—simplex to an 1—simplex and their
subdivisions. We find out that there can’t be a natural homeomorphism bet-
ween the geometric realizations of a semisimplicial p—simplex and its regular
subdivision, although the underlying spaces are nothing but geometric p—sim-
plices. As the category S of semisimplicial sets and semisimplicial maps is the
completion of the category of semisimplicial simplices and semisimplicial maps
with respect to colimits, such a natural homeomorphism would be necessary and
sufficient for the existence of a natural homeomorphism between | X| and |A’X |,

the geometric realizations of a semisimplicial set X and its regular subdivision
A’X. So we have

Theorem 1. There exists no natural equivalence between the functors
|?|:S—>CW and |A'?|:S—~CW ("CW?” denotes the category of CW—comple-
xes and continuous maps).

Now the question arises if there is any homeomorphism between | X | and
|A"X|. The answer to this question is in my mind far away from being trivi-
al—as many people believed a long time—and is first given in my paper [3]
as a special case of a general result on a class of various subdivisions. Subs-
sequent to this Puppe has found an explicit formula, which—as we proved in
[4]—gives a homeomorphism in the regular case.

The question mentioned above has also suggested my paper [2] and my
aim here is to outline the content of [2] and [3].

2 Standard division functors

Standard division functors are introduced in [2].

Definition 1. A *’standard division functor” is a pair (U, u) consisting of
a functor
U: é—»_S

156
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and a family
u=(u,/ p non—negative integer)
such that the following conditions are satisfied:
(i) up is a homeomorphism |U[p]|—A4, for each non—negative integer p

(ii) | 4B louy=uy0| US|

for each injective map B:[pl—>[q] of 4. (Here the notation must be explained:
4 denotes the category of non—empty finite ordered sets and weak order
preserving maps and [p] the set of the numbers O, 1, 2,..., p, that means
the ordered set of p+ 1 elements, for each non—negative integer p; the
maps of 4 are symbolized by small greek letters; we shall briefly write "< 4”
to indicate that § is a map of 4. 4:4-S means the functor which assigns to
each object [p] of 4 the semisimplicial p—simplex A[p] and to each fC A4 the
the semisimplicial map 48; it is the simplest example for a standard division
functor. Finally 4, denotes the geometric p-simplex.)

Given a standard division functor (U, u) one can identify each lU[p]|
with 4, by means of (i). Then we have two CW-——structures on 4, the one
is mduced by the simplices of 4[p], the other by the simplices of U[p] the
same is to say that the underlying spaces of the CW-—complexes | 4[p]| and
| U[p]| coincide. From this point of view (ii) assures that |U[p]| is a CW—
—subiiivision of | 4[p]|, that means that each cell of | U[p]| lies in a cell of
|Alp]].

Each standard division functor (U, u) can be extended uniquely to a con-
tinuous functor from S to itself, which we denote—by abuse of notation—also

by U”. Such a so—called “division functor” has the following properties:

Proposition 1. U preserves the fundamental group and the homology gro-
ups up to natural equivalence.

Proposition 2. U preserves coverings.

A semisimplicial map f is said to be a ’weak homotopy equivalence’ if f
induces an isomorphism of the fundamental groups and f, the universal cover-
ing of f, induces isomorphisms of the homology groups. This definition is justified
by the fact that the geometric realization of a semisimplicial weak homotopy
equivalence is indeed a homotopy equivalence. From the propositions 1 and 2
now it follows at once

Proposition 3. U preserves weak homotopy equivalences.
Much deeper is the following result:

Theorem 2. If X is a semisimplicial set, then the CW—complexes | X | and
| UX| have the same homotopy type; more precisely: if [?): CW—CWh denotes
the projection onto the homotopy category of CW— complexes, then the functors
[[U?1 and [|?]] are naturally equivalent.

To obtain this result we need an interesting device, which is explained in
the following section.
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§ 3 Non—degenerate semisimplicial sets

Definition 2. 4 semisimplicial set X is “non—degenerate” if no non—de-
generate simplex of X has a degenerate face. If X and Y are non—degenerate
semisimplicial sets, a semisimplicial map f: X—Y is "non—degenerate” if f maps
non—degenerate simplices of X on non—degenerate simplices of Y.

Non—degenerate semisimplicial sets and non—degenerate semisimplicial
maps from a subcategory P of S and one can prove:

Proposition 4. P is a reflective subcategory of S.
That means that the embedding functor E:P->S is left adjoint to a functor

S—P, the reflector R. To prove this one has to define to each semisimplicial
set X a non—degenerate semisimplicial set RX and a semisimplicial map
X:R X—X such that for each semisimplicial map f: Y—X with ¥ non— degene-
rate there exists a unique non—degenerate semisimplicial map f’:Y—R X with
f=1Xof" D,

Having done this, a simple straightforward computation yields

Proposition 5. rX induces in a natural way isomorphisms of the funda-
mental groups and all homology groups, and

Proposition 6. R preserves coverings.
From this two propositions it follows at once

Theorem 3. rX is a weak homotopy equivalence 2).
In our context the meaning of the category P is due to

Proposition 7. If X is a non—degenerate semisimplicial set, then the spa-
ces | X| and | U X| are homeomorphic; more precisely: the functors |E?|:P-~CW

and |UE?|: P~CW are naturally equivalent.

