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Abstract. The thermal expansivity of liquid GeO2 at tem- 
peratures just above the glass transition has been ob- 
tained using a combination of scanning calorimetry and 
dilatometry. The calorimetric and dilatometric curves of 
cp and d V/d T are normalized to the temperature deriva- 
tive of fictive temperature versus temperature using the 
method of Webb et al. (1992). This normalization, based 
on the equivalence of relaxation parameters for volume 
and enthalpy, allows the completion of the dilatometric 
trace across the glass transition to yield liquid expansiv- 
ity and volume. The values of liquid volume and expansi- 
vity obtained in this study are combined with high tem- 
perature densitometry determinations of the liquid vol- 
ume of GeO 2 by Sekiya et al. (1980) to yield a tem- 
perature-volume relation for GeO2 melt from 660 to 
1400 ~ Liquid GeOz shows a strongly temperature- 
dependent liquid molar expansivity, decreasing from 
20.27 x 10-4 cm 3 mol-1 ~ -1 to 1.97 • 10-4 cm 3 
mol-  1 ~ 1 with increasing temperature. The coefficient 
of volume thermal expansion (~v) decreases from 76.33 
• 10 - 6  ~  to 2.46 x 10 - 6  ~ with increasing tem- 

perature. A qualitatively similar volume-temperature re- 
lationship, with c% decreasing from 335 x 10 .6 ~ to 
33 x 10 .6 ~ -1 with increasing temperature, has been 
observed previously in liquid B203. The determination 
of the glass transition temperature, liquid volume, liquid 
and glassy expansivities and heat capacities in this study, 
combined with compressibility data for glassy and liquid 
GeO2 from the literature (Soga 1969; Kurkjian et al. 
1972; Scarfe et al. 1987) allows the calculation of the 
Prigogine-Defay ratio (H), cp-c~ and the thermal Grfin- 
eisen parameter (Tth) for GeO2. From available data on 
liquid SiO 2 it is concluded that liqui d GeO2 is not a 
good analog for the low pressure properties of liquid 
Si02. 

Introduction 

GeO2 is commonly used as an analog of SiOz in studies 
of the structure and properties of glasses, liquids (Richet 
1990) and minerals (Ross et al. 1986; Rigden and Jack- 

son 1991). The isomorphous nature of amorphous GeO 2 
and SiO 2 has been emphasized in spectroscopic studies 
(e.g. Konnert et al. 1973). Glassy GeO2 investigated at 
high pressure has been shown to undergo a coordination 
shift (Durben and Wolf 1991; Itie et al. 1989) and the 
addition of alkalies to GeO2 glass and liquid also pro- 
duces a density and bulk modulus maximum that has 
been interpreted as resulting from a shift to higher coor- 
dination (Riebling 1963; Sekiya et al. 1980; Osaka et al. 
1985: see, however, Henderson and Fleet 1991). For stu- 
dies of the liquid state, GeO2 provides the considerable 
advantage that the temperature required to achieve the 
relaxed liquid response of amorphous GeO 2 is 500- 
600 ~ lower than that of SiO2, at any given frequency. 
The lower temperature of structural relaxation in GeO 2 
(at approx. 580 ~ versus 1180 ~ for SiO2 at approx. 
10 - 2  H z )  brings studies of the glass transition of this 
single component network-structure liquid within the 
temperature range of operation of very precise scanning 
methods of dilatometry and calorimetry. 

In a recent series of studies, the analysis of scanning 
calorimetric and dilatometric data across the glass tran- 
sition of silicate melts has been used to obtain liquid 
thermal expansivity data just above glass transition tem- 
peratures (Knoche et al. 1992a, b, c). These low-tempera- 
ture liquid expansivities have been combined with high 
temperature densitometry to obtain the first reliable esti- 
mates of the temperature-dependence of thermal expan- 
sivity in silicate melts. By using these methods, we pres- 
ent an expression for the volume-temperature relation- 
ship of GeO2 liquid from 660 to 1400 ~ The volume 
and expansivity data point in a consistent manner to 
a strongly temperature-dependent expansivity for liquid 
GeO2. 

The new data on the changes in heat capacity and 
thermal expansivity across the glass transition, the molar 
volume at the glass transition and the glass transition 
temperature are combined with literature-derived esti- 
mates of the compressibility of GeO 2 glass and liquid 
to estimate the values of the Prigogine-Defay ratio, cp 
-c~ and the thermal Grfineisen parameter for amor- 
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Table 1. Measured cp(Jg -1 ~ -1) data for glass and liquid GeOz. 
(heating-rate 5 ~ min 1) 

Cooling rate 

T ( ~  l~ -i 2~ -~ 5~ -~ 10~ -1 

40 0.5257 0.5232 0.5228 0.5264 
50 0.5330 0.5313 0.5299 0.5348 
60 0.5356 0.5342 0.5325 0.5382 
70 0.5463 0.5454 0.5433 0.5489 
80 0.5523 0.5536 0.5505 0.5561 
90 0.5592 0.5614 0.5557 0.5615 

