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The Neuropharmacology of Baclofen 
W. Zieglgänsberger , J. R. Howe, B. Sutor 

Introduction 
Ganima-aminobutyric acid (GABA) is one 
of the major inhibitory neurotransmitters 
in the mammal ian central nervous system 
[see: 36, 69, 92, 98]. GABAergic neurons 
have been identified throughout the central 
nervous system with histochemical tech­
niques [see: 75]. GABA is, however, of no 
therapeutical value because the amino acid 
does not pass the blood-brain barrier in 
sufficient amounts to affect neuronal excit­
ability [9, 64]. 

The GABA analogue baclofen (ß-[4-
chlorophenyl]-gamma-aminobutyric acid; 
LioresalJi>) was designed to act as a GABA 
mimetic that because of its lipophilicity 
would distribute into the central nervous 
system after systemic application. Baclofen 
effectively reduces exaggerated stretch re­
flexes and muscle tone after oral and intra­
venous administration and is widely used 
in the treatment of spasticity caused by 
traumatic spinal lesions, degenerative, neo­
plastic or infectious diseases of the spinal 
cord, and multiple sclerosis. It is less ef­
fective in ameliorating the spasticity after 
stroke or cerebral palsy [see: 109] (see also 
various authors, this volume). 

Baclofen reduces muscle tone in patients 
with spinal transections and reduces muscle 
rigidity and tonic stretch reflexes in de­
cerebrated animals [see: 13]. It is therefore 
suggested that the therapeutically relevant 
effect of baclofen results from a direct ac­
tion at the spinal level. In addition to its 
antispastic activity, however, baclofen can 
cause muscle weakness, ataxia, drowsiness, 
insomnia, nausea, hypertension, a decrease 
in growth hormone release and an increase 
in prolactin secretion. Also, antinociceptive 
actions of baclofen have been reported 
[107; 110] (see also Yaksh, this volume). 
Particularly in elderly patients, the sudden 
withdrawal of baclofen after chronic use is 
occasionally associated with the appear­
ance of psychotic symptoms, including 
dysphoric episodes and even hallucinations 
[see: 12]. These latter effects clearly indicate 
that baclofen acts also on receptors remote 
from the spinal cord. 

This chapter examines the neuronal pro­
cesses affected by baclofen, with an em­
phasis on electrophysiological findings. The 
enormous literature precludes an exhaus­
tive documentation of all aspects. 

The GABAB Receptor 
The inhibitory actions of GABA are me­
diated in most neurons studied until now 
through an increase in chloride conduc­
tance of the postsynaptic membrane [see: 
39, 69. 101]. These actions are mimicked by 
muscimol and THIP (4,5,6,7-tetrahy-
droisoxazolo-[5,4-c]pyridine-3[2H]-one) 
and can be antagonized by bicuculline and 

Picrotoxin [26; see: 36]. These two antago­
nists seem to block the actions of GABA via 
different mechanisms. Whereas bicuculline 
competes for the GABA binding site [74], 
Picrotoxin seems to interact with the 
chloride-channel in a more direct manner 
[see: 36]. Because GABA also evokes bicu-
culline-insensitive responses which are 
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mimicked by baclofen (e.g. on transmitter 
release) [15, 67], two classes of GABA re­
ceptors, GABAA and GABAB , have been 
proposed. The bicuculline-reversible ac­
tions of GABA and the GABA mimetic 
muscimol are mediated through GABAA 
receptors, whereas baclofen is considered 
as a prototypical bicuculline-insensitive 
agonist at GABAB receptors [15, 54]. This 
novel GABAB receptor mediates ionic pro­
cesses which are clearly distinct from those 
sensitive to bicuculline (see below). GABAA 
receptor-mediated inhibition is potentiated 
by barbiturates and by the benzodiazepines 
[see: 48, 49] and is blocked by some con-
vulsants like penicillin or pentetrazol [see: 
36, 68]. Unfortunately, a selective GABAB 
receptor antagonist is not yet available. 

