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Population Extinction by Mutational Load and 
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W. Gabriel 0), R. Bürger (2) and M. Lynch P) 
0) Dept. of Physiological Ecology, Max Planck Institute for Limnology, Postfach 165, 

D-2320 Plön, Germany 
(2) Institut für Mathematik der Universität Wien, Strudlhofgasse 4, A-1090 Wien, Austria 
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Abstract 
Genetic aspects are important in the evaluation of the risk of extinction for small 

populations. Using estimates of rates and effects of slightly deleterious mutations, we 
calculate the mean time to extinction under the Joint action of mutation load and density-
dependent stochastic population regulation. Accumulation of mutations diminishes the 
individual survival probability, which leads to a reduction in population size. This, in tum, 
progressively facilitates the fixation of future deleterious mutations by random genetic drift. 
This synergistic interaction has been called the mutational melt-down. 

In asexual populations, the probability of extinction increases as the mutational effect 
increases and as actual population size decreases. As reference points for sexual 
populations, we present the expected extinction times without mutational load but with 
stochastic fecundity and sex-ratio under a logistic population regulation. Selection and 
recombination does not prevent mutational melt-down in small sexual populations; slightly 
deleterious mutations reduce the mean time to extinction by several Orders of magnitude. 
Stochastic fecundity is a minor direct source of extinction in sexual populations, but it leads 
to temporary reductions in effective population size, which increases the risk of extinction 
due to stochastic variations of the sex-ratio. 

Introduction 
Several well known risks for population extinction increase drastically with decreasing 

population size. Biotic and abiotic fluctuations of the environment or purely stochastic 
Variation of demographic parameters (like birth and death rates, carrying capacities, and sex-
ratio) can reduce a population to a level at which the probability of extinction is high. The 
smaller the number of individuals is, the more severe are genetic problems such as 
inbreeding depression, loss of adaptive Variation by random drift, and reduction of fitness 
due to fixation of deleterious mutations. Theoretical aspects of the dynamics of populations 
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in variable environments have received considerable attention (RICHTER-DYN & GOEL 
1972; FELDMAN & ROUGHGARDEN 1975; HANSON & TUCKWELL 1978; MAY 1981; 
HOPPENSTEADt 1982; NlSBET & GURNEY 1982; WRIGHT & HUBBELl 1983, MODE 1985; 
EWENS et al. 1987, GOODMAN 1987, SOULE 1987). However, there have been few 
attempts to incorporate explicit genetic details into extinction models. In the following, we 
give a review of recent work on the interaction of deleterious mutations, population 
dynamics and extinction. 

In principle, any deleterious mutation can reduce the size of a population. The 
probability of fixation of such mutations by random genetic drift increases with declining 
population size, leading to a synergistic interaction which LYNCH & GABRIEL (1990) called 
a "mutational melt-down". This process is especially relevant for slightly deleterious 
mutations in small asexual populations. However, because recombination facilitates 
selection against bad mutations, it is believed that genetic risks are small compared to risks 
by demographic and environmental influences (LANDE 1988). This opinion will be 
questioned later on in this paper when we demonstrate the possibility of mutational melt-
down in small sexually reproducing species. 

Estimates for Mutation Rates and Selection Coeffiecients 
The effectiveness of the mutational melt-down depends critically on the rate and effects 

of mutations. We do not consider lethal recessive mutations since we know from earlier 
simulations that their influence is small compared with mildly deleterious mutations. Many 
estimates of mutation rates and mutational effects are available for D r o s o p h i l a 
melanogaster. According to the review of CROW & SIMMONS (1983) each animal incurs an 
average of 0.6 new non-lethal mutations, each of which reduces the viability by =2.5%. 
Such mutations appear to be approximately additive within loci (MUKAI 1979). If mutations 
on different loci act independently then the fitness reductions from each locus can be treated 
as multiplicative. We will adopt this assumption, although data are not precise enough to 
rule out other interpretations. 

