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HOPF ALGEBRA FORMS OF THE MULTIPLICATIVE GROUP
AND OTHER GROUPS

Rudolf Haggenmiiller and Bodo Pareigis

The multiplicative group functor, which associates with each 1
k-algebra its group of units, is affine with Hopf algebra k[x,x' ].
The purpose of this_gaper is to determine explicitly all Hopf alge-
bra forms of k[x,x ] with only minor restrictions on k ( 2 not
a zero-divisor and Pic(z)(k) =0 ). We also describe explicitly
(by generators and relations) the Hopf algebra forms of kC3 , kCy4
and kCg , where C, is the cyclic group of order n . Some of our
results could be drawn from [1,III §5.3.3] where a similar result
as ours is indicated (and left as an exercise). We prefer however a
less technical approach, in particular we do not use the extended
theory of algebraic groups and functor sheaves.

The principal tool of this note is the theory of faithfully flat
descent which is used to prove that the Hopf algebra forms of kG
with finitely generated group G (with finite automorphism group F)
are in one-to-one correspondence with the F-Galois extensions of k.
The progress in recent years in describing the quadratic extensions
of k and the explicit construction of the correspondence allow us
to compute the forms of kG for all groups with Aut(G) = C in

2
terms of generators and relatioms.

Consider the functor C: k-Aﬂgc —> Gn , the cincle functon,
defined by
C(A) = {(a,b)eaxa | a*+b*=1} .
The group structure is given by
(a,b)-(c,d) = (ac-bd,ad+bc) .
The neutral element is (1,0) and the inverse of (a,b) is (a,-b).

To understand this multiplication observe that C is represented
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by the k-algebra H = k[c,s]/(s’+c’-1) . This must be a Hopf alge-
bra and is called the taigonometrnic algebra. The coalgebra structure
of H 1is given by
AMc) =cec-5sos A(s)
€(c) =1 e(s)
The antipode is S(c) =c¢ , S(s) = -s .

ces+sec
0.

Obviously ¢ and s play the role of cos and sin resp. and
the diagonal map reflects the summation formulas for cos and sin:
cos(x + y) = cos(x)cos(y) - sin(x)sin(y)
sin(x + y) = cos(x)sin(y) + sin(x)cos(y) .
€ gives the value at 0° and S 1is the reflection on the x-axis.
The geometric meaning of the group structure on C(C(A) is the addi-
tion of the corresponding angles with the x-axis for the points

(a,b) resp. (c,d) .

Let us now ask for a group-Like efement e $ 1 in H, i.e. an
element e with A(e) = e e e , €(e) =1 . A little calculation
shows that such an element exists if and only if there is iek
with i? = -1 and all the group-like elements are then of the form
(¢ + is)n , n€Z . Observe that e-1 =c¢c-1is , if e =c¢ + is .

The diagonal map on e reflects the summation formula for the
exponential function exp(x + y) = exp(x)exp(y) . If furthermore

2 1is invertible in k then we get an isomorphism of Hopf algebras
k[c,s]/(sz + ¢c? - 1) ~ kZ (where 1eZ corresponds to e = c + is)

1 -1 1 -1
because of ¢ = i(e +e”),s= 21(e -e

) . The affine k-group
represented by kZ = k[x,xnl] is the multiplicative group or the

group of units. Hence we have the following:

If A 1is a k-algebra over a commutative ring k with 2-16 k
and iek , then the circle group C(A) is isomorphic to the
multiplicative group U(A) . Moreover if H = k[c,s]/(s2 +c? - 1)
is defined over a field k with 2 4 0 and if K = k[i] , then

H L K =~ kZ ® K as Hopf algebras. So we have two Hopf algebras H
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and kZ which after faithfully flat extension of the base ring
become isomorphic. We say that H is a K-form of kZ , the multi-

plicative group.