Data from binding studies also support 
the existence of different types of GABA re­
ceptors. Various studies have corroborated 
the initial finding that baclofen does not 
displace 3(H)-GABA from its binding sites 
on neuronal membranes [111]. Further­
more, the binding of GABA is enhanced by 
benzodiazepines [see: 48], whereas the 
binding of baclofen is unaffected by these 
compounds [108]. 

Autoradiographic studies with 3(H)-
baclofen have shown that, with a few ex­
ceptions, the distribution of GABAA and 
GABAB binding sites overlap in most re­
gions of the brain [46]. There are indi­
cations, however, that the neuronal distri­
bution of these bindng sites are not identi­
cal. For example, GABAA binding and high 
affinity GABAB binding were unchanged 
by interruption of forebrain noradrenergic 
projections, whereas low affinity GABAB 

binding was reduced [62]. This suggests that 
these low affinity GABAB receptor binding 
sites are located presynaptically on norad­
renergic terminals. Baclofen reduces the 
evoked release of noradrenaline [15, 16, 40] 
and several other neurotransmitters (see 
below). 

Stereoselectivity of GABAB Actions 
Therapeutically used baclofen (LIO-
RESAL®) is a racemic mixture of the two 
isomers. In a number of behavioral studies 
and electrophysiological investigations in 
vivo, it has been shown that the (-)isomer 
of baclofen is more potent than the 
(H-)isomer [4, 52, 53, 80, 81, 107] (see also 
Yaksh, this volume). Several in vitro elec­
trophysiologic studies have shown that the 
(-)isomer is at least 100-fold more potent 
than the (-H)isomer [5-7, 20, 47, 56, 59, 78]. 
Similar stereoselectivity was demonstrated 
in experiments where baclofen reduced the 
in vitro release of exogeneously loaded 
3 (^ -neuro t ransmi t te rs [15, 61] and in stud­
ies of baclofen binding to bicuculline-in­
sensitive receptors on synaptic membranes 
[54]. 

It was reported by various authors that 
the (-h)isomer can antagonize the actions 
of the (-)isomer [94, 104, 105] (see also 
Yaksh, this volume). In recent elec­
trophysiological experiments in which in­
tracellular recording techniques were em­
ployed however, no such antagonism could 
be demonstrated [4, 58]. Thus ( -^ -bac lo ­
fen does not appear to be an antagonist at 
all GABAB receptors. 

Mode of Action of Baclofen 
Numerous electrophysiological studies 
have shown that baclofen has profound in­
hibitory effects on synaptic transmission in 
the spinal cord and many other regions of 
the mammalian central nervous system. 
Until recently, the majority of the results 
suggested that baclofen acted presynapti­
cally to selectively reduce excitatory synap­
tic transmission, a conclusion consistent 
with reports that baclofen directly reduces 

the release of excitatory neurotransmitters. 
It is now clear, however, that baclofen can 
also reduce inhibitory synaptic transmis­
sion and that baclofen directly increases the 
postsynaptic potassium conductance of 
many central neurons. In addition, there 
are several reports that baclofen depresses 
the firing of central neurons induced by ex­
citatory substances. The following sections 
review the evidence for each these actions 



of baclofen and their relevance to baclo­
fen's effects on central nervous function. 

Actions of Baclofen and Synaptic 
Transmission 
In the first study employing intracellular 
recording techniques, Pierau and Zim­
mermann [85] reported that baclofen de­
pressed excitatory postsynaptic potentials 
(EPSPs) evoked in cat motoneurons at 
doses that did not affect inhibitory pro­
cesses. Since neither the membrane po­
tential (Em), input resistance (RN), nor the 
direct excitability (action potentials evoked 
by intracellular current injection) of these 
cells were affected by baclofen, these 
authors concluded that baclofen exerts its 
action through presynaptically located re­
ceptors. The occasionally observed slight 
hyperpolarizations were interpreted as a 
disfacilitatory effect caused by inhibition of 
excitatory interneurons. 