We omit the proof of this proposition; now theorem 2 is an easy conseq-
uence of theorem 3, proposition 3 and proposition 7.

§ 4 Examples

1) The regular” or barycentric” subdivision of the semisimplicial sim-
plices induces a standard division functor. It was already descrided by Kan [7];
he uses the symbol > A’” for the functor 4—S, but the symbol *Sd” for the
extended division functor, which we according to our conventions denote also
by ” A’’’ ; we mentioned it in § 1.

1) For this situation the terminology ‘‘coreflective’’ seems to become standard; but
obeying the demand for logical consistency we use “‘reflective’” in accordance with the book
of Mitchell [9].

2) In some papers Giever [5] and Hu [6] have studied the space |RX|; they denoted it
by “PX” and called it “geometric realization of X, but they had not defined the semisim-
phcnal set RX explicitly. Then Kodama [8] has constructed the map |rX|—he denoted it by

‘pX”—and a homotopy inverse to it, but by using the fact that |A’X| can be interpreted as
CW-—subdnvnsnon of |X|, which was not proved at that time.
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2) The ’natural” subdivision. We denote the corresponding functor 4—»_.5
by "AY™, Its effect on [2] and the two degeneracy maps o,:[2]—[1] (¢=0,1)
can be illustrated by the following pictures:

| AV, | |Ave, |

(The fully traced line segments indicate the cell structure of 4,=|A’[2]|; |Av0,
resp. |A%,| identifies the dotted line segments and just so their parallels to a
point.)

In this case the condition (ii) of definition 1 is satisfied for all f& 4,

not only for the injective ones. The name ’’natural” is justified by the fact
that for all semisimplicial sets X the CW-complexes |A’X| and | X| are naturally
homeomorphic. The disadvantage of this functor is that we know no method to
approximate continuous maps by semisimplicial maps by means of it. The
approximation constructed by Kan [7] can’t be transferred.

3) The ’’r-skeleton-preserving” subdivision (r non-negative integer) has
got its name from the fact that for all semisimplicial sets X there is a
natural semisimplicial isomorphism between U, (X7) and X7, where U, denotes
the corresponding division functor and X7 the r-skeleton of X. The effect
of U; on [2] and the two degeneracy maps o,:[2]—[1] (¢=0,I) can be illust-
rated by the following pictures:

2 4
/
/
A ; A /
/
/
0 0

[ Uio] {U,0,]
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(Again the fully traced line segments indicate the cell structure, here that of
4,=|U,[2]|; |U,0,] resp. | U0, identifies the dotted line segments and just
so their parallels to a point; moreover |U,o,| identifies the whole left upper
triangle to one point.)

§ 5 Natural transformations

One can ask now if the natural equivalence in the category CWh of the-
orem 2 is induced by a natural transformation in CW. We are not able to

give a general answer to this question. Here we list the partial results we
have obtained.

Proposition 8. Each natural transformation between |U ?| and | ?| induces
natural equivalence in the homotopy category CWh.

Proposition 9. The natural transformations between |U ?| and | ?| and bet-
ween |UA?| and |A ?| correspond in an one-to-one fashion.

So it suffices to consider natural transformations between the functors
|UA?| and |[A?|. We know almost nothing about natural transformations
|A ?|—|UA ?|, therefore let us deal with natural transformations |[UA ?|—]A ?|.

Such a natural transformation can be given by a sequence f,, t,, 1,,... of maps
t;:4;— 4, such that certain commutativities hold. Then one can prove:

Proposition 10. Each natural transformation t,,t,t,, ... is uniquely determi-
ned by t,. '

The essential device for proving this is the following almost trivial

Lemma. Let V be a topological space, f,g:V—4, continuous maps, iy, i,
distinct elements of [n—1) and

|Aci,|of=|Aci,|og, for e=0,]

(0i, : [n]—>[n—1I] denotes the i,—th degeneracy map). Then holds: f=g.
This lemma also yields

Proposition 11. Each triple t,t,,t, with
[AB|oty=1,0|UB|

Jor 0<m,n< 2 and BEA such that |AB|ot,, and t,o|UPB| are defined can be
extended to a natural transformation [UA?|—|A?].

