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The structure of the clean Co(1010) surface has been analysed by LEED. Application of a recently developed computational 
scheme reveals the prevalence of the termination A in which the two topmost layers exhibit a narrow spacing of 0.62 A, 
corresponding to a 12.8( + 0.5)% contraction with respect to the bulk value, while the spacing between the second and third layer is 
slightly expanded by 0.8( + 0.2)%. 

The (1010) surface of a hcp crystal represents 
the counterpart to the well-known (110) plane of 
fcc crystals. In contrast to the latter, however, so 
far only one structural analysis (for Re (1010)) has 
been reported in the literature [1]. As a peculiarity, 
this kind of surface may exhibit two types of 
termination as illustrated in fig. 1. The coordina- 
tion of the topmost atoms differs for the two 
terminations. In termination A each atom of the 
top layer is surrounded by four nearest neighbours 
in the second layer with a relatively small layer 
spacing. Modifaction B shows a surface atom sur- 
rounded by only two nearest neighbours in the 
second layer with much larger spacing between the 
two topmost layers. Termination B obviously ex- 
hibits a much stronger surface corrugation, and 
pronounced relaxation effects in the topmost layers 
are most likely. The differing corrugations of the 
two surface terminations provide quite different 
adsorption sites. 

In contrast to other transition metals relatively 
few investigations have dealt with cobalt single 
crystal surfaces. Concerning the hexagonal Co 

phase LEED investigations were reported only for 
the (0001) [2-4] and for the (1120) surface [5]. In 
this work we present a LEED structure analysis of 
the clean Co(1010) surface. The analysis was car- 
ried out applying the automatic optimization 
scheme and the rDE-factor developed by Kleinle et 
al. [6], final results were cross-checked with stan- 
dard r-factor methods. 

The experiments were carded out in a standard 
UHV chamber at a base pressure p < 10-8pa. 
Details about the experimental setup are described 
elsewhere [7]. The cobalt single crystal with a size 
of 6 mm diameter and 1 mm thickness was orien- 
tated within 0.5 ° in the [1010] direction by 
Lamprecht GmbH,  D-7531 Neuhausen. After 
mechanical polishing the crystal was electrochem- 
ically etched as described by Welz et al. [5] result- 
ing in a mirror-like finish. Thereafter the crystal 
was demagnetized by a Helmholtz coil, spot- 
welded between two tantalum wires and attached 
to a sample manipulator. The crystal was adjusted 
on the sample manipulator in a way to allow 
normal incidence within 0.5 o. The crystal temper- 
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(a) 

(b) 

Fig. 2 l.EED-pattern of the clean Co(10]-0) surlclc'e al an 
electron energy E't} = 66 eV. 

care was taken not to reach sample temperatures 
above 680 K. After numerous sputter-anneal ing 
cycles only small amounts of carbon remained at 
the surface which could be reactively removed by 
oxygen at 650 K. Traces of oxygen impurity could 
be reacted off by hydrogen at 680 K. The cleanli- 
ness of <the Surface could ~ be controlled very sensi- 
tively by HREELS.  ,A LEED pattern of the clean 
surface a t  an electron energy E,, = 66 eV is shown 
in fig. 2 

LEED I / V  curves were measured and recorded 
by means of a video (" auto"l LEED system devel- 

Fig. 1. (a) Top. (b) side-view Of the two possible terminations 
IA,B) o f a  hela(10101 surface. 

ature could' be controlled by a N i C i - N i  thermo- 
couple spot-welded to the edge of the sample. 

