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INTRODUCTION

It is well known that adjoining w = 3/5 to Q does not give a Galois
extension of @, i.e., there is no set of automorphisms of Q(w) whose set of
common fixed elements is precisely @. However, one can define the follow-
ing linear maps s, ¢ from Q(w) to itself by

=1, co)=—iv, dw)=-iw?

s(1)=0,  s(w)=1lw, s(?)= —io?,

and xe Q(w) is in @ if and only if ¢(a)=a and s(«) =0. In this sense, Q
can be considered as the fixed field of s, ¢. This in itself is not remarkable.
But even though ¢ and s are not automorphisms, they have a close connec-
tion with the ring structure of Q(w). For all o, f € Q(w), we have

c(aff) = c(a) - c(B)— 3~ s(a) s(B);
s(af) = c(a) - s(B) + s(a) - c(B).

So Q(w) is some sort of “generalized Galois extension” of Q. This example
is an instance of a general concept introduced by Chase and Sweedler [2].
The interrelation between ¢, s and the ring structure of Q(w) is formalized
by the concept of H-Galois extension where H is a finite Hopf algebra.

DErFINITION.  Let K|k be a finite extension of fields, H a finite k-Hopf
algebra. Then K|k is H-Galois if there exists a k-algebra homomorphism

u: H—- End,(K)

such that (1, u): K®,H—End,(K) is an isomorphism (where
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240 GREITHER AND PAREIGIS

1: K- End,(K) is induced by the multiplication in K), and the following
conditions are satisfied:

uih)(xp) =3 plh)x) - plho))(p),

()

w(hy(1)=e(h)(1)  for heH, x, yekK.

Remark 1. Whenever K|k is Galois with group G, K|k is H-Galois,
where H is the group ring kG.

Remark 2. In the example at the beginning, take H to be
Qe s1/ 3+ =1, e+ s, Qe+ 1) c—1)), d(c)=c®c—3s®s, A(s)=
c®s+s®c, e(c)=1, ¢(s)=0.

Remark 3. An equivalent definition would be: There is a k-algebra
homomorphism p": K- K®, H*, where H* is the dual Hopf algebra to
H, such that p” defines an H-comodule structure on K, and the map

(mult @ H*I K@ u"): KK > KQKQ H* > K® H*

is an isomorphism of K-vector spaces.

u" and u are deduced from each other in a canonical way, and there is
a third canonical map p': H® K— K. We will use whichever is the most
convenient.

Many purely inseparable extensions are H-Galois [2]. This is of interest
since one can prove a weaker form of the so-called Main Theorem of
Galois Theory for arbitrary H-Galois extensions. In this paper, we start
with the observation that many nonnormal separable extensions are
H-Galois extensions for appropriate H (this does not seem to be widely
known), and we set out to characterize the extensions K|k which are
H-Galois completely in terms of the Galois group G of the normal closure
(= splitting field) K of K over k. The result will be stated in Section 2 and
proved in Section 3. It will turn out that (in contrast to classical theory) in
general there may exist several Hopf algebras H making a given extension
K|k H-Galois, the easiest example being Q({‘/E)l@. All possible H-Galois
structures will be determined.

Let us give a more detailed preview of some results. If K|k has degree
n=2, K|k is classically Galois. For n=3 or 4, K| k is always H-Galois. For
n=1>5, there are separable extensions which are not H-Galois for any H.
The extensions of degree 3 and 4 have an even nicer structure which we call
“almost classically Galois,” see Section 4. For extensions with this struc-
ture, the Main Theorem holds in the usual form: The sub-Hopf algebras of
H are in bijective correspondence with the intermediate fields E, kc Ec K.
As a further illustration of the nonuniqueness of H, we will show for
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classical Galois extensions K|k: K|k can be made H-Galois in such a way
that in the correspondence between all sub-Hopf algebras and intermediate
fields, only those intermediate fields occur which are normal over k.

In the body of the paper, all field extensions (except algebraic closures)
are assumed to be finite.

1. GaLoIS THEORY AND DESCENT

We fix a basc field k. Let L be an extension field of k, S a finite set, B the
group of all permutations of S. When and in which way is L® a Galois
extension of L in the sense of Galois theory of commutative rings?
(See [1].) Any action of a group N on L® by L-automorphisms is given by
an action of N on the index set S. So we can state:

1.1. LemMa. Ler L, S, B be as above. Then giving a Galois action
W:LIN]I®, (L*) > L® (ie., providing L® | L with an N-Galois structure) is
the same as giving an embedding N = B as a regular permutation group.

(A subgroup of a permutation group is regular if it is transitive and the
stabilizer of any of the permuted objects is the trivial group.)

Proof. Every map ' gives an operation of N on S. Since Galois actions
are faithful, N is embedded in B. By direct calculation one sees that N is
regular on S if and only if the canonical map L[N]®, L®* - End,(L?) is
bijective.

This lemma explains the Galois theory of L® over L. We want to apply
this to a general field extension K|k. One knows that if L is “big enough,”
then L ®, K is L-isomorphic to L* for some S. To be precise, we define the
setup

= normal closure of K over k (K| k separable)

()

S=G/G’ (left cosets).