In several subsequent in vivo and in vitro 
electrophysiological studies employing ex­
tracellular recording techniques in various 
structures, further evidence was provided 
that baclofen preferentially reduces exci­
tatory synaptic transmission by a pre­
synaptic mechanism [5-7 , 29, 30, 42, 43, 52, 
53, 63, 70, 82-84, 86, 88]. Thus baclofen 
was shown to produce profound reductions 
of responses to orthodromic stimulation of 
excitatory afferent pathways without sig­
nificantly affecting responses to antidromic 
responses or presnyaptic fiber volleys [5, 6, 
29, 42, 70, 82]. Synaptically evoked re­
sponses were shown to be reduced at doses 
or concentrations of baclofen that had little 
or no effect on chemically evoked excita­
tion or spontaneous firing [30, 42, 52, 53, 
82]. 

The selectivity of baclofen's depressions 
of synaptically evoked responses in some 
structures was also interpreted as being in­
consistent with a postsynaptic depressant 
action of baclofen. Electrophysiological ex­
periments in slice preparations of the hip­
pocampus suggest that baclofen selectively 
inhibits transmission at putative glu-
tamatergic synapses (Lanthorn and Cot-
man 1981). In this study, only the CA3-pro-
jections to pyramidal cells in the CA1 re­
gion (Schaffer collaterals) and mossy fiber 
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synaptic transmission were inhibited [cf. 
60]. The excitatory synaptic transmission 
from the lateral perforant path was insensi­
tive to baclofen. A selective action of baclo­
fen on synaptic tranmission mediated by 
excitatory amino acids is also suggested by 
the findings of Ault and Evans [3]. These 
authors described that baclofen reduced 
dorsal root potentials recorded from the 
neonatal isolated spinal cord, potentials 
which are also reduced by excitatory amino 
acid antagonists [38], whereas the excit­
atory responses of cervical ganglion 
neurons to preganglionic stimulation is not 
affected even by much higher concentra­
tions. Both excitatory afferent inputs from 
descending pathways employing still un­
known transmitters and cholinergic inputs 
to motoneurons are not affected by baclo­
fen [11, 63]. 

In addition to these various extracellular 
studies, there are now several reports from 
investigations in which intracellular record­
ings were obtained that baclofen depresses 
EPSPs in mammalian central neurons [14, 
42, 47, 55, 56, 60, 65, 73, 85, 102]. Although 
in some of these studies baclofen also hy-
perpolarized the cells (see below), it was 
shown that the depressions of EPSPs were 
not a direct consequence of these hy­
perpolarizations [14, 60]. In neocortical 
neurons, baclofen's reductions of EPSP am­
plitudes were independent of membrane 
potential over the range of values ± 30 mV 
from resting Em [56]. In our studies, baclo­
fen applications that produced 70 to 100% 
depressions of EPSPs typically produced 
only 20 to 30% decreases in RN; baclofen's 
depressions of EPSPs typically outlasted its 
effects on Em and RN for several minutes. 
Thus in neocortical neurons, baclofen's re­
ductions of EPSP amplitudes do not appear 
to be solely the consequence of its action to 
increase postsynaptic conductance. Anoth­
er possible interpretation of such findings, 
however, is that baclofen preferentially in­
creases dendritic conductance, and that on­
ly a portion of this conductance increase is 
detected from intracellular recordings at 
the neuronal soma. Such an interpretation 
has been made of results obtained in the 
hippocampus [47]. 
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The most detailed analyses of baclofen's 

effects on excitatory synaptic transmission 
have been performed on nonmammalian 
preparations. Shapovalov and Shiriaev [97] 
studied the effect of baclofen on mono­
synaptic EPSPs in the frog motoneuron. 
These EPSPs are composed of both a 
chemically mediated and an electrically 
mediated component. Baclofen produced 
marked reductions of the chemically me­
diated component, but had no effect on the 
electrically mediated component of these 
EPSPs. From statistical analyses of single-
fiber EPSPs, Shapovalov and Shiriaev con­
cluded that baclofen acted presynaptically 
to reduce the release of the transmitter 
which generates chemically mediated 
EPSPs at these synapses. At the crayfish 
neuromuscular junction, Barry [8] found 
that baclofen depressed excitatory trans­
mission without affecting the input resis­
tance of the muscle. She was further able to 
show that baclofen reduced the frequency 
of spontaneous excitatory junction po­
tentials without affecting their size, results 
which clearly indicate a presynaptic site of 
action. At present, the complexity of mam­
malian preparations has prohibited these 
sort of detailed analyses. 