Further crystal preparat ion in vacuum con- 
sisted of cycles of ,argon sputtering at 300-500 eV 
ion energy and b e a m  currents of 3 - 6  ~tA/cm 2 
whereby the sample  tomtae~ture was successively 
increased up to 500 K followed by eyries of an- 
nealing at 680 K. Since a phase transi,~ion from 
tbe.hep to the fee phase occurs at-700-,K much 
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Fig. 3. Experimental I / V  curves of four symmetry-equivalent 
LEED-bearns: (1.2)~ (1.2~. (].2) and (~.~/. 
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oped a t  the University of Eriangen [8]. Normal '  
incidence of the primary beam was Carefully ad- 
justed as demonstrated by fig. 3, which displays 
I / V  curves of four symmet_ry-equivalent LEED 
spots ((12), (1.2), (1.2), (1.2)). Small deviations 
from normal incidence lead to non-equivalence of 
the I / V  curves. For each beam an average of all 
experimentally accessible equivalent beams was 
taken. 

The LEED calculations were performed utiliz- 
ing the layer doubling scheme [9] to describe the 
interlayer multiple scattering. The two layers hav- 
ing. an interlayer spacing of only 0.718 ,~, were 
treated as a composite layer for which the multi- 
ple-scattering equations were solved in angular 
momentum space. The number of angular 
momentum components was reduced by the use of 
symmetry-adapted functions [10]i Electron scatter- 
ing at the ion Cores was described in the muffin-tin 
approximation, using up to nine ptiase sltiftS for 
Co. 'The correSp0hc~!ng atomiC! potentml was Ob- 
tained from band structure calculations and has 
been successfully used in the LEED analysis of 
Co(O001) [3,4], Co(ll~)[4], Co(100) [11] and: Co- 
(1120) [5]. Further nonstructural parameters in 
this analysis, included an energy,dependent imag- 
inary: ,part~ 0f the hmer ~potential V i = 0.85(E+ 
Vov)'a/e~ The thermal vibrations~ w ~ e  taken into 
accotmt by a, Ddoye temperature of 450 K for all 
layers. The energy dependence:of the real part of 
the dnner potential was considered b y  a square 
root,behaviour according to a, theoretical calcula- 
tion fo r  the free: electron, gas~[12].~ Up to 33 sym, 
m~tricallynon, eqaaivalent beams were used in the  
layer doubting scheme. For comparison with model 
caloatations eight LE~D spo t s  Of the ~ clean C o  
(1010):surface ((L0), (0.1); (1,1), (0.2), (2:1~), '~(0:3), 
(1:.2), (2.0))were investigated :in the energy, range 
between 70 a n d 3 8 0 e V .  . . . . . . .  : 

The:.agreement~ between experimental je~ and 
theoretical ~ intensity J th data Was measured by the, 
the-factor introduced by' Kleinte et al; [11]. This 
r, factor requires, only a small set of data  points at  
discrete,'energies. The step widt~h~ o n  ~the energy 
scale can be, taken up  t o  20 eV, which pro~des, a 
considerable reduction in: the computing time, The 
main advan.tage; liowever, i~ that i t  allows to apply 
nonlinear, least squares !optimization ~ procedures 

for simultaneous refinemen, t of~,strugtural paxame, 
ters. The~ roE-factor is, given by: 

2 
[.J ex - cgJth I 

/ 'DE = E Wg t g y,  jex 

t 

For each beam g f = h , k ) t h e  summation i is 
performed over the ng'data points at'energies L 
whereby the scaling factor 

g ne 
ex J 

i = 1  ~=1 

normalizes the absolute intermifies ~ for each o f  
the individual: beams. The.contribUtion from each 
beam is weighted with the factor 

Wg.- n g / E n  ~. ' ? 
g 

The optimization method which was  apphed here 
is a nonlinear least squares fit-proceduze Which 
combines -the expansion method~ ~vzith the method 
of the steepest descent [1.3].. A- full description o~ 
the method is given i:n ref. [14]: 

This method requires the partial derivatives of 
the intensifies • with :'respect to~ the structural 
parameter. In the program version-ofKlehnle [It] 
the derivatives were evaluated numerically by 
full-dynamical, calculations. Influenced by .the 
Tensor LEED-approximation ;[l:6], .an .approxi, 
male calculation . of derivatives : for structural 
parameters of ~the~ composite .layer~ was imple- 
mented in the,program [t7j8]~. '. ' 