Let L9 be the set of functions from G/G’ to L. This is a L-vector space
with base {e,|ge G/G'}, where e (h)=0,;.

1.2. LemMA. Let L be any field containing K. Then the map

¢:L®k Ka)..@xl—-) Z ig(x)'é’ﬁeLG/G'

2eG/G’
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is an L-algebra isomorphism. Set I'=Aut(L|k). Then I' maps onto G.
L®, K is a I'-set via the left factor, and L9 is a I'-set by y(le;) =y(1) ez,
where y— g€ G and {e;|he G/G'} is the canonical base of LY. Then ¢ is
also a I'-map.

Proof. (well known). Write K=k[{]=k[X]/(f) with minimal
polynomial f for & For each he Alg,(K, R)=Alg,(K, L) we have a root
h(&) of £, hence {g(¢)| g€ G/G'} is the set of roots of /. By the Chinese
Remainder Theorem, we get

L@ K~L[X)/(/)~ [] LIXI/(X—g(&)) =LY,

2e€G/G’

and the map is precisely ¢. The I"-map property is checked easily.

Now we begin with an arbitrary Hopf algebra H which gives an
H-Galois structure for the separable extension K|k. We will show that H is
a form of kK[N], and N is uniquely embedded in B=Perm(G/G’) as a
regular permutation group.

1.3. PROPOSITION. Let K|k be separable and H-Galois. Then there is, for
any extension L > K, a unique regular subgroup N < B= Perm(S) such that
there is an L-isomorphism oa: L&, H— L[ N1, and the diagram

(LOH)®, (L®K)L25 LK

«@qfl J'of

LIN]®, L* —— L%
commutes. (The bare symbol ® means ®,..)

Proof. The only point will be that L® H is a group ring. Since
K® K=~ K® H* as K-algebras, we have L® H* >~ L ® K as L-algebras. On
the other hand, L® K is L-isomorphic to L® by Lemma 1.2. Thus the
L-Hopf algebra L® H* has L% for its underlying algebra. As is well
known, this implies L® H= L" as Hopf algebras for some group N, so
L® Hx~L[N]. (Thanks are due to C. Wenninger for pointing out this
short proof.)

Our Galois structure u': H®, K— K induces a Galois structure
(LOH)®, (L®K)— L®K. Let v' be defined by the above diagram.
Then the Galois action v’ determines an embedding N < B as a regular sub-
group by 1.1. Since v’ is determined by the diagram, the embedding Nc B
is also uniquely determined.

We close this section by recalling some elements of descent theory (see,
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e.g., [4, pp. 44, 65]). Suppose L|k Galois with group G. Let A be an object
(vector space, algebra, Hopf algebra) over k. An L-form of A is a k-object
B such that L®, B~ L®, A. Let us agree on ® = ®,.

G operates on L® A by automorphisms via L. By conjugation, G
operates on Hom,(L® A, L® A’) for k-objects A, A'.

(Example: 4 =k", Aut,(L® A)=Gl(n, L), and G operates on the matrix
entries.)

1.4. THEOREM. The set L-Form(A) of L-forms of A modulo isomorphism
is in bijective correspondence with H'(G, Aut, (L ® A)).

Proof. See [4, 8.1 and 9.1].

In this theorem, H' denotes as usual the pointed set of cocycles with
cohomologous cocycles identified. A cocycle in a G-module P is a family
{p,lceG}, p,eP, p,.=p,° (p.). We omit the definition of the relation
“cohomologous.”

For later use, we make the correspondence explicit: For Be L-Form(4),
¢: L® B— L® A an isomorphism, we construct a cocycle as follows:

Po=0¢-0pg(c) ¢~ '-op,lo~")eAut, (L A).

Here op,(o) denotes the operation of 6 G on L® A through the left
factor L. Every cocycle occurs in this way.

DEFINITION. Let B; be an L-form of A, ¢ L®B,3L®A; (i=1,2).
Then a morphism f: L® A, > L® A, is called descendable if there is a
morphism g such that

L® B, 2% L ®B,

¢.J lm

L®A, —L5 L®A,
commutes. (If g exists, it is unique.)
1.5. LEMMA. [In this notation, let p'” be the associated cocycles to B,.
Then f is descendable if and only if

pV=p2.f  forall ceG.
S =pd.

Proof. Easy verification which we omit.
For subsequent use, we make one last remark:

481/106/1-16
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1.6. LEMMA. Let H be a Hopf algebra over k, u: H® K — K a k-linear
map. Then u defines an H-Galois structure if and only if L@ u defines an
L ® H-Galois structure on L ® K.

Proof. The assertion follows from the general theory of faithfully flat
descent applied to L|k.

2. STATEMENT OF THE MAIN THEOREM AND FIRST EXAMPLES

Let us begin with another explicit example. Consider the extension
K=@(\‘7§)|@=k. The extension K(i)|Q(i) is Galois with group N =C,,
so it is H,-Galois with Hy= Q(i)[C,]. One can show by direct calculation
that H, contains a sub-Hopf algebra H with H,= H[i] and H operates on
K in such a way that K|Q is H-Galois: If ¢ stands for a generator of C,,

e+e ! e—e!