100 0.5647 0.5671 0.5595 0.5668 
110 0.5702 0.5731 0.5640 0.5727 
120 0.5758 0.5792 0.5689 0.5786 
130 0.5808 0.5848 0.5743 0.5840 
140 0.5856 0.5900 0.5791 0.5891 
150 0,5905 0.5951 0.5833 0.5940 
160 05952 0.6001 0.5876 0.5988 
170 0.5997 0.6044 0.5913 0.6031 
180 0.6045 0.6091 0.5979 0,6078 
190 0.6091 0.6138 0.6033 ~6122 
200 0.6131 0.6176 0.6074 0.6162 
210 0.6164 0.6209 0.6111 0.6194 
220 0.6t97 0.6241 0.6146 0.6226 
230 0.6228 0.6268 0.6178 0.6256 
240 0.6258 0.6290 0.6207 0.6284 
250 0.6286 0.6309 0.6236 0.6309 
260 0.6317 0.6329 0.6263 0.6335 
270 0,6348 0.6347 0.6289 0.6354 
280 0.6377 0.6370 0.6312 0.6377 
290 0.6415 0.6404 0.6337 0.6409 
300 0.6447 0.6438 0.6370 0.6443 
310 0.6483 0.6480 0.6411 0.6487 
320 0.6513 0.6511 0.6446 0.6516 
330 0.6532 0.6511 0.6471 0.6536 
340 0.6540 0.6488 0.6479 0.6543 
350 0.6546 0.6501 0.6475 0.6545 
360 0.6572 0.6503 0.6481 0.6552 
370 0.6583 0.6510 0.6502 0.6570 
380 0,6594 0.6534 0.6523 0.6590 
390 0.6605 0.6554 0.6540 0.6601 
400 0.6614 0.6571 0.6551 0.6614 
410 0.6623 0.6584 0.6555 0.6615 
420 ~6636 0.6603 0.6564 0.6626 
430 0.6648 0.6613 0.6578 0.6645 
440 0.6662 0.6628 0.6592 0.6653 
450 0.6669 0.6640 0.6602 0.6654 
460 0.6677 0.6649 0.6610 0,6658 
470 0.6689 0.6663 0.6623 0.6664 
480 0.6695 0.6677 0.6634 0.6662 
490 0.6708 0.6690 0.6640 0.6662 
500 0.6730 0.6711 0.6653 0.6668 
510 0.6764 0.6745 0.6676 0,6685 
520 0,6810 0.6786 0.6704 0.6711 
530 0.6885 0.6848 0.6756 0.6757 
540 0s 0.6944 0.6831 0.6836 
550 0.7148 0.7079 0.6938 0.6946 
560 0.7323 0.7246 0.7081 0.7088 
570 0,7475 0.7399 0.7242 0.7240 
580 0.7541 0.7475 0.7359 0.7343 
590 0.7523 0.7463 0.7390 0.7383 
600 0.7441 0.7403 0.7358 0.7373 
610 0,7357 0.7339 0.7299 0,7339 
620 0.7313 0.7309 0.7255 0.7313 
630 0,7298 0.7299 0.7239 0.7301 
640 0.7293 0.7296 0.7228 0.7293 
650 0.7292 0.7297 0.7217 0.7291 
660 0.7288 0.7294 0.7210 0.7287 

Table 1 (continued) 

Cooling rate 

T(~ 1 ~ min- 1 2 ~ min- 1 5 ~ min- ~ 10 ~ min 1 

670 0.7287 0.7295 0.7204 0.7285 
680 0.7281 0.7292 0.7195 0.7276 
690 0.7273 0.7285 0.7191 0.7270 

Peak 578 ~ 578 ~ 584 ~ 583 ~ 
temperature 

Note: The heat capacities are estimated to have a precision of 
_+ 1% ; Tg = peak temperature 

phous and liquid GeO2. Using existing data for SiO2, 
comparisons are made with the volume-temperature re- 
lation and derived parameters. 

Calorimetry and Dilatometry 

The sample of GeO2 glass used in the present investiga- 
tion was made by direct fusion of GeO2 (ultrapure, 
Alfa| powder in a platinum crucible in a vertical tube 
furnace operating in air at 1400 ~ The sample was 
stirred with a PtsoRh2o rod for several hours to promote 
fining. After sufficient time for fining, the spindle was 
removed from the sample, and the crucible was removed 
from the furnace to cool in air. A 6.4 mm diameter cylin- 
der was bored from the cooled sample with a diamond 
coring tool and this cylinder was cut to a length of 1 cm 
using a diamond saw. The cylinder was stored in a desic- 
cator until use in the dilatometer and calorimeter. 

The calorimetry was  performed in continuous scan- 
ning mode with a Setaram | DSC instrument. The heat 
flow was recorded during heating runs of 5 ~ min-1 
on glasses that had been previously cooled from 
,-~ 100 ~ above Tg (see Table 1) at cooling rates of I, 
2, 5 and 10 ~ min -1. The calorimeter was calibrated 
regularly against a geometrically identical cylinder of 
sapphire, using the heat capacity data of Robie et al. 
(1979). The heat capacity data are presented in Table I. 
The heat capacities are estimated to have a precision 
of + 1% at 1 a, based on the 4 runs performed for each 
sample. The measured heat capacities are in excellent 
agreement with those reported in Robie et al. (1979), but 
3% lower than the more recent data of Richet (t990). 
The reasons for this discrepancy are not clear. A typical 
calorimetric trace, that obtained for l ~  
5 ~ min-1  (cooling-rate/heating-rate) is illustrated in 
Fig. ! a. 

