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I N T R O D U C T I O N 

It is well known that adjo ining CD = ^ / l to Q does not give a Ga l o i s 
extension of Q , i.e., there is no set of automorphisms of Q ( a ) ) whose set of 
c ommon fixed elements is precisely Q. However , one can define the fol low-
ing l inear maps s, c from Q ( ( o ) to itself by 

c ( l ) = l , c ( o ) ) = - jü), c ( a r ) = - { a r , 

s ( l ) = 0, s { i o ) = { w , s ( a > 2 ) = — {CD2, 

and a e Q ( w ) is in Q if and only if c(a) = a and .v(a) = 0. In this sense, Q 
can be considered as the fixed field of s, c. Th is in itself is not remarkable. 
But even though c and s are not automorphisms, they have a close connec-
t ion with the r ing strukture of Q(CJ). F o r a l l a, /JeQ(co), we have 

c(aß) = c(a)'c(ß)-3's(a)'s(ß); 

s(aß) = c{*)-s{ß) + s{*)'c{ß). 

So Q ( c o ) is some sort of "generalized Ga l o i s extension" of Q. Th is example 
is an instance of a general concept introduced by Chase and Sweedler [2 ] . 
The interrelation between c, s and the r ing structure of Q(a>) is formalized 
by the concept of //-Galois extension where H is a finite H o p f algebra. 

D E F I N I T I O N . Let K \ k be a finite extension of fields, H a finite /c-Hopf 
algebra. Then K \ k is H - G a l o i s if there exists a /c-algebra homomorph ism 

\i\ H - > E n d k ( K ) 

such that ( 1 , ju): K ( g ) k H - > E n d k ( K ) is an isomorphism (where 
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1: K - + E n d k ( K ) is induced by the mul t ip l i ca t ion in K ) , and the fo l lowing 
condit ions are satisfied: 

/ i ( * ) W = I # , . , ) W - M 2 , ) ( ^ ) . 

j n ( h ) ( \ ) = e ( h ) ( \ ) for h e H , x , y e K . 

R e m a r k 1. Whenever K \ k is Ga l o i s wi th group (7, K \ k is //-Galois, 
where // is the group r ing k G . 

R e m a r k 2. In the example at the beginning, take H to be 
Q[c,.?]/(3.r + < : 2 - l , (2c+\)s, (2c+\)(c- 1 ) ) , zf(c) = c®c-3.s®.v, J(.v) = 
c®.v + s ® c\ e ( c ) = 1, e(s) = 0. 

R e m a r k 3. A n equivalent definit ion wou ld be: There is a A>algebra 
homomorph ism ß": K - + K®k H * , where //* is the dua l H o p f algebra to 
//, such that fi" defines an //-comodule structure on K, and the map 

(mult. ® //*)(K® //'): K®K-+K® K® H * K® H * 

is an isomorphism of A^-vector Spaces. 
\x" and fj. are deduced from each other in a canonica l way, and there is 

a third canonical map H®K-*K. We wi l l use whichever is the most 
convenient. 

M a n y purely inseparable extensions are //-Galois [ 2 ] . Th is is of interest 
since one can prove a weaker form of the so-called M a i n Theorem of 
Ga lo i s Theory for arbitrary //-Galois extensions. In this paper, we start 
with the Observation that many nonnorma l separable extensions are 
//-Galois extensions for appropriate H (this does not seem to be widely 
known) , and we set out to characterize the extensions K\k which are 
//-Galois completely in terms of the G a l o i s group G of the normal closure 
( = Splitting field) K of K over k. The result wi l l be stated in Section 2 and 
proved in Section 3. It wi l l turn out that (in contrast to classical theory) in 
general there may exist several H o p f algebras H mak ing a given extension 
K \ k //-Galois, the easiest example being Q { ^ 2 ) \ Q . A l l possible //-Galois 
structures wi l l be determined. 

Let us give a more detailed preview of some results. If K \ k has degree 
n = 2, AT | k is classically Ga lo i s . F o r n = 3 or 4, K\ k is always //-Galois. F o r 
n = 5, there are separable extensions which are not //-Galois for any H . 
The extensions of degree 3 and 4 have an even nicer structure which we cal l 
"a lmost classically G a l o i s , " see Section 4. F o r extensions with this struc­
ture, the M a i n Theorem holds in the usual form: The sub -Hop f algebras of 
H are in bijective correspondence wi th the intermediate fields £, k a E a K . 
As a further i l lustrat ion of the nonuniqueness of //, we w i l l show for 
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classical Ga lo i s extensions K \ k : K \ k can be made //-Galois in such a way 
that in the correspondence between al l sub -Hop f algebras and intermediate 
fields, only those intermediate fields occur which are norma l over k . 

In the body of the paper, a l l field extensions (except algebraic closures) 
are assumed to be f i n i t e . 

1. G A L O I S T H E O R Y A N D D E S C E N T 

We fix a base field k . Let L be an extension field of k , S a finite set, B the 
group of all permutations of S. W h e n and in which way is L s a Ga lo i s 
extension of L in the sense of Ga l o i s theory of commutat ive rings? 
(See [ 1 ].) Any action of a group N on L s by L-automorphisms is given by 
an act ion of N on the index set S. So we can State: 

1.1. L E M M A . L e t L , S, B be as a b o v e . Then g'wing a G a l o i s a c t i o n 
fx': L [ / V ] ®L ( L s ) -• L s {i.e., p r o m d i n g L s | L with an N - G a l o i s s t r u c t u r e ) is 
the same as g i v i n g an e m b e d d i n g N a B as a regulär p e r m u t a t i o n g r o u p . 

(A subgroup of a permutation group is regulär if it is transitive and the 
stabilizer of any of the permuted objects is the tr iv ia l group.) 

P r o o f . Every map //' gives an Operation of N on S. Since Ga lo i s actions 
are faithful, /V is embedded in B. By direct ca lculat ion one sees that TV is 
regulär on S if and only if the canonica l map L[N~\®L L s - + End, (Z/ s ) is 
bijective. 