272

H=@[ ]?_—'@[c, s/ +52=1, cs).
We omit the details since the example is covered by the general theorem to
follow. We resume the setup (*) of the first section: K =normal closure of
the separable extension K|k, G = Aut(K|k), G'= Aut(K|K), and S=G/G".
Set B=Perm(S). Since G operates on S=G/G’, G maps into B. This
map is monic, since its kernel is the intersection of all conjugates of G’, or
(which is the same) the biggest invariant subgroup of G contained in G’,
and this group must be trivial because K is the smallest Galois extension of
k over K. Thus we have G < B.

(In our example, S is in canonical bijection with the four complex roots of
X*—2, and G operates faithfully on S. If we identify S with {1,2,3,4}, G
is the dihedral group D,= {(1234), (13)> and G'= {(24)). G has a nor-
mal subgroup N = {(1234)) which is a regular permutation group on S.
All these remarks show that we do have a particular case of the following
result.)

2.1. THEOREM. Let K|k be a separable field extension, S, B as above.
Then the following are equivalent:
(a) There is a k-Hopf algebra H such that K|k is H-Galois.
(b) There is a regular subgroup N < B such that the subgroup G of B
normalizes N.

Furthermore, the group N in (b) is obtained from (a) by the procedure of
Lemma 1.3. The Hopf algebra H in (a) is always a K-form of k[ N] and can
be computed by means of Galois descent.
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The proof is postponed to Section 3 for the sake of examples.

22. ExampLe. K=Q(Y2), k=Q. Here R=Q({;, J/2), G is the full
permutation group on S~ {1,2,3}, and G’ has two elements. Take N to
be the alternating group on S~ {1,2,3}. This is the example from the
introduction (where H was also explicitly given).

2.3. ExaMPLE. K =Q(/2) revisited. We know G=D, on {1,2,3,4}.
D,=<{0,t), 0=(1234), t=(13). If one takes N= (g% o1), then
C,xC,=N<G, and one sees easily that N is regular. This gives rise
to a Hopf algebra H’ (which is not isomorphic to H constructed at the
beginning of this section). One can show: H’ is the sub-Hopf algebra
QLst, s+ 1,/ =2(1—5)1 of Q(/=2)[s 11=Q(/=2)[C,xC,], where
s>=1>=1 and s, 1 are group-like. Setting a = (s +1)/2, b= (/ —2/2)(t—5),
one obtains H' =Q[a, b]/(ab, b>—2a*+2) and da=a®a—1ib®b,
db=a@®b+bh®a, e(a)=1, ¢(b)=0, S(a)=a, S(b)=5b.

N.B. This is an example of a separable field extension which has two dif-
ferent Hopf Galois structures. Nakajima has given an example of this
phenomenon in characteristic 2 using a different approach [6, Remark 2
following 2.7].

Remark. In both these examples, N was actually contained in G. This
need not hold in general; see Section 4.

2.4. COUNTEREXAMPLE. Let K=Q(¢), [K:Q]=S5, Gal(¢|Q)=
Aut(K|Q)= Ss. (Plenty of such K exist.) Then K|Q is not H-Galois for
any H.

Proof. [G:G']=5, so B=S;, B=G. Assume there exists a normal
subgroup N < S which is regular on S=G/G’. Since N is then necessarily
generated by a 5-cycle, this can be refuted directly, but we argue in a more
general way:

24.1. LeMMa. For N<I (I any group), #NormN) divides
#Cent,(N)- #Aut(N).

Proof. This follows from the left exact sequence
1 - Cent {(N) —» Norm (N) — Aut(N).
24.2. LeMMA. Let N<S, be a regular subgroup. Then Centg(N)=

{#,lce N} = N°°P, where ¢, is defined by $,(i)=p(c(1)), u;,eN being
determined by p(1)=1i.
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Proof. Take ¢ e Centg (N)and find 0 e N with o(1)=¢(1). Then g =¢,.
In fact, let i#{l,.,n} and w,eN, p(l)=i Then p,d=4¢u; so that
#(i) = gu1)=p,¢(1)= p;0(1)=¢,(i). Conversely, given o € N define ¢, as
in the lemma. Since ¢,(i)=¢,(/) implies u,0(1)=p;o(1), it implies i=
because N is regular, so ¢, is indeed in S,. One easily checks that
¢, € Centg (N) and that ¢,, =¢.4,.

Now the two preceding lemmas imply in the situation of 2.4:
#Norm (N) < # N°PP- # Aut(N). But N = Cs, so the last expression is 20.
This contradicts the assumption that the group S5 normalizes N.

Whole reams of examples for H-Galois extensions can be constructed
with the following result:

2.5. THEOREM. Assume K|k a separable field extension, and assume
there exists a Galois extension E|k such that K® E is a field which contains
a normal closure K of K|k. Then K|k is H-Galois, where H is an E-form of
k[N] and N=Aut(K® E| E).

