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Abstract. The calculation of LEED intensities in a spherical-wave representation can be 
substantially simplified by symmetry relations. The wave field around each atom is expanded 
in symmetry-adapted functions where the local point symmetry of the atomic site applies. 
For overlayer systems with more than one atom per unit cell symmetry-adapted functions 
can be used when the division of the crystal into monoatomic subplanes is replaced by a 
division into subplanes containing all symmetrically equivalent atomic positions. 

1. Introduction 

The quantitative evaluation of LEED spectra is still limited to relatively simple surface 
structures. The calculational effort required increases rapidly with the size of the surface 
unit cell and very soon reaches the capacity of present-day computers. The reason is 
that the solution of the multiple-scattering problem within the crystal requires the 
solution of very large systems of linear equations. These occur in all formulations of the 
multiple-scattering problem. The size of the matrices to be inverted can be considerably 
reduced by making proper use of symmetry relations. Symmetries are nearly always 
present when adsorbate structures are investigated on low-index surfaces of highly 
symmetric crystals. The adsorbate structure itself may have a lower symmetry than the 
clean surface but usually at least some of the symmetry elements of the bulk structure 
are retained. The full symmetry of the surface unit cell can be used in the calculation for 
normal incidence of the primary beam, while at oblique incidence only a mirror plane 
or glide plane is maintained when the primary beam lies within this plane of symmetry. 
Most frequently experiments are performed at normal incidence and at incidence within 
a mirror plane since the orientation of the probe is easily controlled by the symmetry of 
the diffraction picture. It is therefore most desirable to develop theoretical methods to 
simplify the calculation for these two cases. 

The calculation of LEED intensities is usually divided into two parts. One part solves 
the multiple-scattering problem within a single plane or within two or more layers having 
a small interlayer distance; a spherical-wave representation is used. The second part 
uses a plane-wave expansion and is employed for interlayer multiple scattering with 
larger interlayer spacings. How symmetries can be used in the latter part where the wave 
field inside the crystal is described in terms of plane waves has been shown in detail by 
Rundgren and Salwen (1974) and by Van Hove and Pendry (1975). Pendry (1974) also 
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gives some applications of symmetry. In the spherical-wave representation of the wave 
field the use of symmetries is also possible and a description for that has also been given. 
by Rundgren and SalwCn (1976); however, their formulation is only applicable to 
monoatomic layers. The purpose of this paper is to show how symmetries can be 
effectively used in cases where the unit cell contains more than one atom and the 
multiple-scattering amplitudes have to be calculated in a spherical-wave representation. 
This can be done in several ways-the direct matrix inversion method first described by 
Beeby (1968) and Pendry (1971), and an iterative method given by Zimmer and Holland 
(1975), Tong (1975), Tong and Van Hove (1977) and Van Hove and Tong (1979) and a 
transfer matrix method given by Jepsen (1980). The formulation that will be used here 
is the direct matrix inversion method. An application to other methods causes no 
problems. 

The appropriate way to take into account symmetries in connection with spherical 
harmonics is to use symmetry-adapted functions. These are linear combinations of 
spherical harmonics that are either invariant or have the required transformation proper- 
ties under symmetry operations. The scattered wave from each atom can be expanded 
in terms of symmetry-adapted functions where the local point symmetry of the atom 
applies. Although it is possible to develop the multiple-scattering formalism in angular 
momentum space starting with symmetry-adapted functions, this method will not be 
described here. It is more convenient to introduce symmetries into the well known 
general case. The first step is to perform the sum over equivalent atomic sites as well as 
the sum over equivalent beams in the system of equations defining the T-matrices and 
the reflection and transmission matrices. This will be shown in § 2 .  The symmetrisation 
in angular momentum space is only briefly described, in § 3, since group theoretical 
methods and tables of symmetry-adapted functions can be found in the literature (Brad- 
ley and Cracknelll972). Some details of the calculation of interlayer propagator matrices 
are discussed in § 4. 