This lemma explains the Ga l o i s theory of L s over L . We want to apply 
this to a general field extension K \ k . One knows that if L is " b i g enough," 
then L®k K is L- isomorphic to L s for some S. T o be precise, we define the 
setup 

K = normal closure of K over k ( K \ k separable) 

G = A u i ( K \ k ) 
(*) 

G' = A u i ( K \ K ) 

S = G/G' (leftcosets). 

Let L a / ( r be the set of functions from G/G' to L . Th is is a L-vector space 
with base { e k \ g € G / G ' } , where e ^ ( h ) = ö^fi. 

1.2. L E M M A . L e t L be any f i e l d c o n t a i n i n g K . Then the map 

4>\L®kK%k®x\-> X k g ( x ) e ^ e L G ' G ' 
.<? e G / G ' 
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is an L - a l g e b r a i s o m o r p h i s m . S e t T = A u t ( L | k ) . Then T maps o n t o G. 
L®k K is a T - s e t via the left f a c t o r , a n d L G / G is a T - s e t by y ( X e f i ) = y(x) 
where y!—• g e G a n d { e f , \ h e G / G f } is the c a n o n i c a l base of L G / G . Then <j> is 
also a T - m a p . 

P r o o f . (well known) . Wr i te K = k \ _ Q = k\_X~]/(f) with min ima l 
po lynomia l / f o r <!;. F o r each h e A \ g k { K , K ) = A \ g k ( K , L ) we have a root 
h ( i ) o f f hence {g(£) \ g e G / G ' } is the set of roots of / By the Chinese 
Remainder Theorem, we get 

L®kK^L\_XM{f)^ [] L l X y ( X - g ( i ) ) ^ L G ' G \ 
j?e G / G ' 

and the map is precisely </>. The A m a p property is checked easily. 
N o w we begin wi th an arbitrary H o p f algebra H which gives an 

//-Galois structure for the separable extension K \ k . We wi l l show that H is 
a form of k\_N~\, and N is uniquely embedded in /?= Perm(G/G' ) as a 
regulär permutat ion group. 

1.3. P R O P O S I T I O N . L e t K\k be separable and H - G a l o i s . Then there is, f o r 
any e x t e n s i o n L=> AT, a u n i q u e regulär s u b g r o u p N a B = P e r m ( S ) such that 
there is an L - i s o m o r p h i s m a: L®k H - * and the d i a g r a m 

(L®H)®L(L®K)-^^ L®K 

L[N]®LLS — L s 

c o m m u t e s . ( T h e b a r e s y m b o l ® means ®k.) 

P r o o f . The only point wi l l be that L®H is a group ring. Since 
K®K^K®H* as ^-algebras, we have L®H*^L®Kas L-algebras. O n 
the other hand, L® K is L - i somorph ic to L s by L e m m a 1.2. Thus the 
L - H o p f algebra L®H* has L s for its under ly ing algebra. As is well 
known , this implies L®H^LN as H o p f algebras for some group N, so 
L® H ^ (Thanks are due to C . Wenninger for po int ing out this 
short proof.) 

O u r Ga lo i s structure p'\H®kK-+K induces a Ga lo i s structure 
(L®H)®L(L®K)-^L®K. Let v' be defined by the above diagram. 
Then the Ga l o i s act ion v' determines an embedding N a B as a regulär sub­
group by 1.1. Since v' is determined by the d iagram, the embedding Naß 
is also uniquely determined. 

We close this section by recal l ing some elements of descent theory (see, 
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e-g> [4, PP- 44, 65]) . Suppose L \ k Ga l o i s with group G . Let A be an object 
(vector space, algebra, H o p f algebra) over k . A n L - f o r m of A is a /c-object 
B such that L®k B^L®k A . Let us agree on ® = ® k . 

G operates on L®A by automorphisms via L . By conjugation, G 
operates on H o m z ( L ® A , L® A ' ) for /:-objects A , A ' . 

(Example : A = k ' \ AutL(L®A) = G l ( n , L ) , and G operates on the matr ix 
entries.) 

1.4. T H E O R E M . T h e set L -Form( ,4 ) of L - f o r m s of A m o d u l o i s o m o r p h i s m 
is in b i j e c t i v e c o r r e s p o n d e n c e with H l ( G , AutL(L® A ) ) . 

P r o o f See [4, 8.1 and 9.1]. 
In this theorem, //' denotes as usual the pointed set of cocycles with 

cohomologous cocycles identified. A cocycle in a G -modu l e P is a family 
{ p a \ ( j G G } , p a e P , p a x

 = Pa'° ( P x ) - W e omit the definit ion of the relation 
"cohomologous . " 

F o r later use, we make the correspondence explicit: F o r B e L - F o v m ( A ) , 
(/>: L® B - > L®A an i somorph ism, we construct a cocycle as follows: 

/ ^ ^ • o p ^ a ) - ^ 1 - o p ^ e j - ^ e AuiL(L® A ) . 

Here o p A ( a ) denotes the Operation of o e G on L®A through the left 
factor L. Every cocycle occurs in this way. 

D E F I N I T I O N . Let B , be an L - fo rm of A h L®Bi^L®Ai (/=1,2). 
Then a morphism f . L® A x - * L® A 2 is called d e s c e n d a b l e if there is a 
morph ism g such that 

L®BX L®B2 

<t>\ <l>2 

L®A{ —^—• L®A2 

commutes. (If g exists, it is unique.) 

1.5. L E M M A . I n this n o t a t i o n , l e t p { , ) be the a s s o c i a t e d c o c y c l e s t o 
T h e n f is d e s c e n d a b l e if a n d o n l y if 

/ • P ( j ] = p (
a

2 ) - f M a l l a e G . 

P r o o f Easy verif ication which we omit. 
F o r subsequent use, we make one last remark: 

481 /106/1-16 
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1.6. L E M M A . L e t H be a H o p f a l g e b r a o v e r k , p : H®K-*K a k - l i n e a r 
map. Then p defines an H - G a l o i s s t r u c t u r e if a n d o n l y if L® p defines an 
L ® H - G a l o i s s t r u c t u r e on L®K. 