The dilatometry was performed with a Netzsch| 
TMA 402 quartz-rod dilatometer. The sample, its ther- 
mal history and the scanning rates were those used in 
the calorimetry measurements. This instrument has been 
calibrated against single crystal sapphire (NBS 
sheet 732). Tile molar expansivity of the glass has an 
accuracy of _+3% at l a, calculated from the errors in 
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Fig. 1. Calorimetric a a~d dilatometfic b traces of the glass transi- 
tion for amorphous GeO2 c normalized comparison of heat capaci- 
ty and expansivity for liquid GeO2. (1 ~ ~ cooling 
rate/5 ~ min- 1 heating rate) 

the measurements of the thermal expansivity of the stan- 
dard (4-_ 2%) and the sample (_+ 2%). The room tempera- 
ture density of the glass [p(t5.5 ~ 3.651 
_+0.004gcm -3] was determined by Archimedean 
densitometry in toluene. The molar thermal expansion 
data calculated from the room temperature volume 

[V(I5.5 ~ cm 3 mol - t ]  combined with 
the dilatometric data for the glass, are presented in Ta- 
ble 2. The dilatometry trace for GeO2 (1 ~ ra in- t /  
5 ~ min-1) is illustrated in Fig. 1 b. 

Derivation of Liquid Expansivity 

The derivation of liquid expansivity and volume from 
calorimetric and dilatometric data is based on the princi- 
ples of structural relaxation in silicate melts (Narayanas- 
wamy 1971; Moynihan et al. 1976; Scherer 1984). The 
more general aspects of structural relaxation in silicate 
melts, their influence on diffusion, viscosity, heat capacity 
and density, have been discussed previously (e.g. Richet 
and Bottinga 1986; Dingwell 1990; Dingwell and 
Webb 1989, 1990). The theory of our procedure for ob- 
taining relaxed liquid molar expansivity data from a 
combination of scanning calorimetry and dilatometry 
has been presented in full by Webb et al. (1992). This 
method of determining the volume and thermal expansi- 
vity of relaxed supercooled melts has been successfully 
tested against the volume and thermal expansivity extra- 
polated from high temperature double-bob Archimedean 
density measurements in silicate melts (Knoche et al. 
1992a, b, c). 

The physical properties of a silicate melt depend upon 
the configuration or structure of the melt and the ambi- 
ent temperature T. The configuration of silicate glasses 
quenched from liquids can be approximated to the equi- 
librium structure of the liquid at some fictive tempera- 
ture, To. The temperature-derivatives of glass properties 
can be used to describe the temperature-derivative of 
the fictive temperature. To do this, the temperature-de- 
rivative of any property in the glass transition interval 
is normalized ~yith respect to the temperature-derivative 
of the liquid and glassy properties. The temperature- 
derivative of the fictive temperature Tr at a temperature 
T' is related to the temperature dependence of a macro- 
scopic property �9 by; 

d ~  [ (8 r T ) -  (a ~b/8 T)g] It, 
d T - [ (8 ~/8 T)e - (8 dP/8 T)g]ITy (1) 

T'  

where the subscripts "e" and "g" are for the liquid (equi- 
librium) and the glassy values of the property (Moynihan 
et at. 1976). In order to describe the physical properties 
of a melt in the glass transition region it is necessary 
to devise an algorithm for the temperature dependence 
of the fictive temperature. 

In the present study, enthalpy H, and volume V take 
the place of the general property �9 in [1]. Assuming 
the equivalence of volume and enthalpy relaxation be- 
havior in the glass transition region (c.f., Webb t992), 
Equation 1 can then be rewritten as; 

[dV(T) 
cp(T')--cv,(T' ) dTf[ I - - l i T  

drIT,=p  
[ dT  

d V~(T)] 

d I~(T)] " 
dT JG 

(2) 
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Table 2. Measured dV/dT(lO -4 cm 3 mol 1 oC-a ) data for glass 
and liquid GeO2. (heating-rate 5 ~ rain- 1) 

Cooling rate 

T(~ l ~  2~  5~ 1 10~ 

40 4.18 5.31 5.33 4.95 
50 6.15 6.62 6.53 5.46 
60 7.40 7.27 5.64 7.21 
70 7.08 7.39 7.18 6.92 
80 7.20 7.40 6.61 7.67 
90 7.32 7.30 7.10 7.10 