Proof. (a) First we show E can be shrunk to a Galois extension E’
with KQ E'=K. Let M, N, I"’, I" be the groups of automorphisms of K® E
fixing K, E, K, k, respectively:

S
S N/

We claim KN (KE)= K- (K E). If we translate this into groups, we have
M- (I"'aN)y=I"n(M-N), and this is correct since N is normal and
">M. So K=Kn(KE)=K- (KNE)=K® (Kn E), and we may define
E'=KnE.

(b) Suppose K® E=K. Let N=Aut(K|E), G’ = Aut(K| K). Then N
is a normal complement to G’ in G (since E|k is Galois, Kn E=k, and
KE=K), so N is regular on S=G/G'. Now we take the opposed group
NP ={¢,|lce N} cPerm(S)=B as in Lemma 24.2. We claim N°" is
normalized by G< B and centralized by N< B. Proof: The second half
follows from the lemma. So we take geG and have to show
g N°PP. g~ < N°PP_ Since N°PP is transitive, we may change g so that
g(1)=1. Take ¢, € N°°". Claim: g, g " =@, 1. (This makes sense since
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gog~'e N.) To prove the claim, we evaluate at i. In the notation of 2.4.2,
this gives the equation

ghe-1ino(1)=plgog (1)) (=plga(1))).

So it suffices to prove gu,-i(i) =y, g, or equivalently p -, =g 'u; g. Now
both sides are in N, so we only need to evaluate at 1. Then we get
te-1n(1) =g '(iy=g '(u{1))=g 'u,g(1), and the claim is proved.

Thus N°PP < B satisfies condition (b) of 2.1, so (a) also holds. Moreover,
N operates trivially on N°PP, so by Corollary 3.2 (see third section) the
isomorphism K® H ~ K[N] is already defined over the fixed field of N,
Le., over E.

(Remark. In the proof above, one could take N in the place of N°°?, and
this would also yield most of the result, but with a different Hopf algebra H
which is not necessarily an E-form of k[ N]. See Section 5.)

2.6. COROLLARY. Any radical extension of the form K=k(a), a"€k,
char(k) | n, which_is linearly disjoint to k((,) over k, is H-Galois. (This
covers, e.g., Q(ﬁ ) and @(f/i ), which were considered above, and many
other cases.)

Proof. K®, k({,)= K({,) is the splitting field of X" — a” over k, so it is
Galois over k, and we may apply 2.5.

Remark 1. In some special cases, one can do without the linear
disjointless by replacing k({,) by an appropriate subfield.

Remark 2. k(a) is a graded k-algebra with group C, if X"—a" is
irreducible over k. By [2, p. 39, remark preceding 4.16] this already implies
that k(a) is H-Galois over k, where H is the dual Hopf algebra of k[C,,].

3. PROOF OF THE MAIN THEOREM

It is convenient to restate the main Theorem 2.1 in a more technical
form. Let the notation be as in (*) (first section).

3.1. THEOREM. Let N < B be a subgroup. The following are equivalent:
(a) There is a k-Hopf algebra H and an H-Galois structure on K|k
which induces N = B by way of Proposition 1.3.

(b) N is regular on S=G/G', and the subgroup G < B (see the remarks
preceding 2.1) normalizes N.
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More succinctly stated, there is a bijection between isomorphism classes of
H-Galois structures on K|k and regular subgroups N < B normalized by G.

Theorem 3.1 is a sharpened version of 2.1 (see Proposition 1.3). Before
beginning the proof, we still state a corollary which will be proved along
the way.

3.2. COROLLARY. Assume the notation of the theorem, and assume (a)
and (b) hold. Let Gy G be the group of elements operating trivially on N,
and let Lyc K be the fixed field of G,. Then L, is the smallest extension of k
with L@ Hx Ly[N].

Proof of 3.1. (b) implies (a): Recall S$=G/G". Define u': K[N]@R K
- Kby p'(p®xe,)=x"e,, for pe N, ge G. (Recall {e;| g€ G/G'} is the
canonical base of K‘ ) Moreover, define p,: N> N by p.(n)=gng ' for
neN, geG. Then {p,|ge G} is a G-cocycle of K-Hopf automorphisms of
K[N] (Here we have used that the operation of G on Auty. H(,,,r(K[ N1]) via
K is trivial, because the Hopf automorphisms of the group ring K[ N] are
just the group automorphisms of N.)

Any element he G operates on K[N] via K, and on K* by virtue of
h(x-e;)=h(x)" er. We define as earlier: "u'=h-u'-h ' Let us check that
the following diagram commutes:

R[N]®z RS 2 K5

/'/.®ll “

RINI®z K*—— K*

We start with p®uxe,. Then "W (p®xe;) = hp'h '(p®xe,) =
W (p®h™'(x) ) = h(h "(x) e, ) = X e,,iT,. Going the other
way gives: y'(p, ® 1 Jp ®xey)=p'(hph '® xe;)=x"e,,, 1, which is the
same.