P r o o f The assertion follows from the general theory of faithfully flat 
descent appl ied to L \ k . 

2. S T A T E M E N T O F T H E M A I N T H E O R E M A N D F I R S T E X A M P L E S 

Let us begin with another explicit example. Cons ider the extension 
K=Q{fä)\Q = k . The extension K { i ) \ Q { i ) is Ga l o i s wi th group N = C4, 
so it is // 0 -Galo is with H 0 = Q ( / ) [ C 4 ] . One can show by direct ca lculat ion 
that H 0 contains a sub -Hop f algebra H with H 0 = //[/] and H operates on 
K in such a way that K \ Q is //-Galois: If e Stands for a generator of C 4 , 

We omit the details since the example is covered by the general theorem to 
follow. We resume the setup (*) of the first section: K = norma l closure of 
the separable extension K \ k , G = A u t ( K \ k ) , G' = \ u t ( K \ K \ and S = G / G ' . 

Set ß = P e r m ( S ) . Since G operates on S = G / G \ G maps into B. This 
map is monic, since its kernel is the intersection of a l l conjugates of G\ or 
(which is the same) the biggest invariant subgroup of G contained in G\ 
and this group must be tr iv ia l because K is the smallest Ga l o i s extension of 
k over K . Thus we have Gaß. 

(In our example, 5 is in canonical bijection with the four complex roots of 
X4-2, and G operates faithfully on S. If we identify S wi th { 1 , 2 , 3 , 4 } , G 
is the dihedral group D 4 = < ( 1 2 3 4 ) , ( 1 3 ) > and C ' = < ( 2 4 ) > . G has a nor­
mal subgroup N = < ( 1 2 3 4 ) > which is a regulär permutat ion group on S. 
A l l these remarks show that we do have a part icular case of the fo l lowing 
result.) 

2 . 1 . T H E O R E M . L e t K \ k be a s e p a r a b l e f i e l d e x t e n s i o n , 5 , B as a b o v e . 
Then the f o l l o w i n g a r e e q u i v a l e n t : 

(a) T h e r e is a k - H o p f a l g e b r a H such t h a t K \ k is H - G a l o i s . 

(b) T h e r e is a regulär s u b g r o u p Naß such t h a t the s u b g r o u p G of B 
n o r m a l i z e s N. 

F u r t h e r m o r e , the g r o u p N in (b) is o b t a i n e d f r o m (a) by the p r o c e d u r e of 
L e m m a 1.3. T h e H o p f a l g e b r a H in (a) is always a K - f o r m of k [ N ] a n d can 
be c o m p u t e d by means of G a l o i s d e s c e n t . 

H = Q | > , . 9 ] / ( c 2 + . r - 1, es). 
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The proof is postponed to Section 3 for the sake of examples. 

2.2. E X A M P L E . K = Q(fä), k = Q. Here K = Q ( ^ , ^ / 2 ) , G is the füll 
permutat ion group on 5 ~ {1, 2, 3}, and G' has two elements. Take N to 
be the alternating group on {1 ,2 ,3 } . Th is is the example from the 
introduct ion (where H was also expl ic i t ly given). 

2.3. E X A M P L E . K = Q ( ^ 2 ) revisited. We know G ^ D 4 on {1 ,2 ,3 ,4 } . 
£ > 4 = < ( T , T > , ff = (1234) , T = (13). If one takes N = <<j2, <TT>, then 
C 2 x C 2 = iV < G, and one sees easily that N is regulär. Th is gives rise 
to a Hop f algebra H ' (which is not i somorphic to H constructed at the 
beginning of this section). One can show: H ' is the sub-Hop f algebra 
Q[.v/, s + f, J ^ 2 { t - s ) ~ ] of Q ( v ^ ) [ ^ 0 = Q ( y - 2 ) [ C ,

2 x C 2 ] , where 
s 2 = t2 = 1 and s, / are group-l ike. Setting a = ( s + t)/2, b = (y/^2/2)(t — s ) , 
one obtains H ' ^ Q | > , b ] / ( a b , b2-2a2 + 2) and A a = a®a-{b®b, 
Ah = a®b + b®a, e ( a ) = 1, ß(A) = 0, S ( a ) = a, S ( b ) = b. 

N.B . This is an example of a separable field extension which has two dif-
ferent Hop f Ga lo i s structures. Naka j ima has given an example of this 
phenomenon in characteristic 2 using a different approach [6, Remark 2 
fol lowing 2.7]. 

R e m a r k . In both these examples, /V was actually contained in G. This 
need not hold in general; see Section 4. 

2.4. C O U N T E R E X A M P L E . Let K = Q(£), [ t f : Q ] = 5, G a l ( f | Q ) = 
A u t ( ^ | Q ) ^ 5 5 . (Plenty of such K exist.) Then K \ Q is not //-Galois for 
any H . 

P r o o f . [ G : G ' ] = 5, so ß = S 5 , B = G. Assume there exists a normal 
subgroup N < i S 5 which is regulär on S = G / G ' . Since N is then necessarily 
generated by a 5-cycle, this can be refuted directly, but we argue in a more 
general way: 

2.4.1. L E M M A . F o r N < F ( F any g r o u p ) , # N o r m r ( N ) divides 
# C e n t r ( A 0 - #Aut (W) . 

P r o o f . This follows from the left exact sequence 

1 -> C e n t , (TV) - N o r m r ( A 0 - Aut(JV). 

