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WITT RINGS OF HIGHER DEGREE FORMS

D.K. Harrison ¥*) Bodo Pareigis
Dept. of Mathematics Mathematisches Institut
University of Oregon Universitdt Miinchen
Eugene, Oregon, USA Munich, Germany

In this paper we study the theory of higher degree
forms. It can be expressed in two ways. One way is to
consider vector spaces V together with an r-linear sym-
metric map from the r-fold product of V to the base
field R. We call these spaces simply symmetric spaces.
Witt rings of such symmetric spaces will be introduced
in section 1. The equivalence relation used for this
construction coinsides with the equivalence relation
for the usual Witt ring in case R is the field of real
numbers and r = 2. The second way is to study homogene-
ous polynomials of degree r in n variables. Some of our
results which we obtain by studying symmetric spaces,
can be translated to such homogeneous polynomials and
are presented below for readers who are more interested
in that point of view. Some other results have transla-
tions so complicated to express that we prefered not to
give the explicit formulas.
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1276 HARRISON AND PAREIGIS

In the first section we construct a Witt ring Wr(R,H) of
symmetric spaces by imposing an equivalence relation on
all nondegenerate symmetric spaces defined by H-spaces.
They are a certain analog of hyperbolic spaces, but here
H stands for a rather arbitrary finite abelian group.
The subring of wr(R,H) consisting of diagonalizable spa-
ces will be explicitly computed. Since these Witt rings
depend on the degree r of the mulitlinear forms, we then
reduce the degree by a homomorphism from the Witt ring
of r-forms to the Witt ring of s-forms where s divides
r. An especially nice class of symmetric spaces is con-
structed from separable field extensions of R by the
trace map. These forms will be called separable forms
and can be characterized by properties of their centers.
A subclass of these is given by Galois extensions of a
special type. They are studied in the last section.

We now describe some of our results in terms of homoge-
neous polynomials, leaving to the reader to verify the
appropriate translation. For simplicity we restrict our
attention to the field of real numbers. For r > 1, we

are interested in

f € R{X1,...,xn]
homogeneous of degree r (a form of degree r in n vari-
ables). We write

f = f(x1,...,Xn), deg(f) = r.

if £ = f(x1,...,xn), g = g(X1,...,Xm) and deg(f) =
deg(g) = r, we write £ * g if n = m and

£( E a1jxj,..., E aanj) = g(X1,...,Xn)

for some [aij] € GLn(IU. We write

fe g-= f(x1,...,xn) + g(X ..,xn ).

n+1’"° +m

We write

_ .2
£, = af/axi,fij = 3 f/(axiaxj), etc.
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We call (Bqy,...,B) € R" a (t+1)-fold zero of f if

fi1--oit(s1'...'8n) =0

for all i ,...,i € {1,...,n}, i.e. the n-tuple (ByreeesBl)
is a common zero of all higher partial derivatives of £
of order t. We call f nondegenerate if its only r-fold
zero is (0,...,0). This happens if and only if none of
the variables can be removed from f; i.e., if there is
no form h = h(X1,...,Xn) with 0 < n,
f = h,h(X1,...,Xn_1,0) = h(x1,...,xn_1,xn).

We can always write

f xgeh
with g nondegenerate and h trivial (i.e., with

h = h(X1,...,Xq) =0,M s q).
We call £ an H-form (the reader may take H-form for
"hyperbolic” or for H a finite subgroup of U(R)/U(R) r
(see 1)) if

-f = £.
If £ is an H-form, 0 < n,y € IR, then one can always

solve

<
I

= f(x1,...,Xn).

We write

Cent(f) = {M € Mat_(R) [M"-[£,.] = [f

ij ij
If £ is nondegenerate and r # 2, this isa commutative

]-M}.

R-algebra. We write

Aut(f) = {[aij] € GLn(RJlf(:E:a1j j,...,EEZanjxj) = f}.

This is a group.
We write £ ~ g if there exist H-forms h, t (of degree r)
with

feh=get.
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In our first section we put a natural commutative ring
structure on the set

Wr(R,H)

of all ~-classes of forms of degree r (one gets the
same thing if one takes all ~-classes of all nondegene-
rate forms). We are interested in the ring structure of
wr(IL}n. In our second section we define a natural
ring homomorphism

Q = Wr(R,H) —> WS(R,H)

for s a divisor of r with s > 1. We have Sylvester's
theorem

WZ(R,H) = ZZ
and for r odd,
Wr(mqﬂ) = 0.

In our third section we restrict attention to r # 2 and
f being separable, by which we mean:

i) £ is nondegenerate,
ii) M € Cent(f), M = 0 implies M = 0, and
iii) n < dimmpent(fL

We write
_yv 3 V23 x-23
k. = § 0sjsr/27M (23‘)"1 X3
and
. o _ _y¥
sr = X1, tr = x1.

! tr is separable,

and the converse holds (up to isomorphism). In our last

Then any direct sum of copies of hr' s

section we show f is isomorphic to a direct sum of co-
pies of hr if and only if
f = f(1)c....ef(q)

where f(1),...,f are indecomposable (for r # 2 every

(q)
form is isomorphic to a direct sum of indecomposable

forms in a unique way) and for i = 1,...,9:
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1) f(i) has no 2-fold zero besides (0,...,0),

2) rny s |Aut(f(i))[,

3) n; < dimRCent(f(iH,

where f(i) = f(i)(x1,...,xn ). This remains true if the

i
inequalities in 2) and 3) are replaced by equalities.

Also 2) may be replaced by "1 < ni".

We have chosen to give this introduction for the reals.
We could equally well have chosen a Galois field GF(pm)
where r < p. The paper itself is for a field whose cha-
racteristic does not divide r!.

1. The Witt ring Wr(R,H) of higher degree forms

Let R be a field. Let r > 1 be a natural number. We al-
ways assume that the characteristic of R does not di-
vide r!. A multilinear form @ : V x...x V —> R of de-
gree r (0 : vE — R) on a finite dimensional vector
space V is symmetnic, if for every permutation o € sr

and all Viyreee vy €V

O(Vyreeesvy) = o(vcr(1)”"’vcs(r))°

We call (V,0) a symmetric space of degree r. Let (V,0)
and (W,¥) be two symmetric spaces of degree r and

f : V—> W be a linear map. £ is a homomorphism of
symmetric spaces if

O(v1,...,vr) = w(f(v1),...,f(vr))

for all vy € V. Let P;(R) denote the set of isomorphism
classes of symmetric spaces. A symmetric space (V,0)
with 0 = 0 is called Zadvdial.

A symmetric space (V,0) is nondegenerate if

O(V,Vz,...,Vn) = 0 for all VoresesVy €V

implies v = 0. Let Pr(R) denote the set of isomorphism
classes of nondegenerate symmetric spaces of degree r
over R.


http://6ymmQ.tH.ic
http://az.QK.az
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Let (V,0) and (W,¥) be in P;(R). Then
VLIW:= (VeW0ey)

(called onthogonal sum) and Ve W := (V ® W,0 ® y) are
in Pé(R) with

1

(0 ® W)(V1+w1,...,vr+wr) O(v1,...,vr) + w(w1,...,wr)

(0 @ w)(v1ew1,...,vrowr) O(v1,...,vr) . w(w1,...,wr).

It is easily checked that 0 ® ¥ exists. The operations
1 and ® define a structure of a semiring on Pé(R) (see
[1] Prop. 2.1).

The operations L1 and ® can be restricted to Pr(R) ([11]
p. 131) so that Pr(R) becomes a sub semiring of P;(R).
For Pr(R) we have the following two theorems.