100 7.32 7.32 6.45 7.20 
110 7.21 7.10 7.54 6.72 
120 7.61 7.20 7.88 7.51 
130 7.35 6.78 8.14 7.45 
140 7.27 7.35 7.84 7.11 
150 7.19 7.29 7.20 7.27 
160 7.21 7.63 7.49 7.50 
170 7.78 7.34 7.75 7.46 
180 7.74 7.89 8.58 7.48 
190 8.04 8.09 6.98 7.92 
200 7.93 8.09 7.69 7.91 
210 7.44 7.28 8.30 7.60 
220 7.61 7.36 7.93 6.91 
230 7.73 7.46 7.20 6.39 
240 7.58 7.66 7.89 8.41 
250 7.20 7.80 6.49 5.84 
260 7.50 8.05 7.50 7.45 
270 7.78 8.10 7.90 7.68 
280 7.78 8.33 8.36 8.10 
290 8.04 8.02 7.98 7.24 
300 7.86 8.31 7.05 7.11 
310 7.86 7.69 8.45 7.62 
320 7.77 7.46 8.27 8.75 
330 7.99 8.03 6.48 7.13 
340 7.95 7.68 7.19 7.50 
350 7.67 7.84 7.71 7.37 
360 7.98 7.38 6.73 7.29 
370 7.81 7.51 7.05 8.20 
380 7.69 7.69 7.70 6.96 
390 7.61 7.49 8.64 7.66 
400 8.55 7.96 7.18 7.59 
410 7.88 7.67 7.25 7.55 
420 8.00 7.63 7.68 7.17 
430 7.47 7.47 7.69 8.20 
440 7.90 7.48 7.71 6.66 
450 7.97 7.56 7.73 7.86 
460 7.94 7.81 7.27 6.66 
470 8.29 7.89 7.89 6.50 
480 7.97 8.14 8.62 7.26 
490 8.42 8.38 5.44 7.00 
500 8.10 8.14 5.29 6.58 
510 8.73 8.41 7.34 6.70 
520 9.57 9.08 7.26 8.91 
530 10.68 10.30 8.58 6.69 
540 13.01 11.64 10.05 9.24 
550 16.68 14.37 12.52 12.44 
560 21.43 19.26 14.88 15.53 
570 26.47 24.22 19.71 20.57 
580 30.06 28.07 23.79 22.19 
590 29.97 28.13 26.28 24.38 
600 24.62 24.25 22.70 24.24 
610 20.82 20.57 19.65 20.48 
620 19.07 19.07 17.53 20.16 
630 17.75 18.97 16.81 18.42 
640 17.44 18.61 15.01 16.64 
650 16.09 15.68 13.31 12.30 
660 15.27 14.78 11.03 11.10 

Table 2 (continued) 

Cooling rate 

T(~ 1 ~ min- 1 2 ~ min- 1 5 ~ min- 1 10 ~ min- 1 

670 13.86 13.94 8.00 9.33 
680 6.63 6.57 3.68 4.75 

Peak 583 ~ 585 ~ 588 ~ 586 ~ 
temperature 

Note: The thermal expansion is estimated to have a precision of 
_+3% 

In  the above equat ion  relating cp and thermal  expansi- 
vity d V/dT in the glass t ransi t ion region, the only un- 
known  parameter  is the thermal  expansivity of  the re- 
laxed liquid at temperature  T'  above  the glass transit ion 
temperature.  Despite a c o m m o n  origin, various melt 
properties can, theoretically differ in relaxation behavior.  
This would  imply different relaxation kinetics due to dif- 
ferent par t i t ioning of  volume and enthalpy amongs t  the 
distr ibution of  structures in the melt. Often, however,  
no such difference can be distinguished (e.g. Rekhson  
et al. 1971; Sasabe et al. 1977) and the assumpt ion  of  
equivalent relaxation times for different properties can 
be usefully employed. 

Due  to the lack of  relaxed thermal  expansivity data,  
we recover the liquid mola r  thermal  expansivity f rom 
the di latometric  trace by normal iz ing both  the scanning 
calorimetric and dilatometric data ;  

cb' ( T) = cl)( T ) -  ebg( T) (3) 

where the subscripts " p "  and " g "  refer to peak and glas- 
sy values. The relaxed value of  thermal  expansivity (d V~ 
d T at T =  T') can now be generated f rom the peak and 
linearly extrapolated glassy values of normalized heat 
capaci ty and thermal  expansion curves (see Fig. l c  and 
[-2]). The volume, V, and coefficient of  volume thermal  
expansion c~v[-1/V.(dV/dT)] of the melt at T = T '  can 
also be calculated. It  should be emphasized that  the 
above me thod  can only be applied to calorimetric and 
di latometric  data  obtained on the same sample using 
identical experimental  condit ions and thermal  histories. 
It  is only this internal consistency that  permits the use 
of the assumpt ion  of the equivalence of  the enthalpy 
and volume relaxation behavior  as small changes in 
composi t ion  or fictive temperature  of the melt can 
strongly influence relaxation behavior.  

The volume and expansivity of  liquid GeO2 at the 
glass t ransi t ion may  be compared  with liquid GeO 2 den- 
sity data  obtained by Sekiya et al. (1980) using the re- 
strained sphere method.  These data  at higher tempera-  
tures are presented together  with our  data  in Figure 2 
and Table  3. The volume- tempera ture  relationship con-  
sistent with all the volume data  together  with the thermal  
expansion determined at T =  660 ~ is best described by 
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Table 3. Molar volume of GeO2 as a function of temperature. High 
temperature data from Sekiya et al. (1980) 

Temperature (~ Volume (cm s mol -  1) 

660 29.1322 
1250 29.91 
1300 29.93 
1350 29.96 
1400 29.96 
1450 29.98 
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Fig. 3. Thermal expansion of B203, OeO2, NaA1Si30 s, CaA1Si206 
and CaMgSi206 liquids as a function of temperature 

the polynomial; 