To describe all such forms we want to use the theory of faith-
fully flat descent. We sketch the main ideas following [3]. Let us
discuss the general notions in two specific cases. Consider a direct-
ed graph 4 such as F-gal resp. hop§ (see diagram below), which
comes equipped with functors for all vertices i 6{0,1,2} of the
graph and all Le k-Aigc:

F?: L-Mod — L-Mod .
In our examples we take
P =L FI(N) =N F5(N) = Ne N.
Observe that these functors are in general no additive functors. For
q: L — M in k-Algc there are coherent natural isomorphisms
¥y F?( ) o M zF?( e M) . These data will be called an

admissible structune .

L

We define categories 4 (F-galL resp. hopﬂL) in the following
way. Objects will be (K,K) in F-galL resp. (H,H) in hoPﬂL
with K, He L-Mod and K: F-gal —> L-Mod resp. H: hop§ —> L-Mod
graph maps such that H(i) = F?(H) . Morphisms are L-module homo-
morphisms which are '"natural transformations'" with respect to the

graph maps.

Let F be a finite group with elements fe F then the above
situation is represented by the diagram on the next page where the
last part shows the properties of the functors F. with respect to

i
change of basis.

If q: L — M is a change of basis morphism and
H — i *
f (AL,AL) (BL,BL) is a morphism in AL then q*(f) denotes

the morphism f e, M obtained by this change of basis.

L
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=

5 F-gal: hop§
X5 I, v n A
i j 0 1 <— 2 0;‘_,')‘132
S =
FL FL(N) =Noeo e N (i factors)
i i Lt
8. F-gaZL: hopﬁL:
FI.‘(N) —_ FI.'(N) (K,K): L—>K<—K o, K (HH): Lz=2H<<He
i j 7 L
By F-galM: hopﬁM:
M M
Fi(N o M) — Fj(N o M) (KM,KM): M—> K o M<— (R o M) oy (K o M)
L " Qg . " Qg R @ |z¢q R ¢q (similar)
F.(N) o M—> F/(N) o. M| (K,K)oM: L & M—> K o M <—— (K o. K) o M
i L j L ’ L L L L
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called Amitsur complex. For a functor G: k-AZgc —> Grn  we define
a l-cocycle 9eG(L e L) by the identity

d2(¢) = d3(¢)d1(@) . B
¢ is homologous to VY if @ = dz(ﬂ)wdl(ﬂ) 1for some TeG(L) .
The pointed set of classes of 1-cocycles is H (L/k,G) . For (B,B)
€ 5, we shall use the functor Aut(B,B) for G , where
Aut(B,B)(L) = AutL(BL,BL) , the group of automorphisms of (BL,BL)
in & (F-ga£L resp. hopﬂL) . Now we can formulate the descent

theorem.

THEOREM 1. Let L be a faithfully flat k-algebra, Let & be an
admissible structune and Let (B,B) be in 4, . Then there is a
bifection between the set of L-forms S(L/k,(B,B)) of (B,B) and
HY(L/k,Aut(B,B)) . The bijection is given in the following way:
Let the class of (C,C) be an L-form of (B,B) with {somorphism
w: (C,C) = (B,B,) , then

ag(w) ™ a5 (w)
9: BeLeL——>CelLelL—>BelL el

4is the associated 1-cocycle. If a 1-cocycle ¢ cAut, - (BelelL)

4s gdven, then Let C be the equalizen in k-Mod of
Bed

2
BelL —__—_—_—_3Belel

?(B e d;)

Tensoning with L induces an {isomorphism w: C e L =B e L and
thene is a unique s-sthucture C , such that w: (€. ,C) — (B;,B;)
48 an AL-Z.Aomoagh,i.Am.

Proofs of this theorem can be found in [2,3].
Now we can describe the L-forms of the Hopf algebra kG by

H'(L/k, Hop§-Aut( G)) , where Hop§-Aut( G)(L) = Hopf-Aut (LG) for

any commutative k-algebra L .
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The category F-gazL contains in particular all Galois extensions
of L with group F and hapﬂL contains all Hopf algebras over L.