Theorem (Witt cancellation therocem): If r = 2 and
t, € PZ(R) for i = 1,2,3, then t, 1L t, = t, 1L t

1 1 2 1 3
plies t, = t;. [2]

im-

Theorem: If r > 2 and ti € Pr(R) for i = 1,2,3, then
tolty =t Lty implies t, = t;. [1, Prop. 2.4]

Let (R,0) be in Pr(R). Then

O(a1,...,ar) = a1...are(1,...,1) = a1...ar

for some a € U(R), the group of units of R. If

B : (R,0) —> (R,¥) is an isomorphism (i.e. B € U(R))
then o = 0(1,...,1) = ¥(B,...,8) = a'B’. So the isomor-
phism classes of one-dimensional spaces in Pr(R) can be
identified with the elements o € Gr(R) = U(R)/U(R) .
The image of o under this map will be denoted by <o>.

Thus the following multiplication
as(V,0) := (V,a0)

for o« € U(R), [(V,0)] € Pé(R) coincides with the operat-
ion of Gr(R) by tensor products on Pé(R) resp. Pr(R)

a[(V,0)] = [<a>e(V,0)] = [(V,a0)] = [a-(V,0)].
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The image of Gr(R) in Pr(R) generates an additive sub

monoid

D _ —
P_(R) := {<a,> L ... L <an>|qi € G (R}

1
The spaces <a,> Ll ... 1 <a > in P?(R) are called d{iago-
natizable. Since <a> ® <B> =<oB>we get that PB(R) is a
sub semiring of Pr(R). If we identify Gr(R) with its

image in Pr(R) then we have the following situation

D '
G.(R) = P (R) € P .(R) < P (R)
where G is a multiplicative group and the P's are semi-
rings.

Since Gr is an abelian torsion group, it is the union

of finite subgroups. For a fixed r > 1 we consider ob-
jects (R,Hr) where R is a field and H = H is a finite
subgroup of Gr(R). Let (S,Kr) be another object. A mox-
phism o : (R,Hr) —> (S,K.) is a ring homomorphism

0 : R —> S such that the induced map o = G (0) maps the
group Hr surjectively onto Kr’ i.e.

{o(a)U(S)"|aU(R) € H_} = K_.
Given an object (R'Hr)‘ A nondegenerate symmetric space
(Vv,0) is called an H-4pace if <o> o (V,0) = (V,0) for
all @ € H_. The class t of (V,0) in P_(R) is then also
called an H-cfas4, which means that the Hr—orbit of t
consists of a single element t. An element y in Pr(R)
is called H-reduced if y = t L z with an H-class t im-
plies t = 0.

Theorem 1.1: For each u € Pr(R) there is an H-reduced

class Uy and an H-class tH(u) in Pr(R) such that

u = u, L tH(u).

Proof: This follows from an induction on the dimension
of u. Let u = z L t with an H-class t. If t # 0 then

4 tH(z) L t, where z_ is H-

z =2 1 tH(z) and u = z H

H H
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reduced and tH(z) L t is an H-class. If t = 0 is the on-
ly possibility then u = z is H-reduced by definition.

Theorem 1.2: Let r > 2. The decompositionu = u, 1L tH(u)
into an H-reduced class uy and an H-class tH(u) for

u € Pr(R) is unique.

Proof: Let y,z be H-reduced and s,t be H-classes with
yls=21%.Ifs=20+theny =21t and y H-reduced im-
plies t = 0. Now let s # 0. Write s = S, L ... 1 Sm

with Sqrec-sSp indecomposable [1, Prop. 2.3]. For

a € H,<G.> ® s = s, SO
<0> @ S € s «eesS .
1 { 1' ’ m}

We call <o> ® s and write H ¢ s

Then

, an H-conjugate of S,

for the sum of the distinct H-conjugates of s

1
1°
H - s1 is an H-class. Write

s =H - s, 1l w.
One checks that w is an H-class. Write

z =2, 1l...12_, t =t 1L...1¢%t

1 n 1 P
with 21,...,zn,t1,...,tp indecomposable. Each H-conju-
gate of s, is in {21,...,zn,t1,...,tp} and they are not
1 L u which
contradicts that z is H-reduced). Hence at least one
H-congugate of S4 is in {t1,...,tp}. Thus they all are
in {t1,...,tp }(using t is an H-class and [1, Prop.
2.3]). Hence

all in {z1,...,zn} (for otherwise z = H « s

t =H - S, 1 v,

Multiplying by @ € H, one checks that v is an H-class.
We have y L w = z L v. Also, dim(w) < dim(s). By induc-
tion theodrem 1.2 is proved.

We introduce an equivalence relation on Pr(R). Let Yq1:Y,

be in Pr(R). Yy~ Y, will mean there are H-classes t1,t2
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such that Y1 1 t1 =Y, 1 t2. Let [y] denote the equiva-
lence class of y. We write

W_(R,H) = ([ylly € Pr(R)}.

The canonical map from Pr(R) to Wr(R,H) will be denoted
by

ry s Pr(R) — Wr(R,H).
Observe that theorems 1.1 and 1.2 imply

Corollary 1.3: For every r > 1 each equivalence class

[y] contains at least one H-reduced representative [y] =

[YH]'

Corollary 1.4: If r > 2 then the H-reduced representa-

tive in each equivalence class is uniquely determined,
so Wr(R,H) can be viewed as a subset of Pr(R)'

Lemma 1.5: The equivalence relation ~ is compatible with
1 and o, hence there is an induced addition and multipli-

cation on wr(R,H) given by
[x] + [y] = [x L y] , [x] -« [yl=1[x & y].

Proof: Let x L t = x' L t' with H-classes t and t'. Then
xlylt=x'"lylt'andxeyltoey-=(xXxL1lt)ey-=
(x'" L t') ey =x' ey 1t'eywhere t ®y and t' e y

are again H-classes.

Theorem 1.6: wr(R,H) is a commutative ring and

ry : P.(R) —> W_(R,H)

H
is a surjective map which preserves addition and multipli-

cation.

Proof: Since wr(R’H) inherits the structure of Pr(R)
we only have to prove the existence of additive inver-
ses. So let [x] be given. Let u be the orthogonal sum

of the non-isomorphic <a> ® x, o € H, which are not iso-
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morphic to x = <1> ® x. Then x 1 u is an H-class, so
[(x] + [u] = 0.

Theorem 1.7: Let W(R) be the Witt ring of quadratic
forms. Then the canonical ring homomorphism W(R) —> wz(R,H)
is surjective and has the annihilator

Ann {<1> - <h>|h € H}

W (R)
as kernel.

Proof: The elements of W(R) are equivalence classes of
nondégenerate classes modulo hyperbolic classes, 1i.e.
t1 is equivalent to t2 if and only if there are hyper-
bolic classes z, and z, such that t1 Lz, = t2 L z,. It
is easy to see that hyperbolic classes are always H-
classes. This defines the canonical epimorphism. Now
let [t] be in the annhilator. Then <1>[t] = <h>[t] for
all h in H, where the equality is taken in W(R). But
since <h>[t] is anisotropic whenever t is anisotropic
this shows that t is an H-class, hence zero under the
canonical map. Conversely let [t] be in the kernel of
the map. Then t L s = r, where r,s are H-spaces and t
is anisotropic. So t 1 s = r = <h>r = <h>t L <h>s =
<h>t L s and by the cancellation theorem t = <h>t. Thus
t is in the annihilator.

Lemma 1.8: Let I' : Pr(R) ——a-PS(S) be a map preserving
(orthogonal) sums. Let H c Gr(R) and K < GS(S) be

finite subgroups, such that I'(t) is a K-class for every
H-class t. Then there exists an additive map

T W (R,H) —> W_(S,K)

such that

r
Pr(R) —_— PS(S)

er N 1rK
r

Wr(R,H) _— WS(S,K)

commutes.
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Proof: Let x ~ x' in Pr(R). Then there are H-classes
t,t' such that x L t = x' L t'; hence I'(x) L I'(t) =
F(x') L [(t') with K-classes I'(t),l(t') and T(x) ~ I'(x')
in PS(S).

Theorem 1.9: For J a finite subgroup of Gr(R) with H ¢ J,
the map

ry : W.(R,J) —> W _(R,H)

is a surjective ring homomorphism.

Proof: By definition a J-class is also an H-class. Thus
the following diagram commutes

id
Pr(R) —_— Pr(R)

lrJ er
W_(R,J) ————> W_(R,H).