2. Interlayer multiple scattering 

In the layer KKR method the crystal is divided into layers or subplanes with identical 
translational symmetry. When the interlayer distance is large enough multiple scattering 
between subplanes can be calculated in k-space, which is usually more efficient than the 
calculation in angular momentum space. Nevertheless, it occurs quite frequently that 
an adsorbate layer or reconstructed surface layer contains several subplanes with small 
interplanar distances. Then the calculation has to be done in angular momentum space. 
Only this case will be considered here. The surface unit cell then contains several atoms 
which may or may not be coplanar. The reflection and transmission matrices for the 
whole layer are given by 

where the notation of Pendry (1974) has been used with the exception that the scattering 
matrices T U ( & )  are denoted differently there. K, and Kgp are the sets of incoming and 
outgoing waves respectively. The sum over U runs over all atoms in the unit cell, which 
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means over all subplanes. The vectors d,  give the positions of the atoms with respect to 
the origin of the unit cell. The matrices Tu( Kg) describe the scattered wave around the 
vth atom. They are defined by a set of linear equations: 

The indices lm and I'm' have been dropped here. The propagator matrices G,,(Ko) 
describe the transport of a spherical wave from point ,U to point I, and are here defined 
without the phase factors exp[iKg(du -du)];  they depend therefore on the incoming 
wave KO only. The quantities t u ( € )  are diagonal matrices describing a single scattering 
event. The size of the matrix to be inverted to solve (2) is N(lmax + 1)2 x N(lmax + 1)*, 
where N is the number of atoms in the unit cell and l,,, + 1 is the number of angular 
momentum components. The size of the matrix can be reduced considerably when 
symmetry can be used. It is clear that the matrix M,,, must be invariant under any 
symmetry operation that leaves the crystal together with the incident beam unchanged. 
Unfortunately this symmetry property cannot be used in the present form of (1) and (2). 

When there is only a single atom in the unit cell the origin can be chosen such that the 
phase factors exp[i(K, - K,,)d,] in (1) vanish. It then becomes immediately clear that 
symmetry-adapted functions can be used. This is still possible when the origin of the 
layer is chosen to be at special points in the unit cell that have the full symmetry. A 
symmetry operation transforms point vinto point I,'. which has to be a lattice point too 
in that case. The phase factors then remain unchanged: 

exp(iK,d,) = exp(iK,d, ) when d,, - d,  = rn  

where r,, is a translation vector and K, is a vector of the reciprocal net. Here only the 
totally symmetric representation, the so-called unit representation, is needed. When K, 
is a superlattice beam the phase factors may change sign and one of the other represen- 
tations has to be used. This formalism is needed for bulk subplanes and has been 
described in detail by Rundgren and Salwen (1976) and will not be repeated here. In the 
following it is assumed that all the vectors Kg and K,, belong to the reciprocal net of the 
surface lattice. 

When there are atoms at general positions in the unit cell the phase factors are no 
longer invariant under a symmetry operation and the 7'-matrices no longer contain 
symmetries. Also the propagator matrices G,,(Ko) are in general not invariant under 
a symmetry operation. That means for an atom in a general equivalent position in the 
unit cell no symmetries can be used. The local symmetry of that atom is 1 and the wave 
field around this atom is also without any symmetries. This fact and the flexibility wanted 
for arbitrary angles of incidence has prevented the use of symmetries in angular momen- 
tum space in most LEED calculations. Nevertheless, each general point in the unit cell 
has several symmetrically equivalent points, the number depending on'symmetry. and 
the matrices T,(K,) can be transformed into each other by simple symmetry operators. 