Therefore, letting W' be the fitness of an organism that carries slightly deleterious 
mutations at n loci and W0 be the fitness of an organism without these mutations, we have 

W ' = W 0 ( l - S l ) ( l - s 2 ) . . . ( l - s n ) , ( 1 ) 
where Sj is the selection coefficient at locus i. Assuming that each new mutation occurs at a 
different locus and that the selection coefficient is the same for all these loci, one gets 

W 7 W 0 = ( l - s ) n « ( l - s ) M ( 2 ) 
« 1 - u s t f or small u s t 

with t as time and with p as the zygotic mutation rate per time unit and with ut as the 
expected number of mutations. With these assumptions, LYNCH & GABRIEL (1990) 
estimated the mutation load for organisms other than D r o s o p h i l a using data from 
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experiments designed for other purposes. For eukaryotes their estimated boundaries for the 
mutation load ps are 

0 . 0 0 0 2 < p s < 0 . 0 2 . ( 3 ) 
Within the ränge of realistic parameters, the melt-down process is determined mainly 

by the product ps so p and s need not be known separately. 

Deleterious Mutations in Asexual Populations 
Although asexual species are often considered to be evolutionary dead-ends, polygenic 

mutation provides an evolutionary potential which is sufficient for considerable phenotypic 
evolution (LYNCH & GABRIEL, 1983). Nevertheless, a severe handicap for asexual species 
is the accumulation of unconditionally deleterious mutations. If, by Chance, the genotype 
with the fewest deleterious mutations does not contribute to the successful offspring in the 
next generation, then this genotype is removed from the population forever. Eventually, the 
second best genotype will have the same fate of being lost from the population - and so on. 
MULLER (1964) first noticed this process, which has become known as "MULLER's ratchet". 
The velocity at which the ratchet turns, depends on the population size, mutation rate, and 
selection coefficient. 

Earlier theory and simulations of the ratchet (e.g. M A Y N A R D SMITH 1978, BELL 1988) 
kept the (effective) population size constant. This led to the prediction that the ratchet is less 
effective for higher selection coefficients; i.e., the average time for the ratchet to make one 
turn increases with increasing s. However, by making the population size dependent on 
mutation load, LYNCH & GABRIEL (1990) found that the mean extinction time declines as 
mutations become more deleterious. This means that the lower speed of the ratchet under 
stronger selection (higher s values) is more than compensated for by the greater reduction in 
survivorship per tum of the ratchet. A synergistic interaction between mutation load and 
random genetic drift is responsible for this process. As deleterious mutations reduce the 
number of surviving offspring, random genetic drift becomes of greater importance and 
facilitates the fixation of further deleterious mutations. This "mutational melt-down" 
eventually leads to population extinction. 

Figure 1 gives estimates of extinction time for asexual populations under a low 
mutational load of ps = 0.0002 for various intrinsic growth rates r. These results are 
obtained by a model with very simple population density regulation and non-overlapping 
generations. Each member of the population can produce R = er offspring on average but 
offspring numbers are Poisson distributed around this expectation. The population size is 
restricted to K individuals (= carrying capacity). If the total number of offspring exceeds the 
carrying capacity, K individuals are drawn randomly to Start the next generation. The 
accumulated mutations in each offspring determine its probability of survival until 
reproduction. For small ps, the combined effect of these random processes can be 
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approximated by a deterministic Solution which can easily be calculated by iterations (for 
details, see LYNCH & GABRIEL 1990). 

The results of this conservatively simple model, which ignores all environmental 
sources of mortality, suggest that the survival times of clonal lineages of a carrying capacity 
K < 107 are unlikely to exceed 104 generations. This view is consistent with molecular data 
that suggest that most parthenogenetic animals are phylogenetically young (BELL 1982, 
LYNCH 1984). It is in contradiction to the existence of a few very old obligate 
parthenogenetic groups (e.g. bdelloid rotifers). Assuming errors have not been made in the 
identification of the breeding System of such groups, their escape from mutational melt-
down may be a consequence of a high incidence of compensatory mutation. LYNCH & 
GABRIEL (1990) modelled the melt-down process using a distribution of mutational effects 
with a constant mean. They found that the longevity of asexual lineages can be enhanced 
dramatically if the variance in s becomes large enough so that some mutations are beneficial. 