V(cm 3 mo1-1)=27.26(0.06)+3.67(0.14) x 10 3 T 

-- 1.23(0.07) x 10 -6 T 2 (4) 

for temperature in ~ The expansivity obtained from 
[4] for liquid GeOa at 660~ (20.46+1.68 
x 10 -4 cm 3 tool- 1 ~ 1) is within error of that deter- 

mined using our dilatometry/calorimetry method 

(22.23 +0.96 x 10 -4 cm 3 tool- 1 ~ 1). The expansivity 
of the liquid decreases strongly (an order of magnitude) 
as temperature increases from 660 to 1400 ~ Qualita- 
tively similar behavior has been observed for liquid B203 
(Napolitano et al. 1965) and for a wide range of liquids 
in the anorthite-albite-diopside system (Knoche et al. 
1992a, b), as illustrated in Fig. 3. 

The Prigogine-Defay Ratio (//) 

For the case in which a single order parameter, along 
with temperature and pressure conditions, is sufficient 
to specify the state of a system, the Prigogine-Defay ratio 
must be unity. Where this is not the case, the question 
arises as to how many independent parameters of the 
structure are needed to describe the relaxation of proper- 
ties across the glass transition. The Prigogine-Defay ratio 
/ / i s  given by; 

H -  A~Acp (5) 
(A ~v) 2 r~ v 

where Tg is the glass transition temperature, A fi is the 
difference between the compressibility of the liquid and 
the glass at T~, A Cp is the difference between the heat 
capacity of the liquid and the glass at Tg, A % is the 
difference between the coefficient of volume thermal ex- 
pansion of the liquid and the glass at Tg and V is the 
molar volume at Tg (Lesikar and Moynihan 1980; Gupta 
and Moynihan 1976; Nemilov et al. 1987). 

We can use our data of the glassy and liquid values 
of heat capacity and expansivity, the glass transition tem- 
perature and the volume at this temperature to calculate 
the Prigogine-Defay ratio for liquid GeO2. The remain- 
ing data required are the compressibility of the glass 
and the liquid. The compressibility of glassy GeO2 has 
been measured at low temperature by Soga (1969) using 
ultrasonic (20 MHz pulse superposition) methods. The 
temperature dependence of the glass compressibility has 
been determined by Kurkjian et al. (1972). The liquid 
compressibility of GeO2 has not been measured at 
0.1 MPa but density data for the liquid at 1425 ~ C and 
pressures of 1, 1.5 and 2 GPa are provided by Scarfe 
et al. (1987) using the falling sphere method. These high 
pressure densities combined with the 0.1 MPa, 1400 ~ 
density of GeO2 from Sekiya et al. (1980) can be de- 
scribed by the polynomial volume-pressure relationship; 

V(cm 3 mol -  1) = 30.019 (0.024)- 3.77 (0.11) P 

+ 1.86(0.12) pe (6) 

for pressure in GPa. 
The 0.1 MPa compressibility [fl = -- (l/V)- (d V/dP)J 

calculated from [6] is 12.4(0.4)x 10-11 Pa-1. The data 
used in the calculation of the Prigogine-Defay ratio, their 
uncertainties and sources are summarized in Table 4. 
The resultant value o f / / i s  6.9 + 1.3. This value compares 
favorably with the range of values typical for silicate 
melts (see Table 4) indicating that the relaxation behav- 
ior of a pure network component like GeO: is qualita- 
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Table 4. Data used in the calculation of the derived parameters 
for GeO z 

Property T(~ liquid glass ~b z -  ~g 

K(GPa) 660 8.08(24) a'~' 23.87(3) *'a 
1400 8.08 

fl(10-1i pa-1) 660 12.4(4) ~'b 4.19 ~'a 
1400 12.4 

%(10 -6 ~  660 76.3(3.3) f 27.1(7) 
1400 2.46(11) f 

cp(J tool- 1 ~ ~) 660 75.9(4) f 70.4(4) 
1400 80.7" 

V(10 -6 m 3 mot-1) 660 29.13(02) ~ 
1400 29.96(02) f 

8.19• 

49.2• 

5.5• 

Note: for ease of calculation, the data are presented in SI units 
Scarfe et al. 1987 

b Sekiya et al. 1980 
Soga 1.969 

d Kurkjian et al. 1972 
Richet et al. 1982 
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Fig. 4. The Prigogine-Defay ratio for silicate and borate glasses 
compared with that for GeO2 

tively equiva len t  to  tha t  of  more  complex  sil icate a n d  
non-s i l ica te  compos i t ions .  In  Fig.  4 we presen t  a h is to-  
g r a m  of  the  values  of  H tha t  have  been der ived  f rom 
l i te ra ture  sources  by  N e m i l o v  et al. (1987), our  value  for 
GeO2 lies well wi th in  the  range  of  values  for a lka l i  sili- 
ca te  and  b o r a t e  glasses. Recen t  d a t a  for the  t e rna ry  sys- 
tem a lb i t e - ano r th i t e -d iops ide  (Table  5) resul t  in the de- 
t e rmina t i on  of  5 < H < 19 (see Tab le  6). The  H ca lcu la ted  
for B203 using the d a t a  p resen ted  in Tab le  7 is 3.6. G u p -  
ta  and  M o y n i h a n  (i976) ca lcu la ted  a H of  4.7 for  BzO3 
f rom their  d a t a  compi la t ion .  These  two values  of  H cal- 
cu la ted  for B203 mel t  are  an ind ica t ion  of  the range  
of  values  of  the  P r igog ine -Defay  ra t io  which  can  be  ob-  
ta ined  us ing different source  data .  In  view of  the  e r rors  
inheren t  in the ca lcu la t ion  of the Pr igog ine-Defay  ra t io ,  
a value  I < H <  10 cannot ,  a t  present ,  be d i s t inguished  
f rom I. 