2.4.2. L E M M A . L e t N<S„ be a regulär s u b g r o u p . Then C t n i S n ( N ) = 
{(/>„\ae N } ^ /V o p p , where (j)0 is defined by ( j ) a ( i ) = p,((j(l)), ßiSN b e i n g 
d e t e r m i n e d by ju,( 1) = /. 
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P r o o f . Take ( j ) e C z n i S n ( N ) and find o e N with a { \ ) = </>(\). Then <ß = (/>„. 
In fact, let /# {1 , . . . , « } and p , e N , p , ( \ ) = i. Then pi</> = (/>pl. so that 
i$H0 = < ,̂( 1) = 1) = 1) = <f>M)' Conversely, given o e N define <j>„ as 
in the lemma. Since </>M) = (f>AJ) implies ju / a( l ) = ^ / f f ( l ) , it implies / = y 
because N is regulär, so <t>a is indeed in S,r One easily checks that 
^ e C e n t ^ T V ) and that <j>az = <f>z(f>a-

N o w the two preceding lemmas imply in the Situation of 2.4: 
# N o r m S 5 ( N K # N o p p - # A u t ( N ) . But N ^ C 5 , so the last expression is 20. 
This contradicts the assumption that the group S5 normalizes N. 

Whole reams of examples for //-Galois extensions can be constructed 
with the fo l lowing result: 

2.5. T H E O R E M . A s s u m e K \ k a separable f i e l d e x t e n s i o n , a n d assume 
there e x i s t s a G a l o i s e x t e n s i o n E \ k such that K®Eis a f i e l d which c o n t a i n s 
a n o r m a l c l o s u r e K of K \ k . Then K \ k is H - G a l o i s , where H is an E - f o r m of 
k\_N] andN^Aui(K® E \ E ) . 

P r o o f (a) First we show E can be shrunk to a Ga lo i s extension E ' 
with K® E ' = K . Let M , N, P, T be the groups of automorphisms of K® E 
fixing K , E , K , k , respectively: 

K®E 

We c la im K n ( K E ) = K - ( K n E ) . If we translate this into groups, we have 
M • ( f n N ) = F n ( M • N ) , and this is correct since N is no rma l and 
T ' ^ M . So K = K n ( K E ) = K • ( K n E ) = K® ( K n E ) , and we may define 
E ' = K n E . 

(b) Suppose K®E=k Let N = A u l ( K \ E ) , G' = Aut(£| K ) . Then N 
is a normal complement to G' in G (since E \ k is Ga lo i s , K n E = k , and 
K E = K ) , so N is regulär on S = G / G ' . N o w we take the opposed group 
7V°PP = { ^ | < 7 E N ) c P e r m ( 5 ) = B as in L e m m a 2.4.2. We c la im 7 V o p p is 
normal ized by Gaß and centralized by Naß. P r o o f The second half 
follows from the lemma. So we take g e G and have to show 
g . 7V o p p • g ~1 c N o p p Since ; V o p p is transitive, we may change g so that 
g ( l ) = 1. Take ^ e i V o p p . C l a i m : g ( / > a g ~ l = < ( > g ( T g i . (This makes sense since 
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g o g 1 e N . ) To prove the c la im, we evaluate at /. In the notat ion of 2.4.2, 
this gives the equation 

g p g - - H i ) a ( \ ) = / < / ( ( = A i / ( g f f ( D ) ) -

So it suffices to prove g p g - i { i ) = p , g , or equivalently p g - l { i ) = g ~ x p t g . N o w 
both sides are in N, so we only need to evaluate at 1. Then we get 
A V i ( / ) ( l ) = £~ '(') = £ " I ( j M l ) ) = g " " V / S ( U a n d the c la im is proved. 

Thus N o p p a B satisfies cond i t ion (b) of 2.1, so (a) also holds. Moreover , 
N operates tr ivial ly on A f o p p , so by Coro l l a r y 3.2 (see third section) the 
isomorphism K®HnK\_N~\ is already defined over the fixed field of N, 
i.e., over E . 

( R e m a r k . In the proof above, one cou ld take N in the place of N o p p , and 
this wou ld also yield most of the result, but with a different H o p f algebra H 
which is not necessarily an £-form of k\_N~\. See Section 5.) 

2.6. C O R O L L A R Y . A n y r a d i c a l e x t e n s i o n of the f o r m K = k ( a \ a " e k , 
char(/t)J/?, which is l i n e a r l y d i s j o i n t t o k((„) o v e r k , is H - G a l o i s . ( T h i s 
c o v e r s , e . g . , Q ( $ 2 ) and 0(</2), which were c o n s i d e r e d a b o v e , and m a n y 
o t h e r c a s e s . ) 

P r o o f . K®k k(£„) = K(£„) is the Splitt ing field of X " — a" over k , so it is 
Ga lo i s over k , and we may apply 2.5. 

R e m a r k 1. In some special cases, one can do without the l inear 
disjointless by replacing /c((„) by an appropriate subfield. 

R e m a r k 2. k ( a ) is a graded /c-algebra wi th group C „ if X " — a n is 
irreducible over k . By [2, p. 39, remark preceding 4.16] this already implies 
that k ( a ) is //-Galois over k , where H is the dua l H o p f algebra of & [ C „ ] . 

3. P R O O F O F T H E M A I N T H E O R E M 

It is convenient to restate the ma in Theorem 2.1 in a more technical 
form. Let the notat ion be as in (*) (first section). 

3.1. T H E O R E M . L e t N a B be a s u b g r o u p . T h e f o l l o w i n g a r e e q u i v a l e n t : 

(a) There is a k - H o p f a l g e b r a H and an H - G a l o i s s t r u c t u r e on K \ k 
which induces N c B by way of P r o p o s i t i o n 1.3. 

(b) A" is regulär on S = G/G\ a n d the s u b g r o u p Gaß (see the r e m a r k s 
p r e c e d i n g 2.1) n o r m a l i z e s N. 
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M o r e s u c c i n c t l y s t a t e d , t h e r e is a b i j e c t i o n hetween i s o m o r p h i s m classes of 
H - G a l o i s s t r u c t u r e s on K \ k a n d regulär s u h g r o u p s Naß n o r m a l i z e d by G. 

Theorem 3.1 is a sharpened version of 2.1 (see Propos i t i on 1.3). Before 
beginning the proof, we sti l l State a coro l lary which wi l l be proved along 
the way. 