A change of basis q: L —> M induces functors —_ by

4
L
(F-gagL — F-gaLM and hopﬂL —_ hoPﬁu which also preserve the
Galois extensions and Hopf algebras). If M is a faithfully flat
extension of L then only F-Galois extensions resp. bialgebras over
L can be lifted to F-Galois extensions resp. bialgebras over M ,

i.e. these properties are preserved and reflected by faithfully flat

base extensions.

Let L be a faithfully flat k-algebra. An isomorphism class
(c,C) in 4, s called an L-foxm of an object (B,B) in 8 if
after base ring extension the object (CL,CL) = (C,C) e L =
(CeoL,C ¢ L) is isomorphic to (B,B) e L in AL . The set of L-
forms of (B,B) will be denoted by S(L/k,(B,B)) . (C,C) is
called a form of (B,B) if there exists a faithfully flat k-algebra
L such that (C,C) 1is an L-form of (B,B) . The set of all forms
is denoted by S(B,B) . If we simply write 1lim for the direct
limit taken over all faithfully flat extensions of k then we have
for our special cases

F-Gaf(K,K) = lim F-Gal(L/k,(K,K)) resp.
Hopd(H,H) = lim Hopd(L/k,(H,H)) .

Our aim is to describe Hopf(kG) where G 1is a finitely gene-
rated group (with automorphism group F = ¢, ) and k is a commuta-
tive ring (where 2 is not a zero-divisor and Pic(z)(k) =0),
i.e. we want to describe all bialgebras H over k which after
faithfully flat ring extension L become isomorphic to kG L0 L =

LG . The trigonometric algebra was a first example with G = 7 .
Each Le k~A£gc defines a cosimplicial object

d
1
k—>LZ3LelL—FLelol
2
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Observe that the use of the graph

n A
0 > 1 > 2
< %
actually allows arbitrary bialgebras (C,C) to become L-forms of

a Hopf algebra (H,H) , i.e. to be in Hopf(H,H) . If we had used
instead the graph

n A

o1 <_7 2

G

for hop§ then only Hopf algebras (C,C) would have been admitted
as L-forms of the Hopf algebra (H,H) . But in both cases the forms
are described by H1(L/k,Hop6-AU.,t( e H)) , since each bialgebra
automorphism of L e H is automatically a Hopf algebra automorphism

[8, Lemma 4.0.4] . Thus we have

REMARK: A biafgebra fonm of a Hopf algebra is a Hopf afgebra.

Let G be a group and xe€ LG be a group-like element, i.e.
A(x) = x @ x and €(x) = 1.If x-_-z

g€G agg , then x 1is group-like
iff
ag =0 for almost all geG
a *a, =0 if ggsh
(*) g b f
a ®*a =a
28 g g
geG ag =1.

Let V(LG) denote the set of all group-like elements of LG .

THEOREM 2. let G be a finitely generated group. Then
Hopf-AutL(LG) = V(LF)
whene F = Gr-Aut(G) , the set of group automonphisms of G .

Proof: Let asf € V(LF) . Then the L-linear map ¢ with

o(g) = ZfeF agf(g) for all geG
is a Hopf algebra automorphism. In fact we have
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P(g)0(e') = g acf(e) lou ag£'(g")
= 1; 2 £(e)E(g")  (by (%))
= Zf af(gg')

9(gg")

and
0(1) = [ agf(1) = I ap =1,
hence ¢ is an algebra homomorphism.
(9 o 9)(A(g)) = 9(g) e 9(g)
=1 a;f(8) o Zf. agf'(g)
= I; agf(e) o £(g)
I¢ apA(£(e)
8 agf(e))
bo(g)

and
ep(g) = e(]; a f(g)) = Ef a; =1 = e(g)
give that @ is a Hopf algebra homomorphism. But with VY(g) =
zf aff-l(g) we get
oW(e) = o, a7 ()
=1 a1 af.f'f-l(g)
£ %¢8
=8
hence VY = ¢- . So we have a group homomorphism

V(LF) ——+—Hopf-AutL(LG) .