Using this it is easy to see the remaining part of the

theorem.
Now let ¢ : (R,H) —> (S,K) be a morphism of objects.

Theorem 1.10: The map

Wr(G) : Wr(R,H) —_—> Wr(SrK)r [(VIO)] —_— [S ® (V,@)]

R
is a ring homomorphism. In fact, W, is a functor to the

category of commutative rings.

Proof: o induces a homomorphism Pr(c) : Pr(R) —> Pr(s)

[1, p. 128]. Let t € Pr(R) be an H-class and o € K. Then
there is a B € H such that o(B) = o and <a> @ P_(0) (t) =
Pr(o)(<B>) ® Pr(O)(t) . Pr(O)(<B> ® t) = Pr(o)(t). Con-

sequently y ~ y' in Pr(R) with respect to H implies

o(y) ~ o(y') in Pr(s) with respect to K. So the diagram

P_(0)
P_(R) —X 5~ p (S)
r r
l W, (o)

Wr(R,H) _— Wr(S,K)
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commutes. Then it is easy to see that Wr(o) is a ring
homomorphismn.

Let 0 : R—> S be a finite extension of fields. Let
0 # £ € HomR(S,R).

We assume H and K such that ¢ : (R,H) —> (S,K) is a
morphism of objects. Using lemma 2.7 of [1], we define

fo : Wr(S,K) —_—> Wr(R,H), [(v,0))] +— rH(V,f-O).

Theorem 1.11: For a € Wr(S,K), b € Wr(R,H)
£,(W_(0) (b) *a) = bef _(a).

Also, f0 preserves addition.

Proof: Let a = [(W,¥)] and b = [(V,0)]. Then the R-lin-
earity of £ implies

f(oO(v1,...,vr)-W(w1,...,wr)) = O(v1,...,vr)-f(W(w1,...,wr))

hence fo(Pr(o)(b)-a) = b-fo(u). So fo satisfies the giv-
en equation on the level of Pr' Now we show that fo(t)

is an H-class for every K-class t in Pr(s). Let o € H

and t = (W,Y¥). Then <a> ® (W,f<0) = (W,0f¥) = (W,fo(a)¥) =
f0(<o(a)> ® (W,¥)) = fo(W,W) = (W,f+¥). One easily checks
that f; is compatible with the equivalence relation, so

it defines a map from wr(S,K) to wr(R'H) satisfying the

given relations.

For B € U(R), y € Pr(R) we say B =y has a solution, if
<B> $ y, i.e. <B> is a symmetric subspace of y. 8 =y
has a solution for y = (V,0) if and only if there is a
non-zero v € V such that B = 0(v,...,v). The subspace
isomorphic to <B> is the one-dimensional space gener-
ated by v.

Theorem 1.12: Let Yy € G.(R), y € P (R). Suppose y is an
H~class and y = y has a solution. Then B = y has a so-
lution for all B € YH.
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Proof: <y> sy and <BY-1> ®y =y imply <B> = <sy_1> ® <y>

since E?—1 € H.

We define now W (R,H) as the 1mage of P (R) under the
map -, ¢ P_(R) —->w (R,H) . Then -H PD(R) —>w (R,H)
is a surjectlve homomorphlsm of semirings and w (R H)
is a subring of wr(R H). This is a consequence of the
fact that the additive inverse of a class <B> in Wr(R,H)

is diagonalizable.
Theorem 1.13: Let r > 2. Then Wo(R,H) = Z[G]/(h +...+h ).

Proof: Without loss we take H nontrivial. We first de-
fine a map from w (R,H) to ZI[G]/(h,+. -+h ). Let

<a> € W (R,H) . We map it to o € Z[G]/(h +...+h ). Since
<o.> comes from an element in G < P (R), we only have

to check for the map to be well—deflned that this defi-
nition is compatible with the equivalence relation in-
duced by H. By corollary 1.4 <o> is the only H-reduced
class in its equivalence class. The elements of this
form generate w (R,H) as an abelian group. The relations
are defined by the H-classes, since the neutral element
in WB(R,H) has only 0 as an H-reduced representative, so
it consists of H-classes only. But by [1, Prop. 2.3]

and an easy induction argument, the H-classes are or-
thogonal sums of classes of the form H-<b>, which are

mapped to multiples of S hiE. Conversely define a map

from Z[G]/(h1+...+hn) to WB(R,H) by sending the ele-
ments & € G to the equivalence class of <a>. Then
h1+...+hn is sent to an H-class with equivalence class
0, hence this map is a well-defined ring homomorphism.
Obviously, the two maps defined above are inverses of

each other.

Corollary 1.14: Let p be prime and let H g G be a cy-
Z[ep][G/H].

"

clic subgroup of order p. Then WE(R,H)

Y,
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Proof: Let H be generated by ¢. Since G = U(R)/U(R)P, G
is a vectorspace over Z/pZ and H splits off as a direct
summand: G = H ® G/H. Then the map

Z[G]/ (h,+.. .+hp) —_ zz[gp] [G/H]

is defined by ¢ +—> Ep and v —> v for v € G/H, and is

an isomorphism.

2. The ring homomorphism
Q W, (R,H) —> W_(R,H)

In this paragraph we first study the radicals of sym-
metric spaces and their relationship to non-degeneracy.
Then we construct maps which reduce the degree of sym-
metric spaces and investigate their behavior with re-
spect to sums and products.

Let (V,0) be a symmetric space of degree r over R. Let
s < r. Then 0 induces a homomorphism Os : SS(V) — Sr—s(v)*

of R-modules by

Os(v1®...®vs)(v 0...®vr) = O(v1,...,vr).

s+1
We define the 4-radical s-rad(v,0) of (v,0) to be the
kernel of @s. By reasons of dimension the s-radical of

V will be non-zero if 2s > r.

Using the concept of aderivative of the multilinear
form in direction v € V (a/av(O)(vz,...,vr) =
O(v,vz,...,vr)) of [1] the (1-)radical of (V,0) is the
set of v € V for which the derivatives vanish. We write
rad(v,0) for 1-rad(v,0). Similarly the s-radical of
(V,0) is the subspace of sS(V) for whose elements the
higher derivatives vanish.

Lemma 2.71: Let s + t = r. Then s~-rad(V,0) = 0 iff there

t s
1t+1®"‘@air € S (V) ® ST (V)
such that for all Vigqree-1V, we have

is an element E ai1o"’®ait ® a,



WITT RINGS 1289
* E -
(*) (ai1’""ait'vt+1""’vr) ait+1o"’oair = vt+1o...®vr.

Proof: Let E Vit+1®"’ovir pe an element of s-rad(V,0)

By applying (*) to it we see that this element is zero,
hence s-rad(V,0) = 0. To prove the converse observe that
Gs is injective by the definition of the s-radical. Now
let A and B be arbitrary finite R-modules. Then the fol-

lowing diagram commutes

HomR(A,B*) _ HomR(B,A*)
A\ 3 L

HomR(AoB,R).

Hence ot = O; : St(V) o (SS(V))* is surjective. Let

e,,...,e_be a basis of V. Then e, ©...0e, with
1 n i
t+1 r
. . . . s
1 < i,7 <+-. < il.<nisa basis of S” (V). Let
f(it+1""'ir) be a dual basis to this. Then

g f(lt+1""’lr)(Vt+10"’ovr)eit+10eir = Vt+1®"'®vr

But the elements of the dual basis f(...) are in the image

of Opr hence can be represented in the form

E O(a1,...,at,—,..-,‘),

which gives the required formula.

Lemma 2.2: For a symmetric space (V,0) the following are
equivalent:
a) (v,0) is nondegenerate.
b) If (vV,0) = A1 L A2 with A2 trivial, then A2 = 0.
c) rad(v,0) = 0.

. r-1
d) There is an element E a;40...0a; . ®a; €5 (V) oV

with
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E O(ai1""’air-1’v)air = v

for all v € v.