Fox et al. [42] noted that, in addition to 
baclofen's consistent reductions of EPSPs, 
baclofen also reduced the amplitude of 
IPSPs recorded in some cells. That baclofen 
reduces stimulation-evoked GABAergic 
inhibition in the olfactory cortex and the 
hippocampus was suggested from ex­
tracellular recordings of field potentials [6, 
24]. Intracellular studies in vitro have 
shown that baclofen reduces the ampli tude 
of short-latency GABAA receptor-mediated 
IPSPs evoked in various hippocampal 
neurons [14, 60, 73], neurons in the ol­
factory cortex [96], and neurons in the fron­
tal neocortex [55, 56, 102]. These de­
pressions of IPSP amplitudes are not due to 
the concomitant action of baclofen to hy-
perpolarize these neurons. Blaxter and Car­
len [14] reported that baclofen's de­
pressions of short-latency GABAergic 
IPSPs in hippocampal neurons persisted 
when the membrane potential was returned 
to its resting value by direct current in­
jection. Short-latency IPSPs in rat neocorti­
cal neurons are also GABAA receptor-me­

diated [100, 101], and baclofen's de­
pressions of these IPSPs were independent 
of membrane potential between values of 
- 5 0 and - 110 mV [56]. Importantly, baclo­
fen's reductions of short-latency GABAerg­
ic IPSPs in olfactory cortical and neocorti­
cal neurons were shown to be accompanied 
by reductions in the conductance increases 
measured during these IPSPs [56, 96]. Be­
cause baclofen does not reduce responses 
to exogenously applied GABA or muscimol 
in these same neurons (see below), a post­
synaptic blockade of the IPSP conductance 
can be excluded and these results argue 
strongly that baclofen reduces GABAA re­
ceptor-mediated IPSPs by a presynaptic ac­
tion. 

In addition to depressing chloride-de­
pendent GABAA receptor-mediated IPSPs, 
baclofen has also been reported to decrease 
the amplitude of potassium-dependent 
long-latency IPSPs (slow IPSPs) in hip­
pocampal neurons [14, 60]. Similar potas­
sium-dependent long-latency IPSPs (times 
to peak of 150 to 250 ms) are also evoked in 
neocortical neurons [57], and baclofen con­
sistently and markedly reduces the ampli­
tude of these IPSPs [56, 57]. As for re­
ductions of GABAA receptor-mediated 
IPSPs in these neurons, baclofen's re­
ductions of long-latency IPSPs are in­
dependent of membrane potential and are 
accompanied by a reduction of the conduc­
tance increases associated with these IPSPs 
[56, 57]. 

Despite baclofen's action to reduce 
IPSPs, in most neurons studied baclofen's 
action to depress EPSPs appears to pre­
dominate and baclofen causes an increase 
in the stimulation intensity required to pro­
duce a synaptically evoked action potential 
[42, 47, 57, 85]. These baclofen-induced in­
creases in action potential stimulation 
thresholds are consistent with the many ex­
tracellular studies cited above in which it 
was found that baclofen decreased synaptic 
excitability. There are reports, however, 
that baclofen can either increase or de­
crease action potential stimulation 
thresholds, depending on the cell popula­
tion investigated and the concentration of 
baclofen applied [60, 73]. Although baclo­
fen increased the stimulation threshold of 
synaptically evoked action potentials in 