Now let Zf aff define the identity on LG . Define a(g,h) :=
Z {aflfe F~f(g) = h} for g,he G . Because of Zf aff(g) =g for

. Use the fact that the a. are

all geG we have a(g,h) = 6g,h

orthogonal idempotents to get

= ' = -
ag, = Hg a(g,f'(g)) = Hg dg,f'(g) = éf',id s
so l; agf = ide V(LF) which shows V(LF) ¢ Hopf-Aut (LG) .

Before we continue we remark the following. For any group G
and Hopf algebra homomorphism ¢: LG —> LG let ¢(g) = Zg' ag. g’

'8
for geG . Since g 1is group-like so is @(g) hence the
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coefficients {ag. g'e G} satisfy (%) for each g .

,gl
Now let ¢: LG —> LG be a Hopf algebra automorphism with inverse
VU . Assume that 8120028y is a generating system for the group G .

Then ¢ 1is completely described by its action on the g - Let

¢(gi) =) a5 5%4 5 with ajy€ L, Xi5¢ G . Since the (aij)j are
orthogonal idempotents we can refine this set by 1 = Hi(Zj aij) =

£ b, where all the b, are products I, a,., . Then the b satis-
k k i “iji

k
fy (%) and the a are sums of certain bk's . Hence ¢(gi) =

ij
z bkyik for certain group elements Vi * If geG and
n n_ n, o
g =8; +o- 8 then o¢(g) = cp(gi ) w(gi ) .
1 r 1 T

Taking the product of the sum expressions for the ¢(gi) we get
o(g) = Z bkfk(g) where the fk(g) are suitable products of the
yij . The fk are homomorphisms since ¢ is multiplicative. So we
have ¢ = ) b f, « If Y= ) b;f; we can again refine the set of

idempotents and get ¢ = Z bkfk and ¢ = z b (with possibly

f'
k'k
new idempotents but the same homomorphisms). Then g = @Y(g) =

] ' -
) bkfkfk(g) shows fkfk(g) =g for all geG and all k . By

symmetry we get the result =) b f, e V(LF) .
y \ kik

We wish to acknowledge that the argument given above as well as
the following example were kindly communicated to us by Pere Menal.
The example shows that the theorem does not hold for infinitely

generated abelian groups.

If G = <g1,g2,...> is such a group and if L has an infinite

series of idempotents SELTIRRE with eiej =e, for 1 £ j and
e, + ej for 1 # j » then

-T

n r. n T, .
LG > ] g,1 — (e.g,1 + (1 -e,)g, YYe LG
j=1 1 j=1 101 i’°i

is a Hopf algebra automorphism but not in V(L(Aut(G)))
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We now introduce some facts about Galois extensions of commutative
rings. Let F be a finite group. A commutative k-algebra K is
called an F-Galods extension of k if

1) F is a subgroup of Autk(K) s
2) K is a finitely generated projective k-module,
3) Fe End#(K) is a free generating system over K .
The k-algebra Ei = Map(F,k) , the set of maps with algebra structure
induced by the ring structure on k , is called the Zrnivial F-Galois
extension, where F acts by (fa)(f') = a(f-lf') , f,f'€ F,
F with ve(£')

a e Map(F,k) . Ek has the k-basis vl;

Galois extensions there is the following

Gf’f. . For

PROPOSITION 3. Gal-Autk(Ei) = V(kF) .
For a proof see [3, Prop. 2.14].

COROLLARY 4. Let G be a finitely generated group with finite
automonphism ghoup F = Gr-Aut(G) . Then there 44 a bifection
between the Hopf algebra forms Hopd(kG) of kG and the (pointed)
set of F-Galois extensions Gal(k,F) of k .