It is important to note that the sum over equivalent positions can be done prior to 
inversion of the matrix. To do that it is necessary to perform the sum over equivalent 
beams in (1). There are ng equivalent beams Kgl generated by all symmetry operations 
acting on K,; Kgl ( i  = 1. . . . . n g )  is the beam star of Kg. Kg denotes here and always in 
the following the set of symmetrically equivalent beams, saving a further subscript. As 
has been already shown by Van Hove and Pendry (1975) and by Rundgren and Salwen 
(1974), only for these beams are the reflection and transmission matrices needed. It is 
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convenient to define vectors ( K g )  and bU,lm ( K g ) :  

The matrices T,( K g )  are not explicitly needed to calculate M,,, and (2) is solved directly 
for the vectors Z , ( K g ) :  

Z , ( K g )  = t , ( E ) b , ( K g )  + [ , ( E )  XG..(Ko)Z,(Kg). ( 5  1 
The vectors a , ( K g )  and b , ( K g )  are vectors in angular momentum space. They are not 
invariant under a symmetry operation but simple transformation rules exist. A symmetry 
operation of a space group may be denoted by { (uI r, + U( (U)} (Koster 1957) where CY is 
a point group operation, r,  is a translation vector and U( (U) indicates here a glide vector 
in a two-dimensional group. .((U) is zero for the point operations. The operation 
{(U/ r,  + U( (U)} acting on a vector d, transforms it into d ,  ; also the vector a,(K,) is 
transformed into a,, ( K g ) .  The operator here acts only on d,since a,( K g )  depends on the 
beam star K,which is invariant under a symmetry operation, but for which a phase factor 
occurs for a glide operation: 

The transformation operator can be explicitly expressed as a matrix. From the definitions 
given above and the properties of the spherical harmonics it follows directly that a 
rotation about an n-fold axis with rotation angle q,i = 2x/n implies 

A mirror line at an angle y to the x axis leads to 

a,,.lm(Kp) = a, , i -m(Kg)(  -lIm e21m;‘ 

A glide plane is connected with a phase factor in the reflected amplitude and therefore 

The transformation properties can be formally written as 

The matrices D,,, are unitary matrices in angular momentum space. They are diagonal 
for a rotation and change the sign of the m indices for a mirror or glide plane. For the 
point groups they are independent of the wavevectors Kg or K g , .  while for groups with 
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a glide plane they contain a phase factor ug = exp(iKg U( a)) ,  which makes the calculation 
for propagator matrices somewhat more complicated as will be discussed below. 

For the vectors b,( K g )  the same relations apply for the inverse matrices: 

b,,,(K,) = D,!,b,(K,). (8b) 

The reflection and transmission matrices must remain unchanged under a symmetry 
operation of the crystal and this leads to equivalent relations for the vectors Z,( K,): 

Z, .(K,) = D,;tZ,(K,). (Sc) 

These relations enable us to perform the sum over equivalent positions in ( 5 ) .  For this 
purpose it is necessary to split the sum over subplanes or over all atoms in the unit cell 
into two parts. Summation indices v, 1.1 refer to all atoms in the unit cell, where UCI ,  rug 
designate only symmetrically independent positions. Finally v' , ,U' designate the set of 
equivalent positions generated by the symmetry operations. A summation index U' 

includes the position v0 unless it is explicitly indicated otherwise under the summation 
sign. It should be kept in mind that at oblique incidence all rotation axes are lost and 
only mirror or glide planes coinciding with the plane of incidence are retained. The 
symmetry of the unit cell is then only one of the groups pm, cm and pg. 

With these defintions one obtains from ( 5 )  

Z,(K,) = t , (E)b , (E)  + [ , ( E )  c 2 G,d(K")~;k,Zuo(Kg) (9) 
iio Y f 141 

where use has been made of (8c). 
We define new interlayer propagators G' 

G',,(KO) = c G,u'(Ko)D,.:,, (10) 
U' 

and (9) can then be written as 

this equation is completely equivalent to  (5); the only difference is that the interlayer 
propagators G',&, describe the transport of a spherical wave from a subplane vo to a 
subplane b, where the latter contains all symmetrically equivalent positions and is no 
longer a subplane within the former definition. The index in (11) runs now over all 
points in the asymmetric unit of the surface unit cell, i.e., only for these points do the 
scattering matrices T ,  or the vectors 2, have to be calculated. Now the reflection and 
transmission matrices are simply given by 