virtually every neocortical neuron tested, 
baclofen often caused an increase in the 
number of action potentials produced by 
suprathreshold stimulation intensities due 
to baclofen's blockade of IPSPs [56]. Thus 
there are circumstances in which baclofen 
can in fact produce increases rather than 
decreases in synaptic excitability. The ac­
tion of baclofen is clearly distinguishable 
from GABAA receptor antagonists such as 
bicuculline, however, which commonly 
produces significant reductions in action 
potential stimulation thresholds and pro­
motes the generation of epileptiform bursts 
of action potentials in mammalian central 
neurons. In contrast, baclofen has been 
shown to block bicuculline-induced 
epileptiform activity in in vitro preparations 
of the hippocampus [6, 7, 20; but see: 73] 
and the frontal neocortex [56]. These results 
also indicate that baclofen's reductions of 
excitatory synaptic transmission are resis­
tant to blockade by bicuculline and indeed 
baclofen's reductions of EPSP amplitudes 
are not antagonized by this GABAA re­
ceptor antagonist [56]. 

The advent of in vitro slice preparations 
of the mammalian CNS has made it pos­
sible to evaluate the action of known con­
centrations of drugs on neurons in these 
preparations under steady state conditions. 
The EC5 0 for baclofen's depressions of ex­
citatory synaptic transmission is approxi­
mately 1 uM and significant depressions 
are observed at concentrations between 10 
and 100 nM [5-7, 24, 47, 56, 70, 82]. These 
latter concentrations are approximately 
equal to those obtained in the cerebro­
spinal fluid after systemic administration of 
therapeutic doses in man [66, 103]. In our 
study of neocortical neurons, there was no 
apparent difference in the concentration 
dependence of baclofen's reductions of 
EPSPs and its reductions of either type of 
IPSP [56]. 

In summary, the majority of the studies 
on the action of baclofen on synaptic trans­
mission seem to favor the conclusion that 
baclofen reduces synaptic transmission by a 
presynaptic action. It should be noted, 
however, that none of these studies provide 
direct evidence for such a mechanism, with 
the exceptions of the studies on the frog 
motoneuron and the crayfish neuromuscu-
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lar junction. In most studies, it was con­
cluded that the action was presynaptic 
either because no evidence of a post­
synaptic action was found or the post­
synaptic changes that were observed were 
considered to be insufficient to account for 
the effects on postsynaptic potentials. As 
we already mentioned, there is, however, 
direct evidence for effects of baclofen on 
neurotransmitter release and also recent 
evidence that baclofen has a direct effect on 
postsynaptic membrane conductance. In 
addition, there are several electrophysio­
logical studies which have directly ad­
dressed the effects of baclofen on pre­
synaptic afferent terminals or experimental 
models thereof. These results are presented 
in the following sections. 

Presynaptic Actions of Baclofen 
The most direct evidence for a presynaptic 
action of baclofen is its demonstrated inhi­
bition of neurotransmitter release. Baclofen 
has been shown to decrease the evoked re­
lease of several putative neurotransmitters, 
including monoamines [15, 40, 94] and ex­
citatory amino acids [24, 61, 82, 89, 90]. 
Baclofen's action to reduce the release of 
excitatory amino acids is consistent with 
baclofen's selective inhibition of synaptic 
transmission that is thought to be mediated 
by these excitatory amino acids. 

Although baclofen depresses GABAA re­
ceptor-mediated IPSPs by an action which 
is not postsynaptic [56, 96] and dendriti-
cally located GABAB receptors have been 
demonstrated on central GABAergic 
neurons [19, 106], baclofen does not reduce 
the directly evoked release of GABA from 
brain slices [24, 6 i , 89]. Collins et al. [24] 
demonstrated, however, that baclofen sig­
nificantly reduces GABA release that is 
evoked by electrical stimulation of excita­
tory afferents. They proposed that baclofen 
reduces stimulation-evoked GABA release 
and GABAergic inhibition via its direct ac­
tion to reduce the release of excitatory 
amino acid neurotransmitters and conse­
quently, the excitatory drive of GABA re­
leasing interneurons [cf. 56, 96]. 