3.2 . C O R O L L A R Y . A s s u m e the n o t a t i o n of the t h e o r e m , and assume (a) 
and (b) h o l d . L e t G0<= G be the g r o u p of e l e m e n t s o p e r a t i n g t r i v i a l l y on N, 
and let L 0 c K be the f i x e d f i e l d of G0. Then L 0 is the s m a l l e s t e x t e n s i o n of k 
with L 0 ® H ^ L 0 [ N l 

P r o o f 0 / 3 . 1 . (b) implies (a): Recal l S = G / G ' . Define p ! : R [ N ] ®-KKS 

- + KS by p ' ( p ® x e g ) = x • ef)(g) for p e TV, g e G. (Recal l {<?-| g e G / G ' } is the 
canonical base of K S . ) Moreover , define p g : N ^ N by p H ( n ) = g n g 1 for 
n e N, g e G . Then { p g \ g e G } is a G-cocycle of £-Hopf automorphisms of 
K [ N ] . (Here we have used that the Operation of G on Aut^ . H o p f ( ^ [ . ' V ] ) via 
K is tr iv ia l , because the H o p f automorphisms of the group r ing K\_N~\ are 
just the group automorphisms of N . ) 

Any element h e G operates on K\_N~\ v ia K, and on KS by virtue of 
h ( x - e g ) = h ( x ) - e j ^ . We define as earlier: h p = h - p ' - h l. Let us check that 
the fol lowing d iagram commutes: 

Ph ® i 

K [ N 1 ® R K S — K S 

We start with p®xeg. Then hp'(p®xeg) = hp'h \p®xep) = 
hp'(p®h-l{x)'e—x) = h ( h ' ( x ) - e p l — g ) ) = x • e h f ) { j - r g ) . G o i n g the other 
way gives: p'(ph®\)(p® x e t , ) = p ' ( h p h 1 ® x e g ) = x - ehf)h which is the 
same. 

By L emma 1.2, KS = k®k K as ^-algebras and G-sets, so one gets a new 
map ß such that 

k[N]®z(K®K)-^-+ K®K 

Ph® 1 

k[_N^®k(k®K)—^— K®K 

commutes. Let H be the K - i o v m of /C[JV] defined by the cocycle 
{ p h } . Tr i v ia l l y , K is the K - f o x m of K defined by 1. By L e m m a 1.5, ß is 
descendable, i.e., ß = K®p0 where p 0 is a /c-linear map H ® K ^ K . By 
L emma 1.6, p 0 defines an //-Galois structure since p defines a 
K® //-Galois structure. 
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(a) implies (b): Define L = K . Then by Propos i t i on 1.3, we have 
L® H ^ L \ _ N ] for some group N. The fo l lowing argument works for any 
extension L of K which is Ga l o i s over k and which satisfies L® H ^ L \ _ N \ 

L is Ga l o i s over k . Let r = A u t ( L \ k ) . Then r maps onto G = A u t ( K \ k ) . 
So r operates on L®K v ia the left factor, and on L s as before: 
y t t ' e g ) = yW'e-fö, where y h - * h e G . Let p 0 : H® K - + K be the given 
//-Galois structure. The L - fo rm H of /c[N] belongs to a cocycle 
{ p . . \ y e r } , and in the notat ion of 1.5, the lower hor i zonta l map which is 
defined by the fol lowing d iagram is descendable: 

(L®H)®L(L®K)^^ (L®K) 

L[N]®L(L®K) —-—• (L®K) 

By 1.5, this means that the fo l lowing d iagram commutes for al l elements 
y e T : 

L[N~]®L(L®K)—±-+ L®K 

P-; ® 1 

£ [ W ] ® z . (L®K)—^ L®K 

We again replace (by Lemma 1.2) L® K by the isomorphic L-algebra and 
T-set L s and get a commutat ive d iagram: 

/ . [ / V ] ® , . L s — L s 

P,® i 

L[N-}®LLS > > , L S 

N o w p . . is certainly induced by a group automorphism of N. Let g be the 
image of y in G. We c la im: p y \ N = conjugation with g. ( N is a permutat ion 
group on S by virtue of p . ) In order to use the commutat iv i ty of the 
preceding diagram, we chase the element v®es either way (where v e N , 
s e S ) : 'p'(v®es) = yp'y ' ( v ® e s ) = yp'(v®eg-i{s)) = y ( e v g - H s ) ) = egvg-Hs). In 
the other way, we get p'(py® \){v®es) = p'{py(v)®es) = epAv)ix), so indeed 
p y ( v ) = g v g ] . In particular, N is normal ized by G. The regularity of N was 
already observed in 1.3. 

P r o o f of 3.2. We look at the proof of 3.1, (a) implies (b). The cocycle 
{ p y \ y e r } was defined as the compos i t ion /"-• G A u t G r ( N ) , where c 
sends g to conjugation with g . Let G 0 = C e n t G ( A 0 be the kernel of c. Then 
G 0 = Aut(ÄT| L 0 ) f ° r some field L 0 a K . We have an isomorphism 
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(j>: L® / / - » L [ N ] such that p y = <j>• o p „ ( y ) • 1 • o p / [ : y v ] ( y ~ l ). N o w = id 
implies <j> • op,y(y) = o p L [ y v ] ( y ) so this equat ion holds for a l l y mapping 
into (7 0, i.e., for al l y leaving L 0 fixed, so by classical Ga l o i s theory the map 
(j> is already defined over L 0 , i.e., L 0 ® / / ^ Z , 0 [ J V ] . Us ing similar 
arguments, it is easy to check that L 0 is the smallest field with this 
property, and L 0 <= K . 

We conclude the section wi th some remarks on uniqueness. First we 
show that the H o p f algebra H and the //-Galois structure are uniquely 
determined by N ^ > B : 

3.3. L E M M A . L e t K \ k b e H - and H ' - G a l o i s with H o p f a l g e b r a s H a n d H ' 
which a r e b o t h K - f o r m s o f k [ N ~ \ a n d i n d u c e t h e s a m e e m b e d d i n g Naß. 
T h e n t h e r e is an i s o m o r p h i s m \p\ H -* H ' o f H o p f a l g e b r a s c o m p a t i b l e with 
the t w o G a l o i s s t r u c t u r e s p H a n d p H - . 