Proof: We first observe that each F-Galois extension K over k
is faithfully flat. Furthermore there is a K-isomorphism
w: Ke K= EK = Ei © K of F-Galois extensions of K defined by
w(a e b)(f) = f-l(a)b , where K e K is a K-algebra by a-.(b e c) =

beac and F acts on Ke K by f(a e b) = f(a) e b . So every

o]

F-Galois extension K of k is a K-form of Ei and Gal(k,F) =
F-gg&(Ei) . By Theorem 1 together with Proposition 3 we have
F-Qg&(L/k,Ei) Hl(L/k,V(-F)) and Theorems 1 and 2 give
Hl(L/k,V('F)) Hopgd(L/k,kG) . By going to the limit we get

F-Gal(Ey) = Hopd(ke) .

13

n

If F is a commutative group then all the objects mentioned in
the proof above are abelian groups and all morphisms are group homo-

morphisms.
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We want to make the isomorphism of the Corollary explicit, so
that we can construct the Hopf algebra form associated with an
F-Galois extension of k . For that purpose we first construct a
1-cocycle for a given F-Galois extension K of k . Then we use
this 1-cocycle to construct the corresponding form of kG . In bet-
ween we have to identify Gal-Autk(Ei) = V(kF) and V(kF) =
Hopf-Autk(kG) .

In general if the class of (C,C) is a K-form of (B,B) with
isomorphism w: C @ K ® B @ K then the 1-cocycle ¢ = df(w) d'ir(cu)_1
is given by the commutative diagram

BeKoek = BeKoe (K ¢ K)

d
\ -1 1
df(w)-l w ] 11
CeKe (K o K)
< d;
0] CeKeKk
<+
//// CeKe, (K e K)
dg(w) w e 1l 2

B % K @ K = B e K °, (K & K) .

Let (B,B) be the trivial F-Galois %xtension Ei and K some
(K-)form (C,C) of it. Then w: K e K = Ei ~ Ei e K was given by
w(a @ b)(f) = f-l(a)b or equivalently w(a @ b) = zf f-l(a)b-v§ .

The corresponding l-cocycle ¢¢ Gal-AUtKoK(EE @ K @ K) describes

an element z af_lf in V(K e KF) by

KoK, _ KeK
05y = T gyt

-1, K .
Let ® (ve) = z a; e bie KeK, i.e. 2 f(ai)bi = Gf,e , then by the

diagram above

KeK -1 KeK
Plvg ) = I I; (57 (ap) e b)vy

so the corresponding element in V(K e KF) is {§ = zfzi (f(ai) ) bi)f’

Consider Y as an element of Hopf—AutKOK(K @ KG) . Then by the
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construction given in Theorem 1 the associated K-form of kG is the

equalizer H in

d
2
H—> KC ”—=K o KG .
vdy
From
Wl 1e c,8) = I Ij I (£(ap) e bie )E(e)
= z (Zf L f(a ) e b, cf 1(g))8
we have

= {] cg8 < KG | (cg e 1)g = Zg (zf,i f(ai) e bicf_l(g))g ,
where geG, feF = Gr-Aut(G) .

We claim now that H = (KG)F , the subset of fixed elements in
KG under the diagonal action of F given by £f(ag) = f(a)f(g)
Let X g8 be in H and feF . Then

f(z cgg)

z V(f o 1)(cg e 1)f(g)

7Y (f e 1)(f' (a ) @b, iC¢r- 1(g ))f(g)

V) (£f' (a ) e b c
= 2 chh ,

hence H ¢ (KG)F Let ) cgge:KG satisfy | f(c YE(g) = ) cgg for

all feF , then by applying f to the group elements we get

z f(cg)g = z cgf (g) . Furthermore observe that Zf f(aicg) is

(££)-1(n) P

fixed under all f'e F hence an element in k . The inverse map of
Y= Z aff in V(K e KF) = Hopf-Aut (K e KG) is z aff-1 since
To a £l a. £t
£ 5f° ff' Cf
this we get
-1
(L agt ) (cy 0 De)

KeK
1 by the orthogonality of the ag . Using all

) (f(ai)cg ® bi)f-l(g)
Z(f(ac)ob)g

I (1e f(a )b, f(c Mg
z (1 ec )g .