Table 5. Data used in the calculation of the derived parameters 
for albite, anorthite and diopside 

Property T(~ liquid glass q?z- ~bg 

K(GPa) Tg 15-25 e 30--50 c 
1400 15-25 e 

fl(10-11 Pa-  1) T~ 4-7 2-3 1-5 
1400 4-7 

%(10 -6  ~ -1) 

Albite 705 54 "'b 23 ~'b 31 
1400 3 ~'b 

Anorthite 868 52 ~'u 19 ~'b 33 
1400 22 a'b 

Diopside 732 125 "'u 35 "'b 90 
1400 47 a'b 

Cp(J tool -1 ~ -1) 705 332 "'b 300 a'b 32 
Albite 1400 372 r 

Anorthite 868 417 "'b 317 ~'b I00 
1400 435 a 

Diopside 732 364 ~'b 238 ~'b 126 
1400 335 a 

V(10 -6  m 3 tool -1)  
Albite 705 111 ~' b 

1400 114 "'b 

Anorthite 868 105 ~' b 
1400 107 "'~ 

Diopside 732 78 a'b 
1400 82 ~'b 

Note: for ease of calculation, the data are presented in SI units 
Knoche etal. 1992a 

b Knoche et aI. 1992b 
Bansal and Doremus 1986 

a Richet and Bottinga 1986 
e Rivers and Carmichael 1987 
f Richet et al. 1982 

Table 6. Prigogine-Defay ratio and Grfineisen parameters for the 
glasses and liquids 

/ ]  ~th(Tg) }Ithl ( Tg ) 7th(1400 ~ 

Albite 7.7(3-15) 0.264).43 0.27.0.45 0.26-0.43 
Anorthite 19(7-38) 0.19-0.31 0.204).33 0.08-0.14 
Diopside 5.0(2-10) 0.3443.57 0.404).67 0.17-0.29 
GeO2 6.85_+1.26 0.27__.0.04 0.24_+0.05 0.007_+0.001 
B203 3.6 0.28 0.20 0.02 

The Thermal Griineisen Parameter (~'th) 

The  the rmal  Gr t ine isen  pa rame te r ,  ?th, is given by  

~ K s V 
} ' m  = - -  ( 7 )  

Cp 

(Ande r son  1989)for  e~, the coefficient of  vo lume  the rma l  
expans ion ,  Ks,  the  ad i aba t i c  bu lk  modu lus ,  V, the m o l a r  
volume,  cp the  hea t  c apac i ty  a t  cons t an t  pressure .  The  
t he rma l  Grf ine isen  p a r a m e t e r  is a r ep resen ta t ion  of  the 
the rmal  energy of  a mater ia l .  I t  is a measure  of  the 
change  in pressure  on  hea t ing  at  a cons t an t  volume.  A 



Table 7. Data used in the calculation of the derived parameters 
for B203 

Property T(~ liquid glass ~b z-  ~g 

K(GPa) 307 ~2" [,2.5] e ~11 b [8.3] f 
1400 ~ 2 

/~(10 11 Pa 1) 307 5 [-40] 9.1 [12] f 41 ~28] f 
1400 5 

cq~(10 -6 ~ 307 335 ~ [,400] f 57.9 ~ [,50] f 277 [-350] e 
1400 33.4 r 

c,(J tool -1 ~ 307 136 d [134] f 89 d ]-91] f 47 [43] f 
1400 147 d 

V(10 -6 m 3 mo1-1) 307 41.0 ~ [38.8] ~ 39.2 e 
1400 46.5 r 

Note: for ease of calculation, the data are presented in SI units 
a Macedo and Litovitz 1965 
b Capps et al. 1966 

Napolitano et al. 1965 
d Moynihan et al. 1976 

Macedo et al. 1966 
[- If data of Gupta and Moynihan 1976 

~)th of 0.5 2.8 is observed for crystalline materials (Ander- 
son 1989) and liquids (Boehler and Ramakr ishnan 1980) 
[Tt~ for water is ~ 0.1], with 0.8 < 7th < 1.4 being assumed 
for the Earth (Stacey 1977). For  silicate melts, a 7th of 
0.14).4 is observed (see Table 6). Below their respective 
glass transition temperatures, 0.19 < 7th < 0.57 for albite, 
diopside and anorthite composition glasses. Above the 
glass transition, 0.08<)~th<0.43 for these compositions 
for viscosities of greater than 104 Pa s. 