P r o o f H and H ' induce the same cocycle { p h \ h e G } on A^ [JV] by 
P t , ( v ) = hvh 1 as in the proof of 3.1. So there is an i somorphism H H ' 
of /c-Hopf algebras such that 

K®H 

K®H' 

K W 

commutes. So we get a commutat ive d iagram 

(K®H)®R(K®K)-

K<8> ( 0 ® 1 ) K[W] ®R ks 

(K®H)®z(K®K) 

K®K 

K s 

>K®K 

Reading the outer frame and using that K \ k is faithfully flat, we obta in 
pH.>W®\) = p H . Q . E . D . 

R e m a r k . We know already that N a long with its embedding in B is un i ­
quely determined by H and its Operation. The converse was proved above. 
If we now forget Operations and permutat ions, the picture is different. The 
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abstract group TV is sti l l determined by the H o p f algebra H (up to 
isomorphism) , since it is " t h e " group with k®H^k[N~\. But the H o p f 
algebra H need not be determined by the abstract group N (see an example 
in Sect ion 4). Even if we are not interested to know how H operates, and 
only want to know H up to i somorph ism, in general we already have to 
know how N operates, not just what abstract group N is. 

4. T H E " A L M O S T C L A S S I C A L " C A S E , A N D M O R E E X A M P L E S 

W e recall the setup (*): K \ k separable, K = norma l closure of AT|A:, 
G = A u t ( K \ k ) , G' = A u t ( K \ K \ S = G / G \ £ = P e r m ( S ) . The main 
theorem 2.1 does not teil us whether the subgroup N is contained in G c B 
or not. It turns out that in practice this may or may not happen. The case 
N c z G leads to an interesting class of extensions K \ k which encompasses a l l 
previous examples and deserves study: 

4.1. P R O P O S I T I O N . The f o l l o w i n g c o n d i t i o n s a r e e q u i v a l e n t : 

(a) T h e r e e x i s t s a G a l o i s e x t e n s i o n E \ k such t h a t k®E is a f i e l d 
c o n t a i n i n g K . 

(b) T h e r e e x i s t s a G a l o i s e x t e n s i o n E \ k such t h a t K®E=K. 

(c) G' has a n o r m a l c o m p l e m e n t N in G. 

(d) T h e r e e x i s t s a regulär s u b g r o u p Naß n o r m a l i z e d by G and 
contained in G (see 3.1). 

P r o o f We know that Gaß and that G is transitive on 5. By definit ion, 
G' is the stabilizer in G of e e S . F o r N < = G we have 

N - G' = G iff N is transitive; 

N n G ' — e iff Stab i V (^) is the tr iv ia l group. 

Together this means: N is regulär on 5 iff N is a complement to G' in G, 
which proves (c)<^>(d). 

(b)=>(a) is tr iv ial , and (a)=>(b) was proved in 2.5. 

(b) =>(c): Take N = A u l ( K \ E ) . By usual Ga l o i s theory, the Statement 
K E = K translates into N n G ' = e, K n E = k means N G ' = G. N is normal 
in G since E is Ga lo i s over k . 

(c) =>(b): Take £ = fixed field of N. K E = K and K n E = k follow 
again from usual Ga lo i s theory. F o r KE^K®E, one computes al l degrees 
involved and uses [ G : N~] • [ G : G ' ] = [ G : e\ 
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R e m a r k . Propos i t ion 4.1 (d) is satisfied when G is a Frobenius group 
with respect to its subgroup G'. In this case, N is uniquely determined 
as the Frobenius kernel of G. In Example 2.2, G is Frobenius, and in 
Example 2.3 it is not (but 4.1 (d) holds a l l the same). We are grateful 
to M . Takeuch i for drawing our attention to this point. 

4.2. D E F I N I T I O N . If K \ k satisfies the four condit ions of 4.1, we say that 
K \ k is an a l m o s t c l a s s i c a l G a l o i s e x t e n s i o n . Examples : A l l //-Galois exten­
sions we have seen so far. Compare Coro l l a r y 2.6. 

It is not tr iv ia l to find an extension which is //-Galois but not almost 
classically Ga l o i s but it can be done. T o this end, we begin with some 
remarks about realizing a given group-theoretical Situation by fields. Let 
G a Sn be a transitive subgroup and let G' be the stabil izer of n. Then 
{1,..., n ) is canonical ly identified with the left cosets G/G' , so we cal l G/G' 
again S so that G maps into B = Perm(S ) = S„. One knows that the Ga l o i s 
group G is realized by some field extension K \ k . Let K = F i x (G ' ) . Then K is 
the normal closure of K \ k if and only if G' contains no proper normal sub-
groups of G, and this is equivalent to the injectivity of G - > B. (The kernel 
of G B is the biggest norma l subgroup contained in G ' . ) 

When construct ing examples, we wi l l begin with G a S„ transitive, form 
G' as above, check that G' contains no normal subgroups, and only then 
wi l l be bother about f inding "n i ce " fields which realize the Situation. 

Some Conventions: The under ly ing set of the cycl ic group C„ = Z / n Z w i l l 
be taken to be (1, 2, 3,..., w}, n being the zero dement. V i a group addi t ion, 
C„ becomes a subgroup of Sn. S imi lar ly , the automorph ism group 
Aut(Z//?Z)= [invertible elements of the r ing Z / n Z } is v ia mult ip l i cat ion a 
subgroup of S„, and Cn together with Aut (C„ ) forms a semidirect product 
inside S„. The elements of C„ cx Aut (C„ ) w i l l be denoted ( a , m ) ("first 
mult ip ly by m e Z / n Z , then add äeZ/nZ"). Mos t overhead bars wi l l be 
omitted. 

4.3. L E M M A . F o r n = 16, t h e r e e x i s t s G a S„ as a b o v e such t h a t : 

(a) T h e r e is a regulär s u b g r o u p N c z S l 6 , Ger Norm 5 l 6 (A^ ) . 