By Lemma 1.2, K® = K®, K as K-algebras and G-sets, so one gets a new
map /i such that

RIN]®z (R®K)—2— RQ K

rh® 11 H

R[N1®z (K®K)—L— K®K

commutes. Let H be the K-form of k[N] defined by the cocycle
{p,}. Trivially, K is the K-form of K defined by 1. By Lemma 1.5, j is
descendable, ie., i=K® pu, where p, is a k-linear map H® K —» K. By
Lemma 1.6, p, defines an H-Galois structure since u defines a
K ® H-Galois structure.
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(a) implies (b): Define L=K. Then by Proposition 1.3, we have
L® H = L[N] for some group N. The following argument works for any
extension L of K which is Galois over k and which satisfies L& H = L[N].

L is Galois over k. Let I'= Aut(L|k). Then I” maps onto G = Aut(K|k).
So I" operates on L®K via the left factor, and on LS as before:
y(A-e)=7(4) em, where y»heG. Let py: HO K— K be the given
H-Galois structure. The L-form H of k[N] belongs to a cocycle
{p.1ye '}, and in the notation of 1.5, the lower horizontal map which is
defined by the following diagram is descendable:

(LOH)®, (LRK) L2 (L®K)

| |

LIN]®.(L®K) —— (L®K)

By 1.5, this means that the following diagram commutes for all elements
vel:

LIN]®, (L®K)— > L®K

S

LIN]®, (L®K)—— L®K

We again replace (by Lemma 1.2) L ® K by the isomorphic L-algebra and
I-set L® and get a commutative diagram:

LIN1®, L —*— L®

p?®ll H
S

Now p. is certainly induced by a group automorphism of N. Let g be the
image of y in G. We claim: p_| N = conjugation with g. (¥ is a permutation
group on S by virtue of x'.) In order to use the commutativity of the
preceding diagram, we chase the element v®e, either way (where ve N,
seS): W ®e)=yuy '(v®e,) =y (V® eg-11)) = V(€1g-1(s) = Egug-i(s)- IN
the other way, we get 1'(p,® 1)(v®e,)=p'(p,(v)®e,) = €, (), 50 indeed
p.(v)= gvg . In particular, N is normallzed by G. The regularity of N was
already observed in 1.3.

Proof of 3.2. We look at the proof of 3.1, (a) implies (b). The cocycle
{p,lye '} was defined as the composition I"— G - Aut,(N), where ¢
sends g to conjugation with g. Let G, = Cent,(N) be the kernel of ¢. Then
Go=Aut(K|L,) for some field Loc K. We have an isomorphism
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¢: L® H — L[N] such that p,=¢-op,(y) ¢ ' -op,ni(y~"). Now p.=id
implies ¢ - op,(y) =0p,n3(7)- @, so this equation holds for all y mapping
into G, i.e., for all y leaving L, fixed, so by classical Galois theory the map
¢ is already defined over L,, ie., L,® H=L,[N]. Using similar
arguments, it is easy to check that L, is the smallest field with this
property, and L,< K.

We conclude the section with some remarks on uniqueness. First we
show that the Hopf algebra H and the H-Galois structure are uniquely
determined by N> B:

3.3. LEMMA. Let K|k be H- and H'-Galois with Hopf algebras H and H'
which are both K-forms of k[N and induce the same embedding N < B.
Then there is an isomorphism - H— H' of Hopf algebras compatible with
the two Galois structures py and pg-.

Proof. H and H'’ induce the same cocycle {p,|heG} on K[N] by
pa(v)=hvh ! as in the proof of 3.1. So there is an isomorphism : H — H’
of k-Hopf algebras such that

KQH

113

P -~

ne

R®H’
commutes. So we get a commutative diagram

R®uy

(RQ H)®z (R®K) RQK
R@weln I?[N]®,?I?S—i—» kS
) / . '\
(K®H)®: (K®K) K®K

Reading the outer frame and using that K|k is faithfully flat, we obtain
Bba (W@ 1)=py. QED.

Remark. We know already that N along with its embedding in B is uni-
quely determined by H and its operation. The converse was proved above.
If we now forget operations and permutations, the picture is different. The
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abstract group N is still determined by the Hopf algebra H (up to
isomorphism), since it is “the” group with k® H=k[N]. But the Hopf
algebra H need not be determined by the abstract group N (see an example
in Section 4). Even if we are not interested to know how H operates, and
only want to know H up to isomorphism, in general we already have to
know how N operates, not just what abstract group N is.

4. THE “*ALMOST CLASSICAL” CASE, AND MORE EXAMPLES

We recall the setup (x): K|k separable, K=normal closure of K|k,
G=Aut(K|k), G =Aut(K|K), S=G/G’, B=Perm(S). The main
theorem 2.1 does not tell us whether the subgroup N is contained in G B
or not. [t turns out that in practice this may or may not happen. The case
N < G leads to an interesting class of extensions K|k which encompasses all
previous examples and deserves study:

4.1. PROPOSITION. The following conditions are equivalent:
(a) There exists a Galois extension E|k such that k@ E is a field
containing K.
(b) There exists a Galois extension E|k such that K® E =K.
(c) G’ has a normal complement N in G.
(d) There exists a regular subgroup N < B normalized by G and
contained in G (see 3.1).

Proof. We know that G = B and that G is transitive on S. By definition,
G' is the stabilizer in G of ée S. For N G we have

N-G=G iff N istransitive;
NnG' =e iff Stab y(¢) is the trivial group.