M,, ,  = 2 a,(K,,>Z,,(K,) = Cn,a , (K , , )Z , (K , )  m (12) 

where n ,  is the multiplicity of point vo. 
This is not the only consequence of symmetry that can be used. Equation (2) has 

now been brought into a form suited for the introduction of symmetry-adapted functions. 
The symmetrisations in angular momentum space and in k-space are coupled in that 
sense that symmetries in angular momentum space can only be used when the corre- 
sponding sum over equivalent beams and the sum over equivalent atomic positions are 
also performed. That means that (11) has to be solved instead of ( 5 ) ;  otherwise the 
symmetry in angular momentum space is destroyed. 
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3. Symmetrisation in angular momentum space 

Symmetry-adapted functions for all crystallographic point groups have been tabulated 
by Bradley and Cracknell (1972); the irreducible representations for the point symme- 
tries and the character tables can be found there. However, only the 17 two-dimensional 
space groups are needed here and the index selection rules may be repeated briefly. The 
ten two-dimensional point groups are considered first since for these groups the trans- 
formation matrices do not depend on the wavevector Kg or Kg . Consequently only the 
unit representation is needed, provided the wavevectors Kg belong to the reciprocal net 
of the unit cell. When the point vis on an n-fold axis, (7a) implies that 

(13a) Q v  im = a, /m e~m2.un 

and m should satisfy the condition 

m = O (  mod n )  

It is unimportant whether point vis at the origin or not, provided that the origin is chosen 
properly at the principal axis as usual; then the condition for m holds true for all other 
axes. It should be noted that this is only true for point groups and symmorphic groups: 
a glide operation can add a phase factor and m can take other values. When v lies on a 
mirror line it follows from (7b) that 

a,  im = a,  /-m(-l)'" (13b) 

where yis the angle between the x axis and the mirror line. For all atoms on a mirror line 
the spherical harmonics and similarly the vectors a,, b, and Z, can be replaced by the 
symmetry-adapted function 

yi- m 1 (14) yj, = 2 - ' ? [ y i m  + (-l)me2lm./ 

and only positive values of m are needed. 

consequently also for the propagator matrices G",,. 

vo on an n-fold axis 

These selection rules for the spherical waves remain unaltered for the vectors Zvand 

For (10) and the properties of the transformation matrices it follows that for an atom 

This is a consequence of the fact that G i M  is a propagator from a subplane containing 
all symmetrically equivalent atoms. It is easy to show that for the indices l'm' on the 
right-hand side the local point symmetry of atom has to be taken. For an atom in a 
general equivalent position all spherical waves are needed and no reduction is possible. 
Here the reduction is given by the fact that the sum over equivalent positions can be 
performed before inverting the matrix. For each atom a different set of indices lm has 
to be defined, according to its local symmetry, in such a way that the matrix to be inverted 
is reduced to its minimum size. The interlayer propagator matrices G&im.uc,i,m' are now 
rectangular matrices, where the left-hand side indices lm take values belonging to the 
local symmetry of point voand the right-hand side indices I'm' refer to the local symmetry 
of point ,&. 
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The index selection rules given above apply for the point groups and symmorphic 
groups, which are here the groups cm and cmm. The propagators for the centred lattices 
can be calculated choosing the primitive unit cell and retaining the mirror plane. For the 
other groups containing glide planes the calculation becomes more complicated. As 
mentioned above a glide operation changes the sign of the reflected amplitudes for those 
beams having an odd-order index parallel to the glide plane. The consequence is that 
different representations are required for different beams. A glide plane parallel to the 
x axis implies that 

a, im(Kg) = avi-m(Kg)(-l)me' ,sh (16) 

where Kg = KQ + ha" + kb" and h, k are indices of the beam Kg. Consequently the 
propagator matrices have to be calculated twice for the two beams sets (i.e. the set with 
index h even and the set with h odd), each having a different set of symmetry-adapted 
functions. 