It should be mentioned here that the above Statements on MULLER's ratchet for the 
case of constant mutational effect rely on the assumption of unconditionally deleterious 
mutations. This means that mutational effects are independent of the actual genetic 
background. An alternative treatment involves the influence of mutations on quantitative 
traits (GABRIEL & WAGNER 1988; WAGNER & GABRIEL 1990). In this case, fitness is 
determined by several quantitative traits, each trait of which is controlled by many loci. A 
Single pleiotropic mutation can affect each trait simultaneously. Since polygenic mutations 
can increase or decrease the value of a trait, deleterious mutations for one trait or locus can 
be compensated for by advantageous mutations for others, even when the average effect of 

s imple dens i ty regu la t ion 

car ry ing capac i t y 
Fig. 1: Survival of parthenogenetic populations under mutational load (ps = 0.0002) and simple 

density- dependent population regulation (see text). The mean number of generations to 
extinction is calculated as a function of carrying capacity K for various intrinsic growth 
rates r (in units per generation as indicated by the numbers in the graph). 
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each mutation is a reduction of fitness. This model is a quantitative genetic analog to 
MULLER's ratchet. Simulations and mathematical analyses show that the compensatory 
mutations innerem under this scenario are as effective as recombination in halting the 
decline of fitness caused by MULLER's ratchet. 

A Simple Logistic Model with Stochasticity in Sex-Ratio and Fecundity 
The simple population regulation described in the previous section is not very realistic 

but sufficient for initial insight into the interplay between genetics and population dynamics. 
In the following we will use a model with a logistic type of population growth. This also can 
be parameterized by the carrying capacity K and the growth rate r. (K is the population size, 
to which an undisturbed population would converge during time; r is equivalent to the 
intrinsic rate of exponential growth at small population size.) These parameters are usually 
used in differential-equation models where time is a continuous variable. An analogous 
difference-equation description for discrete generations is 

N ( t + i ) = N ( l ) er [ 1 + N ( l ) ( e ' - D / K ] ' 1 . ( 4 ) 
With this equation there are no periodic orbits or chaotic behavior (for details see M A Y 

1981). Instead, convergence to K occurs in a monotonic way. 
We use equation (4) to calculate the expected number of offspring per female. For 

asexual populations mean family size would be just N ^ y W ^ . For sexual populations we 
assume an expected ratio of females to males of 1:1. In order to achieve the same population 
regulation as in the asexual case, each female has to produce 2N(l+1)/N(t) off spring on 
average. The acrual number of newboms is drawn from a Poisson distribution. Each female 
randomly chooses a mate, and the offspring's genome is constructed by free recombination. 
For this purpose, each mutation and its locus is stored. Every new mutation is assumed to 
occur at a new locus. 

Thus, the model we now consider involves logistic growth but with stochasticity in 
fecundity and in the sex-ratio. There are two potential causes of extinction: either the 
number of surviving offspring is zero by chance, or mating is impossible because there are 
only males or only females left. 

The Risk of Extinction from Random Variation in Fecundity and Sex-
Ratio without Mutational Load 

Before we study the combined effect of demographic stochasticity and mutational load, 
we analyze the risk of extinction without mutations. To get reference points for evaluating 
the relative importance of the underlying processes, we first look at the consequences of 
sex-ratio fluctuation when the population size is kept at the carrying capacity. Then, 
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neglecting the sex-ratio fluctuations, we study the effect of stochastic fecundity in a 
monoecious population with density- dependent offspring number. Finally, we calculate the 
expected extinction times under the simultaneous Operation of both stochastic processes for 
logistic population regulation. 

The extinction probabilities due to sex-ratio fluctuations can easily be calculated for 
constant population sizes. (Further details are given elsewhere; see GABRIEL and BÜRGER, 
submitted). For a population of size K the mean time to extinction due to sex-ratio Variation is 

t E = 2 K - i + 1 , ( 5 ) 
given an expected sex-ratio of 1 : 1 . The extinction times are geometrically distributed so that 
the Standard deviation is equal to the expectation. 