In the case of GeO2, at the glass transition 7th(Tg) 
~0.27. With increasing temperature, the coefficient of 
thermal expansion of liquid GeO2 decreases by an order 
of magnitude, resulting in 7th(1200~ and 
7th(1400 ~ This behavior is in contrast to the 
relatively temperature-independent behavior of the 
Grfineisen parameter  for the melts of anorthite, diopside 
and albite composition over the same temperature range 
(Knoche et al. 1992a, b; see Table 6). The ~Jth of B 2 0 3  
liquid decreases from 0.20 at 400 ~ to 0.02 at 1400 ~ 
As the Grfineisen parameter  is a measure of the thermal 
energy in interatomic bonds in a material, this large de- 
viation of Yt~ from the "norma l"  (i.e. 0.1 <7,h<0.4  and 
relatively temperature independent) values for melts may 
be an indication of a coordination change occurring in 
these melts as a function of temperature. 

The Isochoric Heat Capacity (c~) 

The heat capacity at constant volume (cv) is related to 
cp via 

2 c p -  c~ = T Vct~ K r (8) 

where the symbols are the same as in [5] and [7], and 
KT is the isothermal bulk modulus of the melt. The calcu- 
lated value of the difference between cp and c~ illustrates 
the heat capacity contribution due to P V  work associat- 
ed with thermal expansion. For  GeO2 at the glass transi- 
tion temperature c p - c ~ =  1.3 J mo1-1 ~ 1. This differ- 

Table 8. cp-c~ for the glasses and liquids 
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e~-cv(glass) cp--cv (liquid at Tg) cp--cv (1400 ~ 

Jmol-  ~~ Jmol ~~ Jmol-  ~~ 

Albite 1.7~.9 4 .~7 .9  1.4~2.5 
Anorthi te  1.3-2.2 4.9-8.1 1.3-2.2 
Diopside 2.9~4.8 18.d-30.6 4.5-7.6 
GeO 2 1.2 1.3 0.002 
B203 0.8 5.3 0.2 

ence decreases to 0.002 J too l -  1 ~  1 at 1400 ~ (see Ta- 
ble 8). For  the ternary system albite-anorthite-diopside, 
c p - c ~  ranges from 1 Jmo1-1  ~ -1 in the glass, to 
5-30 J tool-  1 ~  1 in the liquid at the glass transition, 
to 1-8 J mo1-1 ~ -1 at 1400 ~ C (Knoche et al. 1992a, 
b; see Table5).  In contrast, for B203, c p - c ~  is 
0.8 J tool -  1 ~  1 for the glass, 5.3 J m o l -  1 ~  1 for the 
liquid at the glass transition temperature and 
0.2 J mo1-1 ~ at 1400 ~ (Macedo and Litovitz 1965; 
Napoli tano et a1.1965; Capps et al. 1966; Macedo et al. 
1966, Gupta  and Moynihan 1976; Moynihan et al. 1976; 
see Table 7). 

Coefficient of Volume Thermal Expansion of SiO2 Melt 

The geophysical parameters //, ~th and cp--c  v for the 
behavior of melts allow us to estimate the coefficient 
of volume thermal expansion of SiO2 melt. Bacon ctal .  
(1960) measured the thermal expansion of liquid SiO2 
to be 108 x 10 -6 ~ This value, however, is in dis- 
agreement with the value of zero, determined from the 
calculation of the partial molar  expansivity of silicate 
melts (Lange and Carmichael 1990). The partial molar  
volume of liquid SiO 2 calculated from the systematic 
treatment of Lange and Carmichael (1990) is not in 
agreement with the high temperature volume data of 
Bacon et al. (1960) nor with the low temperature glass 
volume data of Brfickner (1970) (see Fig. 5). Richet et al. 
(1982) have calculated ~v(SiO2) at 1727 ~ using their 
own calorimetric data with the sound speed data of Bu= 
caro and Dardy (1974) and the volume and thermal ex- 
pansivity data of Bacon et al. (1960). Richet et al. (1982) 
obtained a value of - 620 J m o l -  1 ~  1 for c~ from [8], 
concluding that the most likely source of the error in 
generating this implausible result lay in the expansivity 
data of Bacon et al. (1960) and that a coefficient of expan- 
sivity of 10-6- -10  .7  ~ -1 (near the glassy value) pro- 
duces a much more reasonable value for c v (e.g. c~ 
> 79 J m o l -  1 o C -  1). This calculation, however, includes 
an error in the magnitude of the compressibility. A value 
of 8.5 x 10 -13 Pa -1 from Buearo and Dardy (1974) is 
quoted, whereas the original reference reports /~=8.5 
• 10 11 P a -  1. This correct value of the liquid compres- 
sibility yields a reasonable value of c~(90 J m o l -  1 o C -  1) 
via [8], with c v -  cv = 5.7 J m o l -  1 ~  1. 