(b) T h e r e is no regulär s u b g r o u p N of 5 1 6 with N c z G c z N o r m S l 6 ( i V ) . 

P r o o f . Let M a Aut(C, 6 )<= Sl6 be the four-element group (!) generated 
by (0,3) (= mult ip l i cat ion by three on C 1 6 ) . Set G = C l b \ x M . Then 
# G = 64, and G normalizes N = C l b . G w i l l be a subgroup of G of index 
two. Put G 0 = <(2, 1 ) > ^ C 8 and define er = (1,3). One checks the 
fol lowing: o normalizes <70, °2 = (4, 9) $ G 0 , <r4 = (8, 1) e G 0 . Let G be 
generated by G 0 and o. We have the d iagram 
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e > C 1 6 > G • M • e 

u u \\\ 
e • G 0 • G — - — > C 4 • e, 

where / maps a to a generator of C 4 . Since G<=G, G normalizes N. G is 
transitive since GQ is already transitive on even numbers and a ( 0 ) = 1. G' 
contains no normal subgroups of G : Since # G = 32, G ' has two elements, 
so G ' = {c\ (0,9)} and one checks that G ' is not no rma l in G. So (a) is 
proved. 

Fo r (b), assume the contrary. Then # N = 16, so N has index two in G. 
N is transitive. Set N0 = NnG0. Then 

e - yv 0 -> N -> C 4 

is left exact, and because of # i V = 16 there are two cases: 

(i) # N 0 = 4, yv maps onto C 4 , 

(ii) # N { ) = $, N maps onto the nontr iv ia l subgroup of C 4 . 

Suppose (i) holds. Then N{) = <(4, 1)>. P ick d e N which gives the same 
image in C 4 as a under /. Then ö = (a, 3), and since öeG, a has to be odd. 
We look at the yV-orbit of 16: Under N0 one gets {4, 8 , 12, 16}. App l y ing ö 
gives a + 4, a + 8 , 12} = = ^ mod 4}. App l y i ng N 0 again 
doesn't produce anything new, and app ly ing a again gives { a + 3a, 
a + 3fl + 12, fl + 3 « + 8 , Ä + 3ö + 8} = {4, 8 , 12, 16}. So the orbit consists of 
the eight elements b congruent to 0 or a modu lo 4, which contradicts the 
transitivity of N. 

Suppose (ii) holds. Then N 0 = G 0 = < ( 2 , 1)>. The image of N in C 4 is 
generated by the class of er2 = (4, 9), i.e., 7V=<(2, 1), ( a , 9)> for some a, 
and if a were odd, (#, 9) wou ld not be in G. Here one sees at once that the 
jV-orbit of 16 consists only of even numbers, so we arrive at a contradict ion 
also in this case. 

4.4. C O R O L L A R Y . If K = Q ( J ^ 1 , X ^ 1 \ k = Q ( s / ^ 2 ) , then K \ k is 
H - G a l o i s f o r s o m e //, but n o t a l m o s t c l a s s i c a l l y G a l o i s . 

P r o o f . K a K = 0(1^2, ( i 6 ) where ( i 6 is a primit ive 16th root of unity. 

Let G = A u t ( K \ k ) . G operates faithfully on the sixteen roots (,6 1^2, 

£ 2
6 iy2,...., C\t' ]\ß- (which we number canonical ly from 1 to 16), i.e., 

G<= 5" 1 6. By definition of K , G' = Aut(£| K ) consists of those permutations 

leaving fixed. 

C l a i m . G is exactly the group <(2, 1), (1, 3)> from L e m m a 4.3. 
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F o r this we prove: 

(i) # G = 32, 

(ii) (2, 1 ) and ( 1 , 3) are in G. 

(i) Th is just means [ £ : & ] = 32. N o w [ £ : < • ] = [ Q ( ( , 6 ) : Q ] • 
\_K\ Q (C , 6 ) ] . The first factor is 8, and so is the second factor (reason: J l 
is in Q(Ci6) but ^fl is not because it does not lie in any abel ian extension 
of Q ) . So [ K : Q ~ \ = 64, i.e., [ £ : * ] = 32. 

(ii) We know that ö = A u t ( ^ | Q ) is via Operation on the roots of 
Xl6~2 a 64-element subgroup of C , 6 t x A u t ( C 1 6 ) c 5 I 6 , and since \$/2 has 
degree 8 over Q!(( l 6 ) , the automorph ism a ( 2 n which sends 1^2 to Cy 6- \ f i -
and fixes £, 6 exists. Furthermore , since Aut(Q(£ 1 6)|C|)) = A u t ( C 1 6 ) , f ° r 

some a e C , 6 we must have an automorph ism c r ( a 3 ) in G , to be precise: 
<*,„.„( 1^2) = C?«- 1^2 and a ( u . 3 ) (C 1 6 ) = tf6. 

Suppose # is even. Then we can make it vanish since we have f j ( 2 1 ) 6 G , 
so we find an automorph ism o fixing and sending £ 1 6 to C} 6. ^ u t then er 
sends Cs + CR t 0 Cg + Cs3> i-e> it sends ^/2/2 to — N /2/2, so a cannot fix 1 ^ 2 , 
a contradict ion. Th is shows that a was odd , so as above we can suppose 
a = 1. N o w the only thing left to do is to check that o { 2 X ) and c r ( 1 3 ) indeed 
leave k fixed, i.e., they leave y j — 2 fixed: 

^ . „ ( v ^ ) = ^ ( 2 J ,(ct 6 • ^ 2 « ) = a • ( C T J 8 • ^ 2 8 = 

a ( ^ { J ^ 2 ) = <x ( L 3 ) (C? 6 ' ^ 2 8 ) = CB(C i6 ' V ^ ) 8 

= C 2 ^ ' i y 2 8 = y Z 2 . Q . E . D . 