Together this means: N is regular on S iff N is a complement to G’ in G,
which proves (c¢) <> (d).

(b)=(a) is trivial, and (a)=>(b) was proved in 2.5.

(b) = (c): Take N=Aut(K|E). By usual Galois theory, the statement
KE = K translates into NnG'=e, Kn E=k means NG'=G. N is normal
in G since E is Galois over k.

(c)=(b): Take E=fixed field of N. KE=K and Kn E=k follow
again from usual Galois theory. For KE~ K® E, one computes all degrees
involved and uses [G: N]-[G:G']=[G:e].
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Remark. Proposition 4.1(d) is satisfied when G is a Frobenius group
with respect to its subgroup G'. In this case, N is uniquely determined
as the Frobenius kernel of G. In Example 2.2, G is Frobenius, and in
Example 2.3 it is not (but 4.1(d) holds all the same). We are grateful
to M. Takeuchi for drawing our attention to this point.

4.2. DeriNITION.  If K|k satisfies the four conditions of 4.1, we say that
K|k 1s an almost classical Galois extension. Examples: All H-Galois exten-
sions we have seen so far. Compare Corollary 2.6.

It is not trivial to find an extension which is H-Galois but not almost
classically Galois but it can be done. To this end, we begin with some
remarks about realizing a given group-theoretical situation by fields. Let
Gc S, be a transitive subgroup and let G’ be the stabilizer of n. Then
{1,..., n} is canonically identified with the left cosets G/G’, so we call G/G’
again S so that G maps into B=Perm(S)=S,. One knows that the Galois
group G is realized by some field extension K| k. Let K = Fix(G’). Then K is
the normal closure of K|k if and only if G’ contains no proper normal sub-
groups of G, and this is equivalent to the injectivity of G — B. (The kernel
of G — B is the biggest normal subgroup contained in G'.)

When constructing examples, we will begin with G < S, transitive, form
G’ as above, check that G’ contains no normal subgroups, and only then
will be bother about finding “nice” fields which realize the situation.

Some conventions: The underlying set of the cyclic group C,=2Z/nZ will
be taken to be {1, 2, 3,.., n}, n being the zero element. Via group addition,
C, becomes a subgroup of S,. Similarly, the automorphism group
Aut(Z/nZ)= {invertible elements of the ring Z/nZ} is via multiplication a
subgroup of S,, and C, together with Aut(C,) forms a semidirect product
inside S,. The elements of C,X Aut(C,) will be denoted (a, m) (“first
multiply by me Z/nZ, then add ae Z/nZ"). Most overhead bars will be
omitted.

4.3. LeMMA. For n=16, there exists G < S,, as above such that:

(a) There is a regular subgroup Nc S,¢, G = Normg, (N).
(b) There is no regular subgroup N of S, with N < G < Normg, (N).

Proof. Let M < Aut(C¢)<= S, be the four-element group (!) generated
by (0,3) (=multiplication by three on C,). Set G=C,,X M. Then
#G =64, and G normalizes N= C,,. G will be a subgroup of G of index
two. Put Go,={(2,1)>=Cy and define o=(1,3). One checks the
following: ¢ normalizes G,, 6>=(4,9)¢G,, ¢*=(8,1)eG,. Let G be
generated by G, and . We have the diagram
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e — Ce G — M > e
u v
e - G() 4 G ! > C4 - C",

where ¢ maps ¢ to a generator of C,. Since G< G, G normalizes N. G is
transitive since G, is already transitive on even numbers and ¢(0)=1. G’
contains no normal subgroups of G: Since # G =32, G' has two elements,
so G'=1{e,(0,9)} and one checks that G’ is not normal in G. So (a) is
proved.

For (b), assume the contrary. Then #N =16, so N has index two in G.
N is transitive. Set Ny=N N G,. Then

e Ny,—»N-C,

is left exact, and because of # N = 16 there are two cases:

(i) #Ny=4, N maps onto C,,
(i) #N,=8, N maps onto the nontrivial subgroup of C,.

Suppose (i) holds. Then N,= ((4, 1)). Pick 6 € N which gives the same
image in C, as ¢ under 1. Then § = (a, 3), and since 6 € G, a has to be odd.
We look at the N-orbit of 16: Under N, one gets {4, 8, 12, 16}. Applying &
gives {a,a+4,a+8,a+12}={b|b=amod4}. Applying N, again
doesn’t produce anything new, and applying & again gives {a+ 3a,
a+3a+12, a+3a+8, a+3a+8}={4,8,12,16}. So the orbit consists of
the eight elements 4 congruent to 0 or ¢« modulo 4, which contradicts the
transitivity of N.

Suppose (ii) holds. Then Ny=Gy={(2,1)). The image of N in C, is
generated by the class of 62 =(4,9), ie., N=<((2,1),(a,9)) for some a,
and if ¢ were odd, (a, 9) would not be in G. Here one sees at once that the
N-orbit of 16 consists only of even numbers, so we arrive at a contradiction
also in this case.