, The stacking, of the layer- matrices is achieved 
by a. linear approximation whereby the once:in- 
verted matrices are exploited,in :the evaluation of 
all: derivatives. Hence, the actual computing, time 
for determining a surface .structure 'is nearl~ .ind~ 
pendent: of t h e n u m b e r  o f  optimizing,:structural 
parameters. A detailed description will be given 
elsewhere [18]. The direct application of Tensor 
LEED is~not possible, because the composite-space 
method does not give any  access(to the LI~ED 
wavefunction in the vicinity of each displaced 
atom . . . .  

In the present analysis up tO 7 layer spacings 
were taken as variable parameters and addition- 
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ally the constant part of the muffin-tin zero. Note 
that the computational effort is nearly indepen- 
dent of the number of structural parameters. 
However, only the top two layer spacings ex- 
hibited a detectable deviation from the bulk value. 
The calculations were restricted to the energy range 
of 70-380 eV (step width 15 eV) and did not fully 
use the experimental data base (up to 600 eV) in 
order to save computer time. 

The step width of 15 eV corresponds to 21 
points on the energy scale and a total number of 
146 data points in 8 beams. This data base is 
highly sufficient to determine 8 free parameters 
according to previous investigations at related sys- 
tems [6,19]. An attempt to determine the mini- 
mum data base by variation of the step width was 
not undertaken. 

In order to tackle the question which of the two 
terminations represents the stable configuration of 
this surface the automatic fit procdure described 
above was carried out for both models. Each 
model started from the truncated bulk structure. 
The process converged rapidly. Final results were 
attained after 4 iteration cycles when all parame- 
ters were within limits of 0.01 ~,. Furthermore 
extensive tests were performed which demon- 
strated that the lattice parameters obtained by our 
optimizing scheme do not depend on the starting 
configuration within the error bars of 0.01 ,~. The 
corresponding rDE-factors resulted in 0.24 for 
termination A, and 0.48 for termination B. 

For the final results full curves in 3 eV steps 
and two standard r-factors (Zanazzi-Jona [20] 
and Pendry [21]) were calculated. All three r-fac- 
tors exhibit a clear preference for termination A as 
shown in table 1. The results are presented in fig. 
4 together with the experimental I - V  curves and 
demonstrate the reliability of this structural de- 
termination. The sensitivity of the first two layer 
spacings upon our structural input parameters is 

Table 1 
Comparison of r-factors (rDE, rzj, re) for both configurations 
of the Co (1010) surface 

Termination r D E  r z j  r p  

A 0.240 0.090 0.310 
B 0.480 0.137 0.720 
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Fig. 4. Calculated (upper) and experimental (lower) t / V  curves 
of 8 non symmetry-equivalent LEED-beams in the energy 

range between 70 and 380 eV. 

demonstrated by the rDE-factor contour-plot in 
fig. 5 [22]. 

It is interesting to note that in spite of the poor 
agreement for termination B, the layer spacings 
for both terminations agree quite welt, but with 
additional rows of Co-atoms for termination B 
(see fig. lb). A coexistence of both surface struc- 
tures either in small or in large domains seems to 
be possible requiring a mixture of diffraction in- 
tensities or amplitudes, respectively. However, no 
improvement could be achieved by mixing the 
intensities of termination B with the intensities of 
termination A. The lower limit of the concentra- 
tion of termination B which produced a detectable 
worsening of the r-factor was about 10%1 In 
summary, it appears as if termination B does not 
exist on the Co(10i0) surface to within the limits 
of the present analysis. It should be noted that the 
rather good r-factor of Zanna7Ti-Jona, especially 
for termination B, originates from the inherent 
artefact, whereafter a large energy range under 
investigation causes a small corresponding value 
of rzj [15] and vice versa. 