Several careful electrophysiological stud­
ies have addressed the mechanism of baclo­
fen's putative presynaptic inhibition of syn-
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aptic transmission. Unfortunately these 
studies have not provided any consistent 
and positive evidence in this regard. The 
first suggestion that baclofen may activate 
presynaptic inhibitory mechanisms in the 
spinal cord by enhancing primary afferent 
depolarization as described for ben­
zodiazepines [see: 49, 95] was abandoned 
after more experimental data were ob­
tained. It was shown that baclofen de­
presses rather than enhances the excit­
ability of primary afferents [22, 29, 42] and 
presynaptic inhibition was unchanged or 
reduced by baclofen [1,71, 72]. 

Davidoff and Sears proposed that baclo­
fen's depressions of afferent excitability 
were secondary to its action of hy-
perpolarizing presynaptic terminals and 
suggested that this action might account for 
baclofen's depressions of synaptic trans­
mission [29]. The magnitude of baclofen's 
reductions of terminal excitability were 
considered to be insufficient, however, to 
account for its depressions of synaptically 
evoked responses [42]. The action potential 
invasion of the terminal region of afferent 
fibers does not seem to be impaired by 
baclofen, because its depressions of spinal 
monosynaptic reflex responses can be tem­
porarily overcome by post-tetanic potenti­
ation [22]. Shapovalov and Shiriaev also 
concluded that baclofen did not impair 
presynaptic terminal invasion [97]. 

The terminal region of primary afferent 
fibers carry GABAB binding sites [91] and 
GABAA and GABAB receptors coexist on 
the perikarya of small caliber primary 
afferent fibers [33]. However, due to their 
small size, primary afferent terminals have 
resisted analysis with intracellular record­
ing techniques. An often used substitute for 
the analysis of ionic mechanisms that are 
supposed to occur in the terminal region 
are recordings from dorsal root ganglion 
cells in vivo and in vitro. In dorsal root 
ganglion neurons in culture, baclofen re­
duces the duration of the calcium com­
ponent of action potentials [35]. Similar re­
sults were obtained in neurons of the 
myenteric plexus [23]. These results provide 
suggestive evidence that baclofen reduces 
neurotransmitter release by blocking in­
ward calcium currents in presynaptic termi­
nals [see also: 97]. 

Baclofen had no effect, however, on in­
ward calcium currents recorded from cul­
tured hippocampal neurons under voltage-
clamp conditions [45], nor on the duration 
of the calcium component of action po­
tentials recorded from rat neocortical 
neurons [56]. Barry [8] concluded that 
baclofen's presynaptic inhibition of synap­
tic transmission at the crayfish neuro­
muscular junction was unlikely to be the 
result of an effect on presynaptic calcium 
influx. In an in vitro preparation of the hip­
pocampus, baclofen reduced the extracellu­
lar calcium concentration measured with 
ion-sensitive microelectrodes ([50] de­
creases in extracellular calcium concentra­
tion reflect the movement of calcium ions 
into pre- and postsynaptic elements as a 
consequence of neuronal activity). In these 
experiments, however, consistent re­
ductions in the presynaptic component of 
stimulation-evoked calcium entry were on­
ly observed when baclofen was applied at a 
concentration of 50 u.M. This is approxi­
mately 50-fold greater than the EC50 for 
baclofen's depressions of synaptic trans­
mission (see above). Thus the findings that 
baclofen reduces somatic calcium currents 
in dorsal root ganglion or myenteric plexus 
neurons do not necessarily extrapolate to 
CNS neurons, and at present there is little 
evidence to support the claim that baclofen 
inhibits transmitter release and, thereby, 
synaptic transmission by reducing pre­
synaptic calcium influx. 