Proof: c) <« d) by lemma 2.1 (see [1] Lemma 1.1). Let

v € V, v # 0 such that 3/9v(0) = 0, then Rv # 0 has a
trivial multilinear form and any direct complement V'

of Rv in V is an orthogonal complement. This shows

b) = c). c) = a) holds by definition. If v is an ele-
ment of a trivial orthogonal summand of (V,0) and v # 0,
then (V,0) is degenerate, hence a) = b).

If V is a symmetric space then the multilinear form ©

can be restricted to a form © on V/rad(V). It is easily
checked that rad(v/rad(Vv)) = 0 and that V = rad(V) L V/rad(V)
as symmetric spaces. This defines a map 4 : P;(R) — Pr(R),

which is a homomorphism of semirings.

Let (V,0) be a symmetric space of degree r and let
st = r, s > 1. Then St(V) is a symmetric space of degree

s with the bilinear form

0*(v10...0vt,...,v o...@vr) = O(v1,...,vr).

r-1+1
This defines a map ®é : PQ(R) —> Pé(R) on the set of

isomorphism classes of symmetric spaces. In general this
map will not preserve orthogonal sums or tensor products

of symmetric spaces. However

Lemma 2.3: If st = r, s > 1 then t-rad(Vv,0) = rad(¢é(V,O)).
~ %

©
Proof: rad(¢l(v,0)) = Ker(s®(v) — > (s57 (st (v)))#).

Since Ss_1(St(V)) has a natural surjective map onto
S(S-1)t(V) = Sr_t(V), the dual of this map is injective,
hence Ker(o*1) = Ker(Ot) = t-rad(V,0) and the proof is

done.
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Lemma 2.4: Let (V,0) = (A W ) 1 (A , ¥ ). Then

s=1 s-1i

s-rad(V) = s- rad(A ) ® s-— rad(A ) @ o S (A )®s (AZ)‘
=1
Proof: We use the formula
(*) s%a; oA, =5%a;) e 5%, o %8'stanes® @),
i=1

Since A1 1 A2 we get

® Si(A1)®SS-i(A2) c s-rad (V).

Furthermore s—rad(Ai) € s-rad(V). If x€s-rad(V) then x

can be decomposed according to (*). Let Xy be the com-
ponent in SS(Ai). Since it must have the s-radical prop-
erty with respect to elements of Ai € V it is in s-rad(Ai).

Corollary 2.5: Let st = r, s > 1, and V = A, 1 A Then

1 2°

rad (e (V) = rad(9.(a,)) e rad(®!(a,)) o sg! si(A1)®sS'i(A2).

i=1

Proof: Use s-rad(V) = rad(¢;(v)).

Lemma 2.6: Let st = r, s > 1. Then the following diagram
commutes

Gr(R) —_— P;(R)

l can l¢'
s
GS(R) —_— Pé(R).

In particular this induces an epimorphism Hr —_ Hs of

the finite subgroups of Gr(R) resp. Gs(R).

Proof: ¢é(<a>) = (SS(R),Oa*) and Oa*(1®...01,...) = a,Ss(R)
R so ¢é(<a>) = <qo>.

Corollary 2.7: ¢é is a G-map, i.e. for each a € U(R) and

L ' = v .
X € Pr(R) we have o ¢s(x) @s(a X) .

Proof: <a> ® 0L(V,0) = (55(V),a-0%) = (s5(V), (0+0) %) =

@é(V,a*@) = @é(<a> ® v,0).
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Lemma 2.8: Let (V,0) (W,¥) be symmetric spaces. Let

f : V— W be a surjective homomorphism of symmetric
spaces. Then A(f), the restriction of f to the nonde-
generate parts of V and W is an isomorphism.

Proof: Observe that Ker(f) < rad(v,0) by the definition
of the radical and a homomorphism of symmetric spaces.
Since V = Ker(f) 1L V' for some space V', f restricted

to V' is an isomorphism, so A(f) is also an isomorphism.

We define a map ¢_ : P_(R) —> P_(S) by
s r o s

. ' S ' A
¢s : Pr(R) — Pr(R) — PS(R) — PS(R).
Lemma 2.9: ¢s : Pr(R) —_ PS(R) preserves (orthogonal)

sums and products with elements of Gr(R).

Proof: Let x =y 1 z in Pr(R). Then by corollary 2.5
a(e.(x)) = a(el(y) L ¢ (2)). Furthermore all three maps
used for the definition of ¢ preserve multiplication
with elements o € U(R) so does 9.

Corollary 2.10: ¢s preserves H-classes.

Proof: Observe that H-classes in Pr(R) are defined with
respect to H = Hr < Gr(R), H-classes in PS(R) with re-

spect to Hs c GS(R), the image of Hr under the canonical
epimorphism. Then the previous lemma shows that H.x € x

implies H.¢S(x) c @s(x).
Lemma 2.11: ¢ induces an additive homomorphism
Q Wr(R,H) —_—> WS(R,H).
Proof: This is an immediate consequence of lemma 1.8.

This map allows us to reduce the structure of Wr(R,H)
to that of wp(R,H) for primes p dividing r. Now we in-
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vestigate the behavior of the maps ¢é, ¢s and Q with re-
spect to (tensor) products. It is easy to see that ¢é
does not preserve products in general. We have, however,

the following

Theorem 2.12: @s : Pr(R) —> PS(R) is a homomorphism of

semirings.

Proof: We have to show that Qs is compatible with the
multiplication. The canonical map can : sS(vew —
sS(v) o SS(W) is surjective and a homomorphism of sym-

metric spaces:

(¢ ® ‘l’)*((a1 ® b1)0..0(as ® bs),...)

(0 ® ‘l’)(a1 ® b1,...,ar ® br)
= 0(a1,...,ar)-W(b1,...,br)
= O*(a10...0as,...)-W*(b10...0bs,...).

Now we can apply lama 2.8 to get <DS(V ® W) = <I>S(V) ® (DS(W).

Theorem 2.13: Q : Wr(R,H) — WS(R,H) is a ring homomor-

phism.

Proof: The following diagram is commutative
g
—
Pr(R) PS(R)

lrﬂ lrﬁ
W_(R,H) — > W_(R,H)

and the maps r and Qs are compatible with tensor prod-

H

ucts by theorem 1.6 and lemma 1.8. Furthermore Ty is
surjective. Then one easily sees that @ must preserve

tensor products.

Corollary 2.14: The ring homomorphism £ induces an epi-
morphism aP . WS(R,H) — WZ(R,H)-

Proof: follows immediately from the fact that wg(R,H) is
generated by elements of the form <a> and that ¢S(<a>) =
<o> (lemma 2.6).
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3. The Witt ring Zr(R,H) of separable forms

In this paragraph we will assume throughout that R is

a field and r > 2, Following [1, p. 133] we define the
centen of a symmetric space (V,0) of degree r to consist
of all elements f € HomR(V,V) such that

O(f(v1),v2,...,vr) = @(V1,f(v2),...,vr).

The center will be denoted by Cent(V,0) or simply Cent (V).
By {1, Prop. 4.1] the center of a nondegenerate space

is a commutative algebra and Cent(V) has no nontrivial
idempotents if and only if (V,0) is indecomposable.

We define a separable space to be a symmetric space
(V,0) of degree r such that

i) (v,0) is nondegenerate,
ii) Cent(V,0) is a separable R-algebra,
iii) dimR(V,G) < dimR(Cent(V,O)).

1,2 be nondegenerate symmet-

Lemma 3.1: Let (Vv,,0.,), i
e i’7i

ric spaces. Then

Cent(v1 L V2) = Cent(V1) x Cent(Vz).

Proof: Clearly we have Cent(v1) x Cent(vz) [ Cent(V1 1 Vz).
Conversely let f € Cent(V1 1 V2) and vy € V1. Then £
decomposes into a matrix of homomorphisms fij € HomR(Vi,Vj).