44. CorROLLARY. If K=Q(/=2,'92), k=Q(/-2), then K|k is
H-Gualois for some H, but not almost classically Galois.

Proof. Kc I?=Q('\"/§, C16) where (¢ is a primitive 16th root of unity.
Let G=Aut(K|k). G operates faithfully on the sixteen roots (¢ '\‘75,

e '\‘/5 {ie- '\‘75 (which we number canonically from 1 to 16), ie.,
G < S)6. By definition of K, G’ = Aut(K| K) consists of those permutations

leaving % fixed.
Claim. G is exactly the group <(2, 1), (1, 3)> from Lemma 4.3.
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For this we prove:

(i) #G=32,
(ii) (2,1) and (1, 3) are in G.

(i) This just means [K:k]=32 Now [K:Q]=[Q(,):Q]"
[K:Q(,s)]. The first factor is 8, and so is the second factor (reason: \/5.
is in Q({,,) but f/i is not because it does not lie in any abelian extension
of @). So [K:Q]=64, ie, [K:k]=32

(i) We know that G =Aut(K|Q) is via operation on the roots of
X'¢—2 a 64-element subgroup of C,sX Aut(C,¢)<= S,s, and since ‘\‘75 has
degree 8 over Q({¢), the automorphism &, ,, which sends '\‘75 to (e 1\(/5
and fixes (¢ exists. Furthermore, since Aut(Q({,¢)| Q)= Aut(C,,), for
some ae C,, we must have an automorphism ¢, in G, to be precise:
Gl Y2) =4 Y2 and 6,3(L16) = L.

Suppose a is even. Then we can make it vanish since we have 6,,,€G,
so we find an automorphism o fixing '\‘/5 and sending {,¢ to {3,. But then ¢
sends (g + g to {3+ 4%, i€, it sends \/5/2 to —ﬁ/2, so ¢ cannot fix \%2,
a contradiction. This shows that a was odd, so as above we can suppose
a=1. Now the only thing left to do is to check that ¢(,,, and ¢, 5, indeed
leave k fixed, i.e., they leave ./—2 fixed:

S/ =2 =0nn(le W2 =l (13" ¥/28 = /2,
Tun(/—2) = 0s (Ll 2% = L2 6 §/2)*
=092 = /2. Q.ED.

4.5. Remark. In the same setting one can find a transitive group G < S,
and subgroups N,, N, B=Perm(S) such that the operations of G on N,
are essentially different, i.e., there is no G-invariant isomorphism between
N, and N,. By descent theory, this means that the two Hopf algebras H,
obtained from N, < B are not isomorphic over &; see the remark at the end
of Section 3. Take N, =C,,= S|, and N, generated by (1,9), G=C,( X M.
One checks that N, is also cyclic of order 16, but not G-isomorphic to N,.
We omit the details.

At the end of this section we now classify in detail all H-Galois exten-
sions with small degrees, and we prove a theorem on the possible “size” of
the normal closures of H-extensions. Let as always K|k be separable,
G =Aut(K|k), G'=Aut(K|k), and set n=[K : k].

4.6. THEOREM. (a) If n=2, K|k is (classically or) H-Galois.
(b) If n=3, K|k is H-Galois for appropriate H.
(¢) Ifn=4, K|k is H-Galois for appropriate H.
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(Comment: In (b) and (c), the notions H-Galois and “almost classically
Galois” coincide.)

(d) Ifn=S5, either #G =60 and K|k is not H-Galois or # G <20 and
K|k is H-Galois. (#G e {21,.., 59} does not happen.)

Proof. Part (a) is clear. For the rest of the proof, let us assume that
K +# K, ie., K is not classically Galois over k. We will always tacitly use the
main theorem 2.1.

(b) G=S,, and we may take N = A;. (See also the Introduction.)
(c) GcS,is transitive, #G e {8, 12, 24}.

If #G=12 or 24, then G= A, and S, resp., and one can take N=D,
(the four-group of Kiein, alias the commutator group of S,).

If #G=38, then G is a D, (since S, does not contain copies of the
quaternion group or any 8-element abelian group), so G= <o, 1) with o a
4-cycle and t a transposition such that tot=0¢"' Here one may take
N={o) or N=<{a? ot). (Compare Example 2.3 and the beginning of
Section 2.)

(d) Assume #G=60. Then G is A5 or S5, and G has no transitive
normal subgroups.

If #G <60, then #G < 24 (there is no subgroup of index 3,4,..,n— 1 in
S, for n#4 by [3, 115.3]). But # G =24 is impossible since 5| G, so we are
left with #Ge {10, 15,20}. In all three cases the Sylow S-subgroup of G is
normal, and it has to be generated by a 5-cycle, so it is also regular and it
serves as our N.