Postsynaptic Actions of Baclofen 
Baclofen has a dose- and concentration-de­
pendent hyperpolarizing action on some 
mammalian central neurons [65, 73, 79] 
which is associated with an increase of 
postsynaptic conductance [20, 44, 47, 56, 
59, 76, 78, 87, 99]. This action is unaffected 
by blockade of synaptic transmission and is 
therefore indeed a direct postsynaptic ac­
tion and not a disfacilitation secondary to 
removal of tonic excitatory input [20, 76, 
78, 87, 99]. This action of baclofen results 
in decreases in the direct excitability of 
central neurons [56, 60]. The baclofen 
concentrations at which these effects 
become apparent are approximately equal 



to the concentrations at which baclofen 
produces effects on synaptic transmission 
(EC5 0 < 2 uM) [56, 59, 78,99]. 

The mean reversal potential of baclofen-
induced changes in Em and the dependence 
of this reversal potential on the extracellu­
lar potassium concentration indicate that 
these changes are secondary to an increase 
in the conductance of the postsynaptic 
membrane to potassium ions [56, 59, 78, 
99]. In contrast to GABAA receptor-
mediated responses, the amplitude and re­
versal potential of baclofen-induced chang­
es in Em are unaffected by reductions of the 
extracellular chloride concentration [59, 78] 
or by intracellular injections of chloride 
ions [14, 76, 78]. 

It was suggested on the basis of current 
clamp recordings from hippocampal 
neurons that baclofen-induced conduc­
tance changes were voltage-dependent [59, 
78]. This was verified directly in voltage 
clamp experiments on cultured hip­
pocampal neurons in which baclofen was 
shown to activate a potassium conductance 
which is voltage-dependent and inward 
rectifying [45]. Baclofen-induced currents 
were also recorded under voltage clamp 
conditions from rat neocortical neurons 
[56]. The conductance activated by baclo­
fen is sensitive to blockade by the potas­
sium channel blockers 4-aminopyridine 
and barium ions; however, the present re­
sults indicate that it is different from any of 
the previously identified potassium con­
ductances [45, 59, 78, 99; but see: 14]. 

Baclofen-induced increases in post­
synaptic potassium conductance are in­
sensitive to blockade by concentrations of 
GABAA receptor antagonists that com­
pletely antagonize GABA-mediated in­
creases in chloride conductance [20, 44, 45, 
56, 59, 76, 78, 87; but see: 60]. Pentobarbi­
tone, which increases the effect of GABA 
on chloride-conductance, does not alter 
the action of baclofen [78]. GABA can, 
however, mimic the action of baclofen to 
increase postsynaptic potassium conduc­
tance when GABAA receptors are blocked 
with appropriate antagonists [44, 45, 78]. 
These results are consistent with the con­
clusion that the postsynaptic effects of 
baclofen are mediated by GABAB re­
ceptors. 
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The extent to which baclofen's action to 

increase postsynaptic potassium conduc­
tance contributes to its depressions of syn­
aptic transmission in various structures or 
to the in vivo effects of baclofen is debat­
able. As noted, there are many studies in 
which baclofen produced profound effects 
on synaptic transmission and yet no evi­
dence for a postsynaptic action was found. 
That an increase in postsynaptic potassium 
conductance is inhibitory is obvious, how­
ever, and in some neurons the hyperpolari-
zations observed are as great as 20 mV. It is 
unfortunate that in many of these studies 
the effects on synaptic responses were not 
investigated. Gähwiler and Brown [45] pro­
posed that if baclofen increased the potassi­
um conductance of presynaptic terminals, 
this action might indirectly lead to a de­
crease in presynaptic calcium influx by de­
creasing the duration of the action po­
tential. In neocortical neurons, however, 
baclofen's depressions of postsynaptic po­
tentials and its action to increase somatic 
potassium conductance could be tempo­
rally dissociated. 

Effect of Baclofen on Exogeneously Applied 
Neurotransmitters 
Saito et al. [93] reported that, in low con­
centrations, baclofen selectively reduced 
the depolarizing actions of substance P in 
spinal motoneurons and suggested that it 
was a substance P antagonist. This sugges­
tion was not supported by subsequent elec­
trophysiological studies however [31, 37, 
41, 42, 51, 84], and baclofen does not in-
terfer with the binding of 3H substance P 
[see: 17]. 