For all vy € V2 we get

O (Eqa (V) yvpprvagrene) = OLE 5 (V) s Vo5 Vagre )

= O(f(v1),v22,v23,...) = O(v1,f(v22),v23,...) = 0.
Since (V2,02) is nondegenerate, we get f12(v1) = 0, hence

f12 = 0. So f = f11 + f22 € Cent(V1) x Cent(Vz).

Lemma 3.2: Let (V,0) be separable. Then dimR(V,O) =
dimR(Cent(V.O)).
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Proof: By lemma 3.1 a decomposition of V into indecom-
posable spaces induces a decompostion of Cent (V) into

a product of the centers of the indecomposable compo-
nents. So it suffices to prove the lemma for V indecom-
posable. But then Cent(V) is connected and a separable
commutative finite-dimensional R-algebra, hence a sepa-
rable field extension K which acts .. V # 0 by a linear

action. This shows that dlmR(K) < dimK'dlmR(K) = dimR(V).
Lemma 3.3: The space <a> is separable for all o € G_(R).

Proof: We know that <o> is nondegenerate. The center of
<a> is HomR(<a>,<a>) = R hence separable with the cor-

rect dimension.

Lemma 3.4: (vi,ei), i = 1,2 are separable spaces if and

only if V1 1 V, is separable.

2
Proof: The orthogonal sum of separable spaces is sepa-
rable by lemma 3.1 and the fact that products of sepa-
rable commutative algebras are separable. Conversely de-
compose V1 and V2 into indecomposable spaces. That de-

fines a decomposition of

V=1V J.V=V11J.....LV 1V L ... 1V

1 2 1M 21
with Cent(Vij) separable fields and dimR(Cent(Vij)) =

2m

dlmR(Vij). Hence V1 and V2 must be separable.
Lemma 3.5: Let (Vi,Oi), i = 1,2 be separable. Then

V1 ® V2 is separable.

Proof: By [1, Prop. 4.2]1 we have Cent(V1 ® v, )
Cent(V1) ® Cent(Vz) separable and dimR(Cent(V1 ® V2)) =

dimR(Cent(V1))~dimR(Cent(V2)) = dimR(V1) -dimR(vz) =

dimR(V1 ® VZ)'
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Combining lemmas 3.3, 3.4, 3.5 we get the following

Theorem 3.6: The isomorphism classes of separable spaces

form a sub-semiring Piep(R) containing Pi(R).

Lemma 3.7: Let H be a finite subgroup of Gr(R) and let
u be a separable class in Pr(R). Then the (unique) de-

composition u = u, L tH(u) has separable factors.

H
Proof: Use theorem 1.2 for the decomposition and lemma
3.4,

Theorem 3.8: Let H be a finite subgroup of Gr(R). Then
the set Zr(R,H) of H-equivalence classes in Wr(R,H)
whose unique H-reduced representative is separable, is
a subring of wr(R,H).

Proof: If H = {1} then W_(R,H) = 2 _(R,H) = 0. Let H # 0.
Then <1> is in Zr(R,H) by lemma 3.3. The sum resp. pro-
duct of two H-reduced separable equivalence classes has
an H-reduced separable representative by lemma 3.4 resp.
3.5 and lemma 3.7. Finally the additive inverse of an

element u in Zr(R,H) is the sum in Zr(R,H) of elements

of the form <a> ¢« u for certain o € H, which are all se-

parable.

Corollary 3.9: WB(R,H) is a subring of Z_(R,H).

Observe that not all elements of a "séparable“ equiva-
lence class in Zr(R,H) are separable spaces. However,
the uniquely defined H-reduced representative is sepa-
rable. So we are in fact developing a theory of equiva-
lence classes modulo the equivalence relation defined
by H-spaces. It is clear that the equivalence relation
can be restricted to Piep: two separable H-classes u1
and u, are equivalent if and only if there are separable
H-classes t, and tz such that uy 1 t1 = u, 1 t2. This

1
defines again Zr(R,H) and yields a commutative diagram
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D sep
_s p°*Y(R) —m8m8 ——>
P_(R) P " (R) P_(R)
rD r!
H H Ty

D
—_— 7 (R,H) —m—m—0———>
W_(R,H) Z . (R,H) W (R,H)

where all horizontal maps are injective and all vertical

maps are surjective.

The next theorem will give an important characterization
of indecomosable separable H-reduced spaces. First we

need two lemmas.

Lemma 3.10: Let K:R be a separable finite field exten-
sion and b ¢ WK)and let tr : K —> R denote the trace map.
Then (K,Y¥) with

Y(a .,ar) := b-tr(a1-...-ar) = tr(a1'... ar-b)

17"

is an indecomposable separable space with center K.

Proof: Since the trace of a separable field extension
generates HomR(K,R) as a K-space and b # 0, the space
(K,¥) is nondegenerate. Let f € Cent(K,¥). Let a € K.
Then we claim f(a) = £(1)+a. To prove this let x € K and
consider

tr((f(a)-£f(1)-a) *bx) = tr(f(a)bx)-tr(£(1)abx)

w(f(a)lxl1""l1) = w(f(1)lxlal"'l1)

0]

‘i’(a,x,f(1),...,1) - \y(f(‘])lxlal"'l‘]) = 0I

hence f(a) - £(1)+a = 0. This shows that f is given by
multiplication with an element f(1) € K. Conversely any
element a € K defines by multiplication an element of
the center of (K,Y). Hence K = Cent(K,Y¥) is separable
with the correct dimension. We will denote this sepa-
rable space by (K,<b>r).

Lemma 3.11: Let (V,0) be an indecomposable separable
space with center K. Then there is an element b € K and
an isomorphism (Vv,0) = (K,<b>r).
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Proof: Observe that K = Cent(V) is a finite separable
field extension of R. Let v € V, v # 0. Then there is
amap g : K—> V, g(a) = a(v). This map is an R-linear
isomorphism. g induces the structure of a symmetric se-
parable space on K by

T(a1,...,ar) i = O(g(a1),...,g(ar)).

Furthermore there exists an h € HomR(K,R) such that

W(a1,...,ar) = h(a1~...-ar), since
W(a1,...,ar) = O(a1(v),...,ar(v))= O(a1-...-ar(v),v,...v).

Since K is a separable field extension there is an ele-
ment b € K such that h = betr, hence w(a1,...,ar) =
b-tr(a1-...~ar).

Theorem 3.12: Every indecomposable separable space (V,0)
is isomorphic to a space of the form (K,<b>r) for some
separable field extension K of R and b € U(K) and every
space (K,<b>r) is indecomposable. Two separable spaces
(K,<b>r) and (L,<b'>r) with finite separable field ex-
tensions K and L are isomorphic if and only if K is iso-
morphic to L and there is a field isomorphism 1 over

R and an element ¢ € K, ¢ # 0 such that

b = 1(b')ct.

Proof: The first part of the theorem was proved in lemma
3.10 and lemma 3.11. Let (K,<b>r) and (L,<b'>r) be iso-
morphic. Then their centers K and L are isomorphic as
rings. Now let g : K —> L be an isomorphism between
(K,<b>r) and (L,<b'>r). Then we have tr(b‘g(a1)...g(ar))

= tr(ba;...a ) = Db tr(ajay-1-...°a ) =

b' rtr(g(a1a2) ‘g(1)'...'g(ar)) = tr(b'g(a1a2)g(1)...g(ag).
This holds for all choices of a; € K, so we get g(a1a2)g(1) =
q(a1)g(a2). Define o(a) = g(a) * g(1)'1. Then we get
o(a;)o(ay) = olaja,) and o(1) =_}, hence 0 is a field iso-
morphism over R. Let T = ¢ and ¢ = T(g(1)). Then

tr(b-a,...a) = tr(b' +gla;)...gla)) = tr(b' = g(N’ - olas...a))
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= tr(o(t(b') *+c* tag...a))= tr(t(b') *c’ *ag...a.) by a

property of the trace, hence b = t(b') *c¥.