A combination of a rotation axis with a glide plane (symmetry groups pmg, pgg and 
p4g) requires even more computational effort. In general different representations are 
needed for the beam sets h,  k and h + k, even or odd. The representation that applies 
can be found in the character tables of the corresponding point groups. However, in the 
computer program it is convenient to find the allowed values of the index m by using the 
condition that 

&EG(&) C { ( Y I ~ ,  7 u ( ~ ~ ) ~ e x p ( i ~ ~ ~ d ~ )  exp(imv;K,,) + 0 (17) 

where G(  a)  is the symmetry group and Kgl is any one of the beams belonging to the 
beam star Kg . 

4. Calculation of interlayer propagator matrices 

The electron propagator function describing the transport of a spherical wave from one 
point to another point is given by (Pendry 1974) 

G , / m d m ( K Q )  = ~ C e e x p ( i K " . P ) c ( l m , l ' m ' , I " m ' ' )  i 'h / ( IKo$'+d,-d, i )  
P l m  

(-1)"y/ - m  ( Q P - d , - d , )  (18) 

where 

c ( h ,  l 'm' .  I""') = 4ni'-' 1 Y/mY/ - m  Y m  dQ. 

As shown by Tong et a1 (1973) the direct lattice sum in (18) can be replaced by a sum in 

k-space when Id,- - d,- ' # 0: 

Which sum is more convenient to evaluate depends on the magnitude of the normal 
component of the vector d,  - d,. 

In (10) the sum of propagator matrices from all symmetrically equivalent positions 
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to the atom uo appears. This sum can often be simplified when some or all of the vectors 
du, -d, are obtained from duo -d,  by a symmetry operation. This is always satisfied 
when the multiplicity n ,  of point po is smaller than that of point uo. Then the sum over 
p' should be transformed into a sum over U' : 

since 

G,  = D;~,G,,,D,, 

The latter equation follows directly from the definitions in (18) and (19). 
The sum on the left-hand side of (20) contains nu terms whereas the sum on the 

right-hand side contains a smaller number n,, or even only one term when the point U 
has the full symmetry of the unit cell. The calculation of interlayer propagators takes a 
large proportion of the total computational effort and a reduction of the number of 
lattice sums reduces the computing time considerably. 

As mentioned above the indices 1, m and ll,m' do not take the same values since 1. m 
are related to point uoand thecorrespondingset of symmetry-adaptedfunctions. whereas 
l',m' are related to point b a n d  another set of symmetry-adapted functions. 

Where the direct lattice sum is evaluated (equation (18)) both sets of symmetry- 
adapted functions are coupled via the coupling coefficients c(lm. 1'". P'm") and these 
have to be defined here for combinations of spherical harmonics when mirror or glide 
lines are involved. The third couple of indices I".  m" is related to the vector d,, - U!,, and 
must obey the symmetry of point d ,  - d, with respect to the origin. A formal treatment 
of all allowed combinations of indices and a definition of coupling coefficients for 
symmetry-adapted functions on the basis of group theoretical methods could in principle 
be made and would be mathematically elegant, but in practice this would be most 
inefficient. The number of coefficients is rather large and separate storage for each 
subgroup is not possible. It is therefore appropriate to use the coupling coefficients as 
defined above for spherical harmonics and not as defined for symmetry-adapted func- 
tions. which are combinations of spherical harmonics. The sum over positive and nega- 
tive values of m and m' can be performed afterwards when necessary. 

Usually the coupling coefficients are stored in the sequence in which they are called 
in the routine that calculates the propagator matrices. This sequence can remain 
unchanged when no symmetries are used. It is no longer possible for the method 
described here since different sequences of I ,  m indices occur for the possible combi- 
nations of local symmetries. Therefore a direct addressing of coefficients with an index 
image function is needed. This is in practice possible if one makes use of the symmetry 
properties of the coefficients with respect to simultaneous change of signs and inter- 
change of 1, m and l ' ,  m'. It also has the advantage that the number of coefficients is 
minimised. 