So we have proved the following

THEOREM 5. Let G be a finitely generated group with finite
automornphism group F = Gr-Aut(G) . Then there 48 a bifection
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between Gal(k,F) and Hopd(kG) which associates with each F-Galois
extension K of k the Hopf algebra

H={ 2 c geKG |'z f(cg)f(g) = z cgg fon all feF } .
Furthenmone H 48 a K-fowm of kG by the isomoaphism

w: H e K KG , w(h e a) = ah .

R 0

This Theorem can be favorably applied in the situation F = C2 N
the cyclic group with two elements, because in this case the
C,-Galois extensions or ""quadratic extensions" of k are well
known. So the groups G which are of interest are C3, C4, CG’ and
Z . We will give a complete description of all forms of kG for

these groups with minor restrictions on k .

Assume in the following that 2 is not a zero divisor in k and
that Pic(z)(k) = 0 . Then all quadratic extensions of k are free
[7] and can be described as K = k[x]/(x?-ax-b) where a?+4b = u
is a unit in k . Their non-trivial automorphism is f(x) =a - x .
If 2 1is invertible in k , then a can be chosen zero thus
K = k[x]/(x*-b) with b a unit in k . In this case two such
extensions are isomorphic iff b+b' is a square in k . For the

general equivalence of two such extensions we refer to [3,4,5,7].

THEOREM 6. a) The Hop{ algebra fonms of kZ , the multiplicative

group,aie

H = k[c,s]/(s*-asc-bec?+u) .
b) The Hopf algebra fonms of kC, are

H = k[c,s]/(s*-asc-bc?+u, (ct1)(c-2), (ctl)(s-a)) .
c) The Hopf algebra fomums of kC, are '

H = k{c,s]/(s*-asc-bc*+u, c(ac - 2s)) .
d) The Hopf algebra forms of kC,  are

H = k(c,s]/(s?-asc-be?+u, (c-2)(c-1)(ct1)(c+2), (c-1)(ctl)(sc-2a))
In afl cases a, b, uek satisfy a*+4b =u and u 44 a unit of
k . These foums ane split by K = k[x]/(x*-ax-b) . The Hopf algebra
structune 44 defined by

133


file://{/0wn6
file:///iopj

HAGGENMULLER - PAREIGIS

A(c)=u-1((a2+2b)coc-a(cos+sec)+ZSes)
A(s)=u-1(-abcec+2b(cos+sec)+ases)
e(c) =2, e(s) =a, S(¢c) =c, S(s) =ac - s .

In the special case of 2eU(k) , ae k can be taken zero. If we
replace ¢ by 2¢' , s by 2bs' and u by 4b then the forms
of kZ are H =k[c',s'])/(c'*-bs'*-1) . For b = -1 this is the
trigonometric algebra discussed in the beginning of this note, for
b =1 this is isomorphic to kZ . If k = IR , the field of reals,
then there are precisely two quadratic extensions of R , the
complex numbers and IRx IR . Hence these are the only two possible
forms of IRZ . If k = Q , the field of rational numbers, then
there are infinitely many forms of QZ namely

H=k[c',s" ) (c'*+ds"'?-1)
where d runs through all positive squarefree natural numbers

or d=-1.