Without sex but under stochastic fecundity and logistic population regulation, there 
exists no simple analytic expression for the distribution of extinction times. For the 
combined process, it is even more hopeless to fmd analytical Solutions other than 
approximations for special cases. Therefore, to get reliable results, we applied two 

1E11-T 
1E10-
1E8 
1EB-

1E4-
1000 
100 

! P 1 

o fecundity 
• sex ratio 
a sex ratio + fecundity 

( + variable pop.aize) 

r - 0.1 
a 8
888 8 8 « 2 

10 15 20 25 

10 15 20 25 

carry ing capac i ty 
Fig. 2: Extinction times due to stochastic fecundity and/or stochastic sex-ratio depending on 

carrying capacity K and intrinsic growth rate r (which is measured in units of inverse 
generation time; therefore, r = 1 implies 2.72 offspring and r = 5 leads to 148 offspring 
on average.). The values for stochastic sex-ratio (closed circles) are calculated for 
constant population size (= K). For stochastic fecundity (open circles), the expected 
number of offspring is regulated by logistic growth but the number of offspring 
produced by the individual females fluctuates around this expectation value according to 
a Poisson distribution. The populations Start in the first generations with K individuals. 
The results of the combined processes of stochastic sex-ratio and stochastic fecundity 
are given by the triangles. 
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independent methods: a) straight-forward Monte Carlo simulations, and b) description of the 
processes by Markov chains and numerical Solution of the corresponding (quite large) 
Systems of equations. For details see GABRIEL and BÜRGER (submitted). We obtained 
identical results from both methods so that we can be sure that there are no errors in the 
program for the Monte Carlo Simulation and that we did not run into numerical problems in 
the Solution of the equations of the Markov chain model. 

Figure 2 compares the extinction times under the influence of stochastic sex-ratio 
alone, stochastic fecundity alone, and under the combined action of both for various growth 
rates and carrying capacities, with the populations always starting at the carrying capacity 
(K). Only for small r is the probability of extinction due to sex-ratio Variation larger than 
that due to stochastic fecundity. For increasing r the risk of extinction due to stochastic 
fecundity converges rapidly to an analytically calculable limit, e.g. mean time to extinction 
converges to eK if only stochastic fecundity is considered (see GABRIEL and BÜRGER, 
submitted). 

There is of course no linear interaction between the pure sex-ratio and fecundity risks 
because in the combined process the risk due to sex-ratio is not determined by the carrying 
capacity K but by the actual population size in each generation. An analysis of causes for 
extinction shows that the probability of population extinction due to non-surviving offspring 
becomes very small as the carrying capacity increases. Figure 3 shows the extinction risks 
due to the combined stochasticity of fecundity and sex-ratio depending on K for various r 
values. 

One should keep in mind that the plotted numbers are expected times to extinction. The 
corresponding distributions of extinction probabilities are very broad since they follow 
roughly a geometric distribution. It should also be kept in mind that the extinction time 
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Fig. 3: Extinction risk due to stochastic sex-ratio and stochastic fecundity under logistic growth 

as in Figure 2 for various intrinsic growth rates. 
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depends on the initial population size N0 which for all results presented here was assumed to 
be equal to K. Under the logistic population regulation used in this study, the mean 
extinction time increases monotonically as the initial population size increases and (if 
r > 0.5) rapidly reaches an upper limit, which is almost identical with the values for 
populations starting at carrying capacity as presented here. Only for very small r and very 
small initial population size (N0 < 4) is the corresponding extinction time considerably 
smaller than for N0 = K (see G A B R I E L & BÜRGER submitted). 

Mutational Melt-down in Sexual 
Populations 

One might expect that the process of 
mutational melt-down, as discussed in the 
previous section for asexual organisms, is not 
relevant under sexual reproduction because 
selection and recombination can eliminate 
bad mutations. But for stochastic logistic 
population regulation, it is critical to check 
first how large a carrying capacity has to be 
in order to produce a sufficiently large 
effective population size so that selection and 
recombination will be efficient enough to 
prevent the accumulation of deleterious 
mutations. In sexual populations the melt-
down process can be effective if the 
population is temporarily reduced to a size at 
which the probability of extinction due to 
sex-ratio imbalance becomes important. 