It was shown in several extracellularly 
conducted studies that baclofen can inhibit 
responses to exogenously applied excita­
tory neurotransmitters [27, 32, 41, 80, 83, 
93]. In further such investigations, however, 
it was demonstrated that inhibitions of re­
sponses to these chemical excitants re­
quired doses or concentrations of baclofen 
significantly greater than those at which 
baclofen inhibited synaptically evoked re­
sponses [30, 42, 52, 82]. In our intracellular 
study of neocortical neurons, we found that 
applications of baclofen that produced 
virtually complete depressions of stimu-
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lation-evoked EPSPs did not significantly 
reduce depolarizations produced by 
L-glutamate, L-aspartate, or N-methyl-
D-aspartate [56]. The observed occasional 
and modest reductions of depolarizations 
produced by these excitatory amino acids 
were similar in magni tude and durat ion to 
baclofen-induced decreases in direct excit­
ability, thus suggesting that they were the 
result of baclofen's action to increase the 
postsynaptic potassium conductance of rat 
neocortical neurons. That baclofen does not 
postsynaptically block conductance in­
creases produced by these substances is di­
rectly supported by our findings that baclo­
fen had no effect on L-glutamate-evoked 
inward currents recorded in neocortical 
neurons under voltage c lamp conditions. 

Baclofen applications that reduce the 
conductance increases associated with 
stimulation-evoked GABAergic IPSPs have 
no effect on conductance increases pro­
duced by the direct application of GABA 
or the GABAA agonist muscimol [56, 96]. 
Even at high concentrations, baclofen had 
no effect on currents evoked in neocortical 

neurons by iontophoretically applied 
GABA [56]. 

GABAB Receptor Mediated Synaptic 
Processes 
It was proposed by Newberry and Nicoll 
[77, 78] that slow (long-latency) IPSPs 
evoked in hippocampal CA1 neurons and 
hyperpolarizations produced by baclofen 
may each be secondary to activation of 
GABAB receptors. According to this as­
sumption, baclofen and the endogenous 
transmitter responsible for the long-latency 
IPSPs should act on the same population of 
postsynaptic receptors to increase the same 
postsynaptic potassium conductance. Due 
to the lack of established antagonists of 
either baclofen-induced hyperpolarizations 
or long-latency IPSPs, this possibility can­
not be tested directly at present. Interest­
ingly, however, baclofen reduces slow 
IPSPs in hippocampal neurons [14, 60] and 
similar IPSPs evoked in neocortical 
neurons [56, 57]. The mechanism of this ef­
fect of baclofen is unresolved. 

Conclusions 
The presently available data indicates that 
baclofen has both presynaptic and post­
synaptic effects in the mammal ian CNS. 
Baclofen's action to increase postsynaptic 
potassium conductance directly depresses 
neuronal excitability, however, several lines 
of evidence indicate that this effect is not 
alone responsible for baclofen's marked 
depression of postsynaptic potentials. 
Although most of the recordings probably 
have been obtained by somatic impale­
ments, the data suggest that the primary 
mechanism by which baclofen depresses 
synaptic transmission is a presynaptic re­
duction of transmitter release. This con­
clusion is supported directly by the es­
tablished effect of baclofen to reduce the 
evoked release of several putative 
neurotransmitters. 

At present, the mechanism by which 
baclofen reduces presynaptic transmitter 
release is unclear. Presynaptic inhibition 
secondary to depolarization of afferent ter­
minals can be excluded, however, and the 
data indicate that baclofen does not reduce 
synaptic transmission by hyperpolarizing 
presynaptic fibers sufficiently to impair ac­
tion potential invasion of the terminal re­
gion. There is some evidence which sug­
gests that baclofen may reduce transmitter 
release by reducing inward calcium cur­
rents in presynaptic terminals. There is no 
direct evidence for such a mechanism, how­
ever, and at least some calcium currents do 
not appear to be affected by baclofen. 
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