Conversely consider g : K —> K, g(a) = o(a *c) with

o = 1V, This is an R-linear isomorphism such that

b' - tr(glay)...gla)) = tr(b’ *olay) colc)e...e0(ay) = ole)) =
tr(o(t(b')c® 'a1-...-ar)) = tr(t(b")ct *aj...a) =

b -tr(a1...ar), SO g is an isomorphism of symmetric spaces.

Corollary 3.13: Let K be a finite separable field exten-

sion of R. Then there is an additive map
D sep
Pr(K) — Pr (R), <b> }— (K,<b>r).

The sum of the images of these maps for all finite sepa-
rable field extensions K of R is all of Piep(R).

Proof: The map is defined by using elements of K. To show
it is well-defined observe that b and b+ c® with c € U (K)
define the same class <b>. But by previous theorem (K,<b>r)

and (K,<bcr>r) are also isomorphic.

Corollary 3.14: Let K be a finite separable field extension

of R and let H ¢ Gr(R) be a finite subgroup. Let H' be the
image of H under the map Gr(R) —_ Gr(K). Then there is

an additive map WS(K,H') —> 2_(R,H), induced by

<b> —> (K,<b>r).

Proof: Apply theorem 1.11 with £ = tr and compute the

image.

We will now investigate the behavior of Zr(R,H) under
the homomorphism . More generally we can induce several
homomorphisms on Zr(R,H). They all are special cases of
the following

Lemma 3.15: Let T : Pr(R) — PS(S) be a map preserving
(orthogonal) sums. Let H ¢ Gr(R) and L GS(S) be finite
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subgroups, such that T'(t) is a L-class for every H-class t.
Assume that TI'(t) is separable whenever t is separable.

Then there exists an additive map T : Z,(R,H) — 2_(S,L)
such that

piep(n) _TI 5 P:ep(S)

1 '
IH HK

T
Zr(R,H) _— ZS(S,L)
and
Z_(R,H) ————I;——> Z_(s,L)
r l s
wr(R,H) -———ji——4> WS(S,L)
commute.

Proof: By lemma 1.8 I induces a homorphism T on wr(R,H).
If u € Pr(R) is separable, then ' (u) decomposes into an or-
thogonal sum of separable classes I‘(u)L 1 tL(F(u)) by
lemma 3.7, so T restricts to Z,(R,H) —> Z_(S,L) making
the given diagrams commutative.

Corollary 3.16: For J a finite subgroup of Gr(R) with
H € J, the map

[
ry s Zr(R,J) — Zr(R,H)

is a surjective ring homomorphism.

Proof: We use the commutative diagram

id
Pr(R) —_— Pr(R)

lrJ er
W_(R,J) —————> W_(R,H)
r r

of the proof ot theorem 1.9 and observe that it can be
restricted to separable spaces.
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Corollary 3.17: Let ¢ : (R,H) —> (S,K) be a morphism of
objects. Then the map

Wr(o) : Wr(RIH) —_ wr(le)l [(V,O)] —_— [s QR (V,O)]
of theorem 1.10 restricts to a ring homomorphism
Zr(o) : Zr(R,H) —_— Zr(S,K).

In fact, Zr is a functor to the category of commutative

rings.

Proof: To use the arguments in the proof of theorem 1.10
we check that S @R (V,0) is separable whenever (V,0) is
separable. By lemma 3.4 this has only to be checked for
an indecomposable space (V,0). This is an easy consequence
of [1, Prop.4.3.1].

Theorem 3.18: Let st = r, s > 2. Let K be a finite separable
field extension of R and b € K, b # 0. Then

¢S(K,<b>r) s (K,<b>s)-
Furthermore the ring homomorphism Q@ restricts to Zr(R,H)
such that the following diagram commutes

2, (R,H) ————> 2_(R,H)

| .

Wr(R,H) —_— WS(R,H) .

Proof: Let ¢l (K,<b> ) = (s“(K),p). Define £ : S®(K) —> K by
f(a10...®at) = agc...cag.

Then
p(a10...@at,...) = tr(b -a1...ar)

= Db -tr(f(a1©...®at)-...°f(a @...Oar)),

r-t+1
so £ is a surjective homomorphism of symmetric spaces. By
lemma 2.8 we get & (S%(K),p) = (K,<b>_). This shows that
¢s preserves indecomposable, hence arbitrary separable
spaces and can be defined by the formula in the theorem.
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Thus @S can be restricted to Piep(R) and induces by lemma
3.13 a homomorphism on Zr(R,H).

Corollary 3.19: Q : Zr(R,H) — ZS(R,H) is surjective.

Proof: The isomorphism classes of the form (K,<b>s) with
a finite separable field extension K of R form an addi-

tive generating set of ZS(R,H) and are all in the image

of Zr(R,H).

We briefly discuss the connection with the Witt ring WZ(R,H)
of quadratic spaces. By the diagonalization theorem one
knows that W?(R,H) = WZ(R,H). We have already seen for even
numbers r that @ : WS(R,H) — wg(R,H) is surjective (co-
rollary 2.14). Hence { maps Zr(R,H) surjectively onto
W2(R,H). So it makes sense to define Zz(R,H) 1= w2(R,H)

and we get Q(Zr(R,H)) = Z2(R,H) for even numbers r.

Finally we want to calculate a specific example.
Theorem 3.20: For all even r > 1 we have Zr(chz) = 7Z.

Proof: Since GI(IU = C2, the only 1-dimensional inde-
composable separable spaces are <1> and <-1>. Furthermore (¢,<1>r)
is the only 2-dimensional indecomposable separable space.

In fact the center of such a space must be €. But then it is
an H-space, since H ¢ Gr(¢) = {7}. So the only H-reduced
separable spacesare the 1-dimensional spaces given above.

They are additive inverses of each other and freely gene-

rate Zr(]R'CZ) .

4, Bimaximal forms

Let (V,0) be a symmetric space of degree r > 2. An ele-
ment v € V is called an (r-s+1)-zero if

OVyeeeyVyVyqreeesvy) =0
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for all VeprretorVy € V. This is equivalent to saying
that the s-fold symmetric product of v with itself is in
the s-radical of V:

vO...0v € s-rad(V).

In particular an element v is in rad(Vv) if and only if

v is an r-zero.

We call (V,0Q) s-nondegenerate if it has only trivial
(r-s+1)-zeros, i.e. if vO...0v = vS € s-rad(v) implies

v = 0. Observe that an s—-nondegenerate space is also
t-nondegenrate for all t < s,that a 1-nondegenerate space

is just a nondegenerate space.

Lemma 4.1: If s > 1 and (V,0) is an s-nondegenerate inde-

composable space then the center Cent(V) is a field.

Proof: Since r > 2 and V is indecomposable Cent(V) is
a commutative local algebra [1]. Let t be in the maximal
ideal of Cent(V) and assume that t2 = 0. Then we have

for all u,x ., X_ €V

s+1’°° r

O(t(u),t(u),...,t(u),x ..,xr) =

s+1’°
e(tz(u),u,t(u),...,t(u),ss+1,...,xr) =0

since tz(u) = 0. But (V,0) is s-nondegenerate, so t(u) = 0
for all u and thus t = 0. But this suffices to show that
Cent(V) is a field.

Lemma 4.2: Let V = vy Ly, be an orthogonal sum of symme-
tric spaces. V is s-nondegenerate if and only if V1 and

V, are s-nondegenerate.

2
Proof: Given Vi vij € Vi for i = 1,2 and j = 1,...,r-s.
Then we have
O(v1+v2,...,v1+v2,v11+v21,...,v1(r_s)+v2(r_sp =
61(v1,...,v1,v11,...,v1(r_s)) + GZ(VZ""'VZ'V21""’V2(r—s)

for all choices of vij if and only if
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Oi(vi””’Vi'vi1""’vi(r-s)) =0
for i = 1,2 and all choices of Vij' So the first equation
implies v, + v, = 0 if and only if the second equation im-

1 2
plies v, = 0, vy = 0.

We call a space (V,0) maximal if it is

i) 2-nondegenerate and
ii) dimR(V) < dimR(Cent(V)).