It is well known [23] that less close-packed 
clean metal surfaces exhibit measurable relaxa- 
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Fig. 5. Plot the roE-factor as a function of the first two layer spacings d12 and d23 as defined in fig. l b  [22]. 
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tions, namely, a contraction between the first and 
second atomic layers followed by an expansion 
between the next two layers. Such relaxations can 
continue well into the bulk, but their magnitude 
decays exponentially with depth. Therefore up to 
seven layer spacings were simultaneously opti- 
mized. The main result is a contraction of the first 
layer spacing d12 down to 0.625 + 0.003 ~,. That is 
12.8(+0.5)% less than the truncated bulk value 
which, however, represents only a 1.3% decrease in 
the bond length between neighbours !n the first 
compound layer from 2.889 to 2.857 A. The sec- 
ond layer spacing d23 is only slightly expanded to 
1.458 + 0.003 A, and the third layer spacing d34 
corresponds to the bulk value within the limits of 

uncertainty. Table 2 shows the calculated layer 
spacings between the first seven layers below the 
surface. Hence the strong contraction within the 
first (compound) layer decayed after one or two 
layers. 

In table 3 we compare our results with multi- 
layer relaxation parameters for other open surfaces 
such as Cu(ll0) [24], AI(ll0) [25], Re(1010) [1] 
and Fe(211) [26]. Clearly, the contraction found 
here is in good agreement with these observations. 
Only Re(1010) displays a significantly higher con- 
traction of 17%, however, only three beams were 
analysed in the corresponding analysis [1], leading 
to an uncertainty of about 5%. It is most remark- 
able that the variation of bond length coincides 

Table 2 
Calculated layer spacings between the first seven layers below the surface 

Layer d12 d23 d34 d45 d56 d67 d78 
spacing 

(~,) 0.625 1.458 0.722 1.436 0.724 1.403 0.730 
+ 0.003 4- 0.003 4- 0.005 -I- 0.010 + 0.016 + 0.055 + 0.04 
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['able 3 

( 'omparison of multilayer relaxations Ad~ and Ad23 for some rectangular single crystal surfaces 

Cu(llOJ [24] AI(llO) [251 Re(1010) [1] Fe(21 l/[26] Co~ 10101 

Ad~ 2/d~ 2 8.5( + 0.7)5g - 8,41 _+ 0.8-)~ - 17% - 109~ 12. ~;( + 0.519~ 
Ad23/d23 - 2 3( _+ 0 .9~  +4~9{ _+ 1.0)% + 1-2% + 5% + 0,76~ + 0.2 ~% 

for both crystals Re(10]'0) and Co(1010)indieat- 
ing a similar relaxation mechanism for these hcp 
surfaces. 

To summarize, our LEED analysis of the clean 
Co(1010) surface reveals that only termination A 
represents the stable atomic configuration in the 
surface, exhibiting a contraction of the first sub- 
plane spacing by 12.8(+_0.5)% and no further re- 
laxation deeper in the b ~ ;  We note tha t the  sarr~e 
termination (A) was fotr~:,~reviously for the clean 
Re(1010) surface [1]. 

We thank Dr. A. Preusser for technical assis- 
tance. 

Note added in proof 

After acceptance ,gf our Letter:a recent LEED 
analysis from~L:~adroos e! al, ~[27] coacermng "The 
termination and mullilayer relaxation at the Co- 
(1010) surface" was brought to our knowledge. 
The , I / V  cu~es, of  ~ Lind~:0os, et ~at. are in good 
agreement with: Qur results, bu:t a,idiscrgp~¢y oc-, 
curs ~with;: rgspoct to :the magla_itude o f  the first 
layer contraction. While Lindroos et: al. ascer- 
taine~ a contraction of, ~- 6.5( +_ 2)% we de- 
termined a, larger co~traction o f  - 1,2.8( :+ 0:5)%. 
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