The risk of extinction for sexual 
populations due to mutational load is 
demonstrated in Figure 4. Except for very 
small carrying capacities, the mean times to 
extinction are reduced by several Orders of 
magnitude relative to the extinction times Fig. 4: 
without mutational load. Preliminary results 
indicate that this is true also for mutation 
loads at the lower end of the estimates given 
in equation (3). 
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The Joint action of deleterious mutation and demographic stochasticity has a 
deleterious synergistic effect which can lead to a mutational melt-down and ultimately to 
extinction. This process cannot be analyzed in the usual tradition of population genetics 
which keeps the (effective) population size constant. Evaluation of the effect of deleterious 
mutation on population viability must be treated in the context of density-dependent 
population regulation and should allow for demographic Variation in family size and sex-
ratio. 

Since we have neglected risks such as lethal mutation and environmental sources of 
mortality, times to extinction calculated in this paper are definitely underestimates. For real 
populations, growth rates and carrying capacities are not constant but more or less 
dependent on variable abiotic and biotic factors of the environment. Such additional risks 
are also expected to interact synergistically with unfavorable genetic processes. 

Our quantitative results on the impact of mutational load on population extinction are 
based on estimates of the mutation load derived from experiments which were not primarily 
designed to measure the mutational melt-down. However, unless the existing estimates of 
mutational load are greatly exaggerated, the conclusion that the accumulation of deleterious 
mutations is an important determinant of population extinction seems inescapable for 
populations with upper size limits of several dozen or smaller. Theoretical studies which 
combine population genetics with population dynamics are fundamental to the field of 
conservation biology. 

Zusammenfassung 
Um die Aussterbezeiten kleiner Populationen abzuschätzen, ist es im Gegensatz zu 

einer weitverbreiteten Meinung notwendig, auch genetische Faktoren zu berücksichtigen. 
Dies wird am Beispiel von Mutationen mit nur geringer schädlicher Wirkung demonstriert. 
Mit Hilfe vorhandener Abschätzungen über Mutations- raten und Mutationseffekte wird 
untersucht, wie sich solche Mutationslast in Populationen mit dichteabhängigem Wachstum 
und unter demographischer Stochastizität auswirkt. Die Anhäufung von Mutationen setzt die 
Überlebenswahrscheinlichkeit der Individuen herab und kann so zu einer zeitweisen 
Verringerung der Populationsgröße führen, die ihrerseits die Fixierung weiterer schädlicher 
Mutationen durch genetische Zufallsdrift erleichtert. Diese synergistiche Interaktion wird 
"mutational melt-down" genannt. 

In parthenogenetischen Populationen liegt die "proximate" Ursache für das Aussterben 
darin, daß auf Grund von Zufallsprozessen keine Nachkommen überleben beziehungsweise 
geboren werden. Die Wahrscheinlichkeit dafür steigt mit zunehmender Mutationslast und 
mit abnehmender aktueller Populationsgröße. Für sexuelle Populationen werden als 
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Referenzpunkte zunächst die Aussterbezeiten unter logistischer Populationsregulation ohne 
Mutationslast in Abhängigkeit von Wachstumsrate und Kapazität ("carrying capacity") 
bestimmt. Dabei wirken als stochastische Größen nur Zahl und Geschlecht der 
Nachkommen. In kleinen sexuellen Populationen können Rekombination und Selektion 
einen "mutational melt-down" nicht verhindern: unter der Wirkung schwach schädlicher 
Mutationen verkürzt sich die Aussterbezeit um mehrere Größenordnungen. Entscheidend ist 
dabei nicht das Ausbleiben von überlebenden Nachkommen sondern die durch temporäres 
Absinken der Populationsgröße erhöhte Wahrscheinlichkeit, daß nur männliche oder nur 
weibliche Nachkommen erzeugt werden. 

Zur genaueren Abschätzung der Aussterbewahrscheinlichkeit kleiner Populationen sind 
weitere experimentelle Untersuchungen zur Mutationslast und theoretische Studien zur 
Interaktion von Populationsgenetik und Populationsdynamik dringend erforderlich. 
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