Where the lattice sum is performed in reciprocal space (equation (19)) the procedure 
is much easier since here no coupling coefficients occur and symmetry-adapted functions 
can be used directly. 

5. Discussion 

The full use of symmetries does not reduce the flexibility of the LEED program. For the 
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ten point groups the calculation becomes especially easy. Before starting the calculation 
of interlayer propagators the local symmetry of each atom needs to be labelled. This 
fixes the I ,  m sequence of the spherical harmonics for all atoms and the sequence can be 
stored in an index array. Any further reference to the indices 1 and m is done via this 
index image. The following calculation is then independent of the actual symmetry of 
each atom. The ten point groups and the groups cm and cmm can be handled that way. 
For the remaining groups containing glide planes the procedure requires more effort 
since an additional loop must be incorporated. The set of beams must be decomposed 
into two or more groups for which different symmetry-adapted functions are required. 
The propagator matrices have to be calculated again, but the sum over lattice points 
need not be repeated, since it  can be stored and used again. There is still an important 
gain as regards computing time and memory space compared with the calculation made 
without using symmetries. All 17 two-dimensional space groups can be handled with the 
same program. 

A further advantage of directly addressing the coupling coefficients lies in the fact 
that a different number of phaseshifts can be used for different atoms, i.e. for hydrogen 
only three or four phaseshifts are required at 150 eV while for a metal like iron seven are 
necessary. The following example may illustrate the efficiency of making full use of 
symmetries. The iridium (100) surface reconstructs to a (5 x 1) structure and in the 
surface structure model there are six atoms in the unit cell. Using nine phaseshifts a 
(486 x 486) matrix would have to be inverted for each point on the energy scale, a very 
costly or even impossible task for most computers. The introduction of symmetry- 
adapted functions reduces the matrix at normal incidence to (140 x 140) and this is a 
solvable problem. 

There are in principle further symmetries that could be introduced using glide planes 
or mirror planes parallel to the suface. This would lead to a total of 80 plane groups. Of 
these only the case where the unit cell is a plane, i.e. when all atoms are within one 
plane, is easily combined with one of the 17 groups. This symmetry has been already 
described by Pendry (1971); it leads to a block-diagonalisation of the matrix since there 
are two irreducible representations that do not couple. Other cases can be handled too, 
of course, but they require a much more complicated computer code. Since these cases 
are very unlikely to occur on real surfaces they have not been discussed here. 

The multiple-scattering problem can only be solved in angular momentum space 
when small interlayer spacings occur; otherwise a calculation in reciprocal space is in 
most cases more efficient. The calculation is then divided into two parts, one for the 
surface layer with a calculation in angular momentum space and another for the bulk 
with a calculation in k-space. The unit cell of bulk layers is usually smaller, leading to 
different sets of beams in k-space which are not coupled in the bulk. The calculation of 
reflection matrices for the bulk can then be done separately for each set of beams. 
However. for simple structures with a small unit cell, it may be advantageous to perform 
the total calculation in angular momentum space. Here the solution of the system of 
linear equations is only necessary for one vector (the incident beam), and all reflected 
beams are obtained by vector multiplications. In fact, this method has been chosen by 
Davis and Zehner (1980). For large unit cells the total calculation in angular momentum 
space is not attractive since it is not possible to change the basis vectors of the unit cell 
for bulk layers while this is possible in k-space. The number of atoms to be included then 
increases too much even at normal incidence where the full symmetry can be used. 

Symmetry-adapted functions can be applied in all formulations of the multiple- 
scattering problem using a spherical-wave representation. They provide the most effec- 

c2-L 
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tive way of performing calculations; further improvements in calculational speed could 
only be achieved using a different theoretical approach. An n-fold axis at normal 
incidence multiplies the number of atoms per unit cell that can be treated with a given 
program size by a factor of approximately n ,  and an additional mirror plane doubles this 
number again. Since most experiments are performed under conditions where at least 
one symmetry plane is retained, the range of surface structures accessible for LEED 
calculations is enhanced by a factor of at least two. 
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