We can also give necessary and sufficient conditions that a continuous
map ¢, induces a natural transformation. But we do not know if for each
standard division functor (U, u) there exists a map ¢,, which satisfies these
conditions. This may at most depend on certain hypotheses about Ug, in case
dim 0,=2 (e=0,1). In our example the existence of such natural transformations
can be asily established; there are even natural transformations U—A. To end
this section we mention that there is an infinite number of natural transfor-
mations [UA ?|—|A ?|, if there is one.
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§ 6 Standard homotopies

Now we turn to the main problem: We want to show that under cert-
ain further assumptions on a given division functor U the CW —complexes
|UX| and |X| are homeomorphic X being any semisimplicial set. Such a hom-
eomorphism will be constructed inductively, so we arrive at the problem to
continue a given map of the boundary of 4, onto itself over the whole geo-
metric simplex 4, such that the interior of 4, is mapped homeomorphically
onto itself: We have to stuff holes. To this end we need

Definition 3. Let V be a topological space. A homotopy hy:V —V is “stuf-
fing” if hy=idV and h; is a homeomorphism for all t<1

By means of a stuffing homotopy one can stuff holes:

Proposition 12. Given a stuffing homotopy h;:S® — S™ there exists an ext-
ension h:Bm™t— B of h such that the interior of B"* is mapped homeomorp-
hically onto itself. Moreover there is a stuffing homotopy H,:B%— Bn+l sych
that H =h and H,v="Hhyv for all v&S® and t<[0,1]. (’S®” denotes the n-sphere
and ”B®*1” the (n+ 1)-ball.)

Now let be given a fixed division functor U; we describe the additional condition:
Definition 4. 4 “standard homotopy (for U” is a family (/S 4A) of

stuffing homotopies I f: A gimp — A gimp B Such that the following conditions are
satisfied.

(10) L (id)=id,
(1D |AB|oli(aP)=1I a0|AB| for injective fE A,
(12) I (af)o(l;B) ! single-valued (and therefore a continuous map)?

(13) [AB|ol (aB)=1a°|UB|;

from (13) it follows that (for all suitable degeneracy maps o3& A) L (Boy)ol, (o)1
maps each line segment parallel to the line segment between the i-th and (i + 1)-st
vertex of 4,=|A[n]| on such a line segment. We demand further:

(14) for each such line segment this map is weakly monotone.

We do not know if there exists a standard homotopy for each division
functor U. If there is a standard homotopy for a given U, then it follows at
once that the sequence

L [0]1—[0], 4 (110D, 4 ([2]—[OD):...

represents a natural transformation |U ?|—| ?|, which we call the “correspon-
ding natural transformation”.

11
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§ 7 The main theorem

Main theorem. Let U be a division functor with standard homotopy. Then
X being any semisimplicial set there is a homeomorphism |U X|— | X | which is
homotopic to the map |U X|— | X| deduced from the corresponding natural tra-
nsformation.

Here we can only give the idea of the proof. To do this we need a more
explicit description of the spaces |UX| and | X| for a given semisimplicial set

X. They are quotient spaces of FX=2%,X,x 4,, where X, denotes the set of
p-simplices of X provided with the discrete topology and £ the topological sum.
We obtain | U X| by taking the equivalence relation which is generated by

xB,v)~(x,|UB|Y)
and | X| by taking that which is generated by
(xB,v)~(x,|AB|Y)

for x& X,, B:[p]—[q] in __A_I (as X is a semisimplicial set, § induces a map from
X, to X, and xf denotes the image of x under this map).

Therefore a continuous map |U X|—|X| can be constructed if there is given
a family (h,/xE X) of continuous maps 5y, : 4 gimy—> 4 gimy With [AB|ohy=
=h,o|UB| for all x€X and all €4 such that xf is defined. It is easy to
show that a map |UX|—|X| constructed in such a way is a homeomorphism
iff h, maps the interior of 4, homeomorphically onto itself for each non-dege-
nerate x& X,,. In order to establish the first part of the main theorem one has to
construct such a family (4,/xEX) and it is obvious that the given standard
homotopy plays an essential part in this construction.

§ 8 Examples of standard homotopies

We indicate how a standard homotopy for the regular subdivision can
be given. Let be B4 and p=dimp. I, maps the cells of | A’ [p]|=4,—they
are simplices—linearly and I/, is the linear connection between the identity and
I, B. So it suffices to show as /; # maps the vertices of |4'[p]|. Any vertex b
of |A’[p]| corresponds to a O-simplex of A’[p] that is an injective map u:[m]
—[p] of 4. As p=dimf the composition fu is defined; fu can be uniquely
decomposed in an injective and a surjective part; let us denote the latter by .

We define a right inverse p to o by setting
p () =max g1 (i).

LB®)=|pb|

(we interpret @ p to be a O-simplex of A’[p] and denote by |u p| the cor-
responding vertex of |A’[p]|, which is obviously a point of 4,),

For the other examples of standard division functors we have given there
exist standard homotopies, too; in the case of natural subdivision it is easy to
see that one can take the identity.

Then we take
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