We will show that i) can be replaced here by

i') (v,0) has only trivial 2-zeros.

Lemma 4.3: Let (V,0) be an indecomposable maximal space.
Then there is a finite field extension K of R and a linear
form ¥ on K such that K together with

W(a1,...,ar) = w(a1-...-ar)

is a symmetric space isomorphic to (V,0). Furthermore
dimp (V) = dimp (Cent (V)) .

Proof: By 4.1 Cent(V) = K is a field and V is a vector
space over K. Since V # 0 we get from the dimension con-
dition for maximal spaces that V must be one-dimensional

over K. So there is a linear isomorphism
$: K —> vV, ¢(1) = v

which induces the structure ¥ of a maximal space on K.

Then

W(a1,...,ar) = ®(¢(a1),...,¢(ar)) = G(a1(v),...,ar(v)) =
O(a1-...-ar(v),v,...,v) = W(a1-...’ar,1,...,1) = w(a1°...-ar)
for a suitably defined linear form ¥ on K.

Lemma 4.4: Let K be a finite field extension of R and
let y be a non-zero linear form on K. Then (K,¥) is an
indecomposable maximal space with
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W(a1,...,ar) = tp(a1 N ar)

and K is s-nondegenerate for all s < r - 1.

Proof: K is s-nondegenerate for all s £ r - 1. Further-
more as in the proof of 3.10 K = Cent(K) and thus is in-
decomposable. Hence K is a maximal space.

Theorem 4.5: Let (V,0) be a maximal space. Then dimR(V) =
dim(Cent(V)) and (V,0) is s-nondegenerate for all
s £ r - 1. Thus (V,0) has only trivial 2-zeros.

Proof: V can be decomposed into indecomposable spaces.
By lemma 4.2 each indecomposable component is 2-nondege-
nerate. By 4.3 and 3.1 one of the components (and hence
all) are maximal spaces. This implies the claim on the
equality of the dimensions. Again using 4.3 all the in-
decomposable components are defined on finite field ex-
tensions Ki of R. By 4.4 these are all s-nondegenerate
and by 4.2 V is then s-nondegenerate.

Corollary 4.6: (Vi,Oi), i = 1,2 are maximal spaces if

and only if V1 1 VvV, is maximal.

2

Proof follows form the fact that V is maximal if and only
if all its indecomposable components are maximal.

Let (V,0) be a maximal space. We call (V,0) bimaximaf if
r -dimR(Vi) < |Aut(Vi,Oi)]

for all indecomposable component:s (Vi,@i) of (V,0). Clear-
ly a space is bimaximal if and only if all its indecompos-

able components &re bimaximal.

Corollary 4.7: (Vi,oi) i = 1,2 are bimaximal spaces if

and only if V1 1 V2 is bimaximal.

Theorem 4.8: Let (V,0) be a indecomposable bimaximal space.
Then the center K = Cent(V) is a Galois field extension
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of R which contains a primitve r-th root of unity and
r -dimR(V) = |Aut(V,0) |. Furthermore the r-form on K (= V)
is defined by an element b € U(K) as b « tr such that

-1

o(b) b~ ' € U(K)T for all o € Aut(K/R}.

Proof: We use the notation of lemma 4.3. Let f € Aut(K,Y).
Then
w(f(a1)-...~f(ar))

w(a1~...-ar) = w(f(a1 cay) . f(1)~...-f(ar)).

f(a,)f(a,). Define o(a) = £(a) - £(1) ",

then ¢ € Aut(K/R). The relation between f and o can also be

hence f(a1a2)f(1)

expressed by
(*) f(a) = o(a) - £(1).

Let fi’ i =1,2 be in AutiK,¥) and oy be the corresponding
elements in Aut(K/R). Then £.£,(@) = £,(0,(a)E, (1)) =
01(02(a)f2(1))f1(1) = 0102(a)o1f2(1)f1(1) = 0102(a)f1f2(1).
Thus we get a group homomorphism n : Aut(K,¥) — Aut(X/R).
Now let Er be an r-th root of unity K. Then gr defines an

Y 2 - r . . =
automorphism of (K,Y¥) since W(gra1,...,€rar) = W(Era1 N ar)
¥(ajs...,a,). Then n(£ ) (a) = ¢ a '(£r1)'1 = a hence the
grouy ur(K) of r-th roots ofunity is contained in the kernel
of n. Conversely let £ € Ker(n). Then f(a) = a - £(1) by

(*), hence £ is K-linear. So we get
YEM T a,,...,a) = Y(E() « £(ay) ...+ £(a)) = ¥(1,a,,...,a)
hence £(1)¥ = 1, so
Ker(n) = u (K).
This defines a short exact sequence of groups
a — ur(K) —> Aut(K,¥) —> Aut(K/R).

We have |pr(K)| $ r, |Aut(K/R)| £ dimp(K) and by hypothesis
r « dimp (K) = |But(K,¥) |. This together with the short exact
sequence can only hold if equality holds everywhere. So we
get K over R Galois, K contains a primitive r-th root of
unity and the last map in the short exact sequence is an
epimorphisn.
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In particular (K,Y¥) is separable and we may apply theorem 3.12
to get W(a1,...,ar) = tr(b ca; ... ar). Let £ € Aut(k,y)

and nif) = o€ Aut(K/R). Then tr(ba1...ar)
tr(bo(a1)f(1)...o(ar)f(1)) (by (*)) = tr(0-1(bf(1)r) -a1...ar)
for all a; € K. Hence o(b) b~ ' = £(1¥ € u(x)~.

Corollary 4.9: Let (V,0) be = bimaximal space. Then (V,0)
is separable.

Theorem 4.10: Let K be a finite Galois extension of R,
which contains a primitve r-th root of unity. Let b € U(K)
such that d(b)/b € U(K)® for all o € Aut(X/R). Then (K, <b> )
is a bimaximal space.

Proof: By lemma 4.4 and lemma 3.10 (K,<b>r) is an inde-
composable maximal space. We compute Aut(K,<b>r). Let

o € Aut(K/R) and o(b)/b = c*. Define K —> K by f(a) =
o(a) * c. Then

tr(bf(a1)~...~f(ar)) = tr(bo(a,)...o(a,) » o(b)/b) =
tr(o(ba1...ar)) = tr(ba1...ar) and £ € Aut(X,Y). Diffe-
rent pairs (o,&r » c) define different automorphisms £,
so r * dim(K) < |Aut (K, V¥)

.

Theorem 4.11: Let V,W be bimaximal. Then V 8 W is bimaximal.

Proof: Without loss of generality we can assume V and W
indecomposable. By theorem 4.8 we may assume indecompos-
able bimaximal spaces (K,<b>r) and (L,<d>r) with Galois
extensions K and L of R both being subfields of a sepa-
rable closure of R. Let K +L be the compositum of K and

L and M = K N L. Since K and L are linearly disjoint

over M we get Aut(X - L/K) = Aut(L/M) by restriction of

the automorphisms to L. We .identify both sets along this
map. Furthermore Aut(M/R) = Aut(L/R)/Aut(K * L/K). Let
bpreeertg € Aut (L/R) be a complete set of representatives
for the element of Aut(M/R). Then every element of Aut(L/R)
can be written uniquely as 1 = p o ¢i where p € Aut(K - L/R).
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Furthermore there is an isomorphism

A K @R L =1 K-L,

{¢1,...,¢s}
defined by A (x ® y) =Ix- ¢i(y). The copies of K+ L are
symmetric spaces by (b -¢i(d)) +tr for i = 1,...,s. Since
Aut (K/R) = Aut(K - L/R) /Aut (K - L/K) every element in

Aut (K » L/R) can also be written uniquely as (o,p) with

¢ € Aut(K/R) and p € Aut(L/M) = Aut(K « L/K) with

(o,p)(xy) = o(x) «oply)
where o stands also for a fixed chosen representative in

Aut(K « L/R). Thus we get

(0,0)(b+06;(d)) a(b) +opo;(d) ) 00, (d) 4
b+ ¢, (d) = B-o, (@ b a3 (@

€ U(K-L)¥.