Proof of the Theorem: Let G = Z and kZ = k.[t,t-l] . Let
z ait1 be an element of a form H . If a; =a; + Bixe K , then
i = -
z (OLi + Bix)t = z f(oLi + Bix)t implies a_y + B_ix = o +
Bi(a-x) , hence
= o i -i i _ -i
H = {.uot + Zi>° a (t7 + £77) + B (xt” + (a - x)tT) }.

i _ )
Define 5 =t + t S5 :=xtl+(a-x)tl for i 2 0 . Then

H is generated by the ¢ and s; as a k-module. Observe Cy = 2,
So = 2 and a? + 4beU(k) . Define furthermore c¢ := <4 and
s =5y . Then the following relatiomns hold:
e = .c = i21.
c;c Cim1 + Ciq 0 s;e¢ Sit1 + Si.1 0 for i 21

Since Co soek this shows by induction that ¢ and s are
k-algebra generators of H . They satisfy the following relation

s’ - asc - bc? + u = 0 which is easily checked in kZ . So there
is an epimorphism k[c,s]/(s?-asc-bc?’4+u) —> H . This map is injec-
tive iff it is injective after tensoring with K . But in the
situation K[c,s]/(s?’-asc-bc’+u) —> H @ K = K[t,t-l] there is an

inverse homomorphism t+— (a - 2x)'1((a - x)c - s) . By (a-2x)?-=
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u it is clear that (a - 2x) is invertible. Furthermore
(a - 2x)-1((a - x)c - s)+(a - 2x)-1(—xc +s) =1

shows that this map is well defined and maps t:-1 to

(a - 2x)-1(-xc + s) . Now it is easy to see that
Klcy,s1]/T —> H ¢ K —> K[c,s]/1

is the identity hence the given map is an isomorphism.

The coalgebra structure on H is induced by that of kZ and

is expressed by the given formulas.

For the Hopf algebra forms of kC3, kC4, and kC6 take those of
kZ and express the relation th =1 (n =3, 4, or 6) in terms of
¢ and s .

Case n = 3: t2 = t-1 iff €y =c and s, = ac - s iff
(c +1)(c -2)=0 and (c + 1)(s - a) = 0 . To show that ey =c

and s, = ac - s implies t2 = t-l observe that xt2 + (a—x)t-2 =

xt:.1 + (a-x)t implies t2 - t-2 = t-1 - t as coefficients of x .
Then 2t2 = 21:"1 implies t2 = t-l since 2 1is not a zero divisor
in KC3 .

Case n = 4&: t2 t:-2 iff ((a-x)c - s)2 = (-xc + s)2 iff

c(ac - 2s)(a - 2x) =0 iff c(ac - 2s) =0 .

Case n = 6: t4 = t:-2 iff ¢, = ¢y and s

= ac, - s iff
2 2 2 2 2
(¢® - 1)(c” =4) =0 and (c¢” - 1)(sc - 2a) =

4
0.
REMARK: There is an interesting example of a separable field

extension which is (Hopf-)Galois with the Hopf algebra
H=Qlc,s]/(c?*+s?*-1,sc) , which is a form of oc, - The extension
is Q(u):Q with p = */2 , which is definitely not Galois in the
ordinary Galois theory. The operation of H on Q(p) is given by
c(1) =1 e(n) =0 c(u?) = -p cp®) =0
s(1) =0 s(p) = -p s(p?) =0 s(p®) = p° .

[}
[}
]
L}
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This operation satisfies
1. c?(a) + s*(a) =a for aeK
2. c(ab) = c(a)e(b) - s(a)s(b)
s(ab) s(a)c(b) + c(a)s(b) for a, bekK ,
3.¢(1) =1 s(1) =0 .

A straightforward computation shows that Q(p) 1is Galois over Q

with the Hopf algebra H and this operation.

Another example of such a Galois extension is Q(p):Q with
p =32 and the Hopf algebra H = Q[c,s]/(3s*+c?-1,(2c+1)s) , which
is a form of QC3 with coalgebra structure A(c) =c ec - 3s & s ,
A(s) =ces+seoc, e(c) =1, e(s) =0 . The operation is
defined by

S =1 el =du clu?) -%u
s(1) =0 s(p) = %u s(u?) = —u’

In a separate paper we will determine all separable field extensions

which are Galois with a Hopf algebra H [9] .
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