The Bucaro and Dardy (1974) modulus data have 
been superseded by those of KroI  et al. (1986). If we 
use the Krol et al. (1986) modulus data (12.95 GPa) and 
the Bacon etal .  (1960) expansivity data (c~=108 
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Fig. 5. The molar volume for SiO2, B203 and GeO2 glasses and 
liquids as a function of temperature 

Table 9. Data used in the calculation of the derived parameters 
for SiO 2 

Property T(~ liquid glass ~ l -  ~g 

K(OPa) 1100 12.95" 
1400 12.95" 

fl(10 11 Pa 1) 1100 7.72" 
1400 7.72 ~ 

~(10- 6 ~ 1) 500 
1400 

cp(J mol- 1 ~ - 1) 500 69.9 ~ 
1100 71.6 b 
1400 81.4 b 

V(I0 -6 m 3 tool i) 500 
1100 27.3 ~ 
1400 27.3" 

49.13" 
49.13" 

2.04" 5.69 ~ 
2.04" 5.69 a 

0.25 a 

8 a 

Note: for ease of calculation, the data are presented in SI units 
Krol et al. 1986 

b Richet et al. 1982 

x 10- 6 ~  1)  then we obtain a c p -  cv of 
8.25 J m o l -  ~ ~  1 for the melt at 1400 ~ Although the 
expansivity data of Bacon et al. (1960) are relatively 
poorly constrained it is difficult to discard the volume 
data. An error of greater than 2% seems unlikely from 
this method. 

Despite uncertainties in the input parameters for the 
calculation it is difficult to obtain a comparable value 
o f / / f o r  SiO2 and GeO2. Krol  et al. (1986) have calculat- 
ed the value of the Prigogine-Defay ratio for pure SiO2 
to be 2 x 105. Their databasc is summarized in Table 9. 
They point to the uncertainty in A c; as a likely cause 
of the excessively high value o f / / a n d  argue that SiO2 
should have a more "norma l"  value of H in the range 
of 1 10, similar to our determination for GeOz. In part  
this argument is based upon the similar frequency-do- 
main mechanical relaxation behavior of SiO2 and other 
silicate and non-silicate glasses in torsional stress experi- 
ments (Mills 1974). 

The range of values determined for 7th and 17 repre- 
sentative of silicate melts can be used to estimate the 
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Fig. 6. Measured and calculated molar volume for SiO 2 glass and 
liquids as a function of temperature together with the estimated 
ev for SiO2 liquid 

coefficient of volume thermal expansion of SiO 2 melt. 
The "norma l"  range of "hh values for silicate melts pre- 
dict, at 500~ 5 < c % ( 8 i 0 2 ) - ( 1 0  -6  ~  for the 
glass. At 1400~ 2 3 < e ~ ( 1 0 - 6 ~  for 0.i 
<?th <0.5. This range of ~v agrees with that determined 
by Bacon et al. (1960) (see Fig. 6). Assuming a similar 
anomalous behavior of yth[7(1400 ~ for both 
GeO 2 and SiO 2 results in the calculation of e~(1400 ~ 
of 4.5 x 10 - 6  ~  1 for Si02. Taking 1 < 17 < 10 to be re- 
presentative for silicate melts, and 1 < Cp-  c, 
(J mo1-1 ~  10, results in the calculation of 12.3 
<c~(10 -6 ~  123 for the liquid at the glass transi- 
tion. 

- S i O 2  vs. G e O 2  

It is difficult to determine the coefficient of thermal ex- 
pansion of SiO 2 melt. There has been only one at tempt 
to date. Bacon et al. (1960) determined the density of 
SiO2 melt from 1950-2200~ and found ev=108 
• [0  - 6  ~  These data have been disputed based on 

indirect evidence by others (Richet et al. 1982; Bottinga 
et al. 1983; Lange and Carmichael 1990). The argument 
posed by Richet et al. (1982) was based on an incorrect 
value of the compressibility of molten SiO2; and the coef- 
ficient of thermal expansion of Bacon et al. (1960) pro- 
duces a realistic value of cv using [8]. Thus the major  
theoretical objection to Bacon et al.'s data is removed. 
To the extent that the values o f / /  and 7th for silicate 
melts presented here can be taken as representative of 
silicate melts in general and SiO2 in particular, the ther- 
mal expansion for SiO 2 melt predicted from these param- 
eters is 12-123 x 10 - 6  ~  These are "norma l"  expan- 
sivity values. Only anomalous values of 7th at high tem- 
peratures as seen for GeO 2 and BaO 3 result in the calcu- 
lation of small values of ev. 

Thus it appears with these new data on liquid GeO 2 
we are presented with a fundamental di lemma concern- 
ing liquid SiO 2 . Assumption of a liquid thermal expan- 
sivity consistent with the partial molar thermal expansiv- 
ity of SiO 2 in silicate liquids results in values of H, 7th 
and c, that are qualitatively different to all other silicate 
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mel ts  and  the s t ruc tura l  ana log  G e O z .  This  d i sc repancy  
is despi te  very s imi lar  results  f rom re laxa t ion  spec t rome-  
t ry  on  these l iquids and  is inconsis tent  wi th  the single 
direct  de t e rmina t i on  of SiO2 l iquid  density.  Al te rna t ive-  
ly, a "s i l i ca te - l ike"  value of  A e~ at  Tg tha t  would  br ing  
all geophys ica l  pa rame te r s  in to  agreement  a n d  be consis-  
tent  wi th  the Bacon  et al. (1960) d a t a  has  e luded experi-  
menta l  inves t iga t ions  to  date .  
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