To show that A is an isomorphism of symmetric spaces let

xj ® yj € K @R L, j=1,...,r. Then

?(A(x1 ® y1),...,>\(xr ® yr))

TR, ,ir'“x1"’i1 (yq)e-o. 'xr"’ir(yr”

Iy (g0, (yq)peenrx 6 (y))

Zi tr(b CXyteeltX ot ¢i(d- y1~...-yr)

=, L

i (G'D)o(bx1...xr)op¢i(dy1...yr)

Zozro(bx1...xr)r(dy1...v )

tr(bx1...xr) 'tr(ay1...y )

‘!’(x1 ® YireeesX ® yr).

r

This tagether with the previous observation on the ele-
ments of the form b -¢i(d) and theorem 4.10 shows that
K QR L is again an orthogonal sum of bimaximal spaces.

For the rest of this section assume that there is a pri-
mitive r-th root of unity gr in R. We are going to deve-
lop the theory of Witt rings for bimaximal spaces essen-
tially in the same way as for separable spaces in sec-
tion 3.



WITT RINGS 1309

Theorem 4.12: The isomorphism classes of bimaximal spaces
form a sub-semiring Pglm(R) of Piep(n) containing P?(R).
Lemma 4.13: Let H be a finite subgroup of Gr(R) and let
u be a bimaximal class in Pr(R)' Then the (unique) decom-

position u = u, 1 tH(u) has bimaximal factors.

H
Theorem 4.14: Let H be a finite subgroup of Gr(R). Then
the set Yr(R,H) of H-equivalence classes in wr(R,H) whose
unique H-reduced representative is bimaximal, is a sub-
ring of Wr(R,H).

Proof: Observe using the assumption that R contains a
primitive r-th root of unity, that every symmetric class
of the form <o> in Gr(R) is bimaximal. Thex the proof of
theorem 3.8 can be easily modified for this case.

Corollary 4.15: There is a sequence of commutative sub-

rings

D
wr(RIH) c Yr(RIH) c Zr(RIH) = Wr(RIH)o

Theorem 3.18 can also be applied to bimaximal indecompos-
able spaces of the form (K,<b>r). Observe that
o(b) /b = cF = (ct)s for an element ¢ € U(R). So we get

Theorem 4.16: The ring homomorphism  : Wr(R,H) —_— ws(R,H)

for r = st, s > 2 restricts to a ring homomorphism
Yr(R,H) —> YS(R,H) .

5. Witt Rings over finite fields

Let K be a finite separable field extension of R. Then

by theorem 3.12 all the representatives b of an element
b of U(K)/U(K)® define the same indecomposable separa-

ble space (K,<b>r) of degree r (up to isomorphims).
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Furthermore the automorphism group G = Aut(K/R) acts on
U(K)/U(K)r and all elements of the same orbit under this
action define isomorphic spaces. Different orbits deter-

mine nonisomorphic space, hence

Proposition 5.1: There is a one-to-one correspondence

between the isomorphism classes of indecomposable separa-
ble spaces with center K of degree r and the orbits under G in
U(K) JU(K)F.

Let p be a prime and R = GF(pm), K = GF(pmn). Let

2 <r <p, s := (pm—1,r), and t := (pmn—1,r).

Define g to be a generator of the cyclic group U(K).

Since g has multiplicative order pmn - 1 we get U(K)/U(R) T =
{1,§,...,_t—1} = Z/(t).For ¢ the Frobenius map on K we
have ¢m(x) = xP" = x for precisely the elements x € F.

The action of ¢m on K translates into multiplication by
pm on Z/(t). The elements fixed under the multiplica-

tion by pm (and by powers pmi of it) form the kernel of

the multiplication by pm - 1, denoted by (z/(t))G.

The following sequence of cyclic groups is exact
m
0 — (z/(tN°® — z/(t) B=ls @/ (p)

and the image of p" - 1 is (™ - 1,8)/(t) = (s)/(t),
hence (z/(£))€ = z/(s).

Translated back into terms of Galois fields we get

(U (k) /u(k)5)C = {1,§u,...,§(s-1)u} where t = su. These
are precisely the elements which each form an orbit of
length 1.

Theorem 5.2: Two indecomposable separable spaces
(K,<giu>r) and (K,<gju>r) with 0 £ i,j < s are isomor-
phic iff i = j. There are at least s and at most t iso-
morphismclasses of indecomposable separable spaces of
degree r over R with center K.
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The following examples illustrate this situation. Let
p=7,m=1,n=3and r = 4 then there are precisely
two distinct indecomposable separable spaces over GF(7)
of degree 4 with center GF(73). For p =7, m=1,n= 2
and r = 4 there are precisely three distinct indecompos-
able separable spaces over GF(7)of degree 4 with center
GF(7%) coming from the orbits (in Z/(4) = U(K)/U(K)?)

{0}, (7,3}, and (2},
2

i.e. (GF(77),<15,), (GF(72),<g>4), and (GF(?Z),<92>4),
where g is a generator of U(GF(72)).

To see which of these spaces are bimaximal we first ob-
serve that K = GF(pmn) contains a primitive r-th root of
unity iff r/(pmn-1) iff pmn = 1 mod(r). So the last con-
gruence is a necessary condition for any of the spaces
(K,<b>.) to be bimaximal. But then t = (p"'-1,r) = r

so by applying theorems 4.8 and 4.10 we get that the
one-element orbits in Z/(r) under G are precisely the

bimaximal spaces hence

Corollary 5.3: If pmn = 1mod(r) with 2 < r < p and g is

a generator of U(K) then there are precisely s non-iso-
morphic indecomposable bimaximal spaces (K,<glu>r),
0 £ i < s with center K, where s = (pm-1,r) and su = r.

Corollary 5.4: If pm = 1mod(r) then all separable spaces

of degree r are bimaximal and for each K there are pre-

cisely r indecomposable bimaximal spaces with center K.

Let us assume pm = 1mod(r), 2 < r < p and take H :=
U(R)/(U(R))F. We want to determine the Witt rings
Zr(R,H) = Yr(R,H). Observe first that for any n 2 1 and
K = GF(p™) we have |U(K)/U(R)| = (p™=-1)/(p™=1) =
(pm)n-1+...+(pm)° = 1t+...+1 = nmod(r) .

Furthermore observe the general fact that the sequence
of cyclic groups
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U(R)/(U(R)) T —> U4K) /(U(X))T —> (U(K)/U(R))/(U(K) /U(R))T —> 1

is exact. The last cyclic group has order g := (r,n) =
(r,|U(K)/U(R)|). The first map defines the action of H
on U(K)/(U(K))T = (U(K)/(U(K))*)®, i.e. on the indecom-
posable bimaximal spaces. The action is given through
the image of U(R) /(U(R)) T which consists of the elements
=9 329 r-9y -
{1,9%,9 } =c

AN

£/q where g is a cyclic genera-
tor of U(K) and g = (n,r). So there are q orbits under
the action of H, each orbit having r/q elements. The

spaces corresponding to the elements of one orbit add
up to an H-space in P?im(R). If we define Z[Ck] 1=

Z[Ck]/( x|x € Cy) (for k # 1 this is an isomorphism

anyway, for k = 1 this give the zero ring) then the part
of Yr(R,H) defined by K is

-1
i
E z[cr/q]. (K,<g™> ). So we get

i=0

Theorem 5.5: If p" = 1mod(r), 2. < r <p, R = GF(p™ and
H = G_(R). If furthermore y; 1= (GF(pmn),<g;
fixed chosen generators 9n of U(GF(pmn)), then

>r) for

(n,r)
Yr(R,H) = Zr(R,H) = E E zZlg
1

i
r/(n,r)]yn'

n21 i

Corollary 5.6: Under the hypotheses of theorem 5.5 if r

is prime then

Y _(R,H) = 2 zlc lyp.

nz1
r#n
The multiplication is given by

y;y; = (n,m)y°[n’m] for all m,n with r # n, r # m.
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