4.7. THEOREM. Suppose K|k is H-Galois. Then #G < n-nl'82"],

Proof. By 2.1 there is an n-element group N normalized by G S,. By
24.1, #G < #Centg (N)- #Aut(N), and the first factor equals n by 2.4.2.
N is generated by at most [log, n] elements as a group (exercise!), so
#Aut(N) < nlloe),

Using this theorem and some easy estimates, one deduces:

4.8. COROLLARY. Suppose n=5 and G=S, or A,. Then K|k is not
H-Gualois for any H.

5. THE SO-CALLED MAIN THEOREM OF GALOIS THEORY

Assume the field extension K|k is H-Galois with respect to the k-Hopf
algebra H. The main theorem of Galois theory in its general form says:
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5.1. THEOREM [2, Theorem 7.6]. If we define for a k-sub-Hopf algebra
Wof H

Fix(W)= {xe K|u(w)(x)=¢(w) x all we W},
then the map Fix:
{W < H sub-Hopf algebra} —» {E|k < Ec k, E field}
is injective and inclusion-reversing.

Let us say that the main theorem holds in its strong form if Fix is also
surjective. This is the classical situation (we are completely ignoring the
classical statements concerning normal subgroups and intermediate Galois
extensions). Now we get some justification for our notion of an almost
classical Galois extension:

5.2. THEOREM. If K|k is almost classically Galois, then there is a Hopf
algebra H such that K|k is H-Galois and the main theorem holds in its
strong form.

Proof. Let as always K be the normal closure of K|k, G = Aut(K|k),
G’ = Aut(K|K), and let Nc G be a normal complement of G'. We are in
the same situation as in part (b) of the proof of 2.5. N°°" = B is constructed
as in 24.2, and the form H of k[N°P] is defined by the G-cocycle
{p.|g€ G}, p, =conjugation with g in B. (N°* is indeed normalized by G;
see the proof of 2.5.) We intend to show that domain and range of the map
Fix have the same (finite) number of elements (this will prove surjectivity
by 5.1). By general descent theory, the sub-Hopf algebras W< H are in
bijection with the set of subgroups Uc N°PP stable under all p,. Now
G=NXG" and N centralizes N°°®, so U is p,-stable for all ge G iff U is
p,-stable for all he G'. Let us call these groups U “G’-stable” for short.

LEMMA. There is a canonical bijection between the set of intermediate
groups V, G'c V< G, and the set of G'-stable subgroups of N°PP.

Proof of the Lemma. By the proof of 2.5, the operation of G’ on N and
N°PP is the same. So the second set in the lemma is in bijection with the set
of G'-stable subgroups of N. To any V with G'c V<G we associate
VA Nc N, and to a G'-stable group U< N we associate V(U)=UXG". It
is then routine to check that these assignments are well-defined and mutally
inverse.

End of the Proof of 5.2. Now we know that #dom(Fix)=#{WcH
sub-Hopf algebra} = #{U|Uc N G'-stable} = # {V|G'< V= G}. By the
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classical Galois theory, this last number equals #{E|kcEcK,
E field} = # range(Fix). Q.E.D.

Remark. 1t is not very satisfying that this “Main Theorem in the Hopf
Case” is proved in essence by reduction to the classical case. However, the
theorems shows that the “almost classical Galois extensions” are still quite
close to the classical case. Its proof demonstrates again the technique of
Galois descent which reduces the property of being H-Galois to certain
properties of the Galois group of the normal closure.

Theorem 5.2. prompts the question: What happens if we chose “the
wrong H? We recall the construction of 2.5. What happens if we take N in
the place of N°P? in the construction? We only deal with the case N=G,
ie, K|k is classically Galois. Then N is trivially normalized by G (not
necessarily centralized), the cocycle {p,|ge G} on N is just conjugation,
and we get a form H' of k[ N]. The sub-Hopf algebras W of H' correspond
to p.-invariant, ie., normal subgroups U of N. So we know already: The
image of Fix has the same cardinality as the set of Galois extensions E
between K and k. But actually these two sets are equal. In order to show
this, let H). be the sub-Hopf aigebra of H' which belongs to U< N. We
claim Fix(H)=Fix(U) c K. Set E=Fix(U). We tensor from the left with
K = K (retaining the ~ for clarity) and obtain

KlU1®@: K=  KR[N]J®@zK® —K°

/7 | \

(ROH,)®% (R®K) < (R®H,,)®z (R® K)— (K® K)

K® H'. corresponds under the vertical isomorphism to K[UJ]. So
K®Fix(H})=Fix(K® H,) is the subalgebra of K® K which corresponds
to the subalgebra Fix (K[U])= {xe K®|For all ue U, pu(u)(x)=x} under
the vertical isomorphism. Let E’ be the image of K® E in K*. Now it will
be enough to show E' = Fix(K[U]) (since by faithful flatness this implies
E = Fix(H’,)). By reasons of dimension, it suffices to show E' = Fix(K[U]).
Take xe E and its image =Y g(x)e, in K. U permutes the e,, ie., for
ue U we have u(u)(¥)=3 g(x)e,,. This is equal to x iff g(x)=ug(x) for
all ue U, but this is true since U is normal and U leaves x fixed. Let us sum
this up in our final result:

5.3. THEOREM. Any Galois extension K|k can be endowed with an
H-Galois structure such that the following variant of the Main Theorem
holds: There is a canonical bijection between sub-Hopf algebras of H and
normal intermediate fields k < Ec K.
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This (and earlier results) shows that in the construction of Hopf Galois
extensions there is a certain arbitrariness, in contrast to the classical case,
where the Galois group always comes with the field.
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