4.5. R e m a r k . In the same setting one can find a transitive group G<= 
and subgroups N]9 JV2<= Perm(S ) such that the Operations of G on N,-
are essentially different, i.e., there is no G-invariant isomorphism between 
N} and N2. By descent theory, this means that the two H o p f algebras //, 
obtained from N , c z B are not i somorphic over k\ see the remark at the end 
of Section 3. Take N , = C , 6 c S 1 6 and /V2 generated by (1, 9), G = C , 6 I X M . 
One checks that N2 is also cyclic of order 16, but not G- isomorphic to Nx. 
We omit the details. 

A t the end of this section we now classify in detail a l l //-Galois exten­
sions with smal l degrees, and we prove a theorem on the possible "s i ze " of 
the normal closures of //-extensions. Let as always K \ k be separable, 
G = Aut(£| k \ G' = A u t ( K \ k ) , and set n = [ K \ k~\. 

4.6. T H E O R E M , (a) If n = 2, K \ k is { c l a s s i c a l l y o r ) H - G a l o i s . 

(b) If n = 3, K \ k is H - G a l o i s f o r a p p r o p r i a t e H . 

(c) If n = 4, K \ k is H - G a l o i s f o r a p p r o p r i a t e H . 
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( C o m m e n t : In (b) a n d (c), the n o t i o n s H - G a l o i s a n d " a l m o s t c l a s s i c a l l y 
G a l o i s " c o i n c i d e . ) 

(d) I f n = 5, e i t h e r # G ^ 6 0 and K \ k is n o t H - G a l o i s o r #G^20 and 
K \ k is H - G a l o i s . ( # G e {21,..., 59} does n o t happen.) 

P r o o f . Part (a) is clear. F o r the rest of the proof, let us assume that 
K ^ K , i.e., K is not classically Ga l o i s over k . We wi l l always tacitly use the 
ma in theorem 2.1. 

(b) G = S 3 , and we may take N = A y . (See also the Introduction.) 

(c) G a S 4 is transitive, # G e { 8 , 12, 24}. 

If # G = 12 or 24, then G = A 4 and S4 resp., and one can take N = D 2 

(the four-group of K l e i n , alias the commutator group of 5*4). 
If # G = 8, then G is a D 4 (since S4 does not conta in copies of the 

quaternion group or any 8-element abel ian group), so G = <cr, T> with o a 
4-cycle and x a transposi t ion such that xox = a ~ \ Here one may take 
/V=<cr> or TV = <cr, ox>. (Compare Example 2.3 and the beginning of 
Section 2.) 

(d) Assume # G ^ 6 0 . Then G is A 5 or 5 5 , and G has no transitive 
norma l subgroups. 

If # G < 60, then # G ^ 24 (there is no subgroup of index 3, 4,..., « — 1 in 
S„ for n=£4 by [3, 115.3]). But # G = 24 is impossible since 5|G, so we are 
left wi th # G e {10, 15, 20}. In al l three cases the Sylow 5-subgroup of G is 
normal , and it has to be generated by a 5-cycle, so it is also regulär and it 
serves as our N. 

4.7. T H E O R E M . Suppose K \ k is H - G a l o i s . Then # G ^ « • / ? [ l 0 ß 2 " l 

P r o o f By 2.1 there is an /7-element group N normal ized by G c z S t r By 
2.4.1, # G ^ #Cent^(7V)- #Aut (JV) , and the first factor equals n by 2.4.2. 
N is generated by at most [ l o g 2 « ] elements as a group (exercise!), so 
# A u t ( A 0 ^ / ? [ l o g 2 / , J . 

U s i n g this theorem and some easy estimates, one deduces: 

4.8. C O R O L L A R Y . Suppose n ^ 5 a n d G = Sn o r A n . Then K \ k is n o t 
H - G a l o i s f o r any H . 

5. T H E S O - C A L L E D M A I N T H E O R E M O F G A L O I S T H E O R Y 

Assume the field extension K \ k is //-Galois wi th respect to the A>Hopf 
algebra H . The ma in theorem of Ga l o i s theory in its general form says: 



256 G R E I T H E R A N D P A R E I G I S 

5.1. T H E O R E M [2, Theorem 7.6]. If we define f o r a k - s u b - H o p f a l g e b r a 
W of H 

Fix ( W ) = { x e K \ p ( w ) ( x ) = e ( w ) • x a l l we W ) , 

then the map F i x : 

{ Wc H s u b - H o p f a l g e b r a } - > { E \ k c z E a k , E f i e l d ] 

is i n j e c t i v e and i n c l u s i o n - r e v e r s i n g . 

Let us say that the ma in theorem holds in its s t r o n g f o r m if F i x is also 
surjective. This is the classical Situation (we are completely ignoring the 
classical Statements concerning no rma l subgroups and intermediate Ga lo i s 
extensions). N o w we get some justi f ication for our not ion of an almost 
classical Ga l o i s extension: 

5.2. T H E O R E M . If K \ k is a l m o s t c l a s s i c a l l y G a l o i s , then t h e r e is a H o p f 
a l g e b r a H such that K \ k is H - G a l o i s and the m a i n t h e o r e m holds in its 
s t r o n g f o r m . 

P r o o f Let as always K be the normal closure of K \ k , G = Aut(ÄT|Ä:), 
G' = A u t ( K \ K ) , and let N a G be a normal complement of G'. We are in 
the same Situation as in part (b) of the proof of 2.5. N o p p c= B is constructed 
as in 2.4.2, and the form H of /c[7V o p p ] is defined by the G-cocycle 
{ p g | g e G } , p g = conjugation wi th g in B. ( N o p p is indeed normal ized by G ; 
see the proof of 2.5.) We intend to show that doma in and ränge of the map 
F ix have the same (finite) number of elements (this wi l l prove surjectivity 
by 5.1). By general descent theory, the sub-Hopf algebras W c z H are in 
bijection with the set of subgroups U c z N o p p stable under al l p g . N o w 
G = N i x G ' and N centralizes N o p p , so U is /? rstable for all g e G i f f U is 
/? / rstable for a l l h e G ' . Let us cal l these groups U "G ' - s tab l e " for short. 

L E M M A . T h e r e is a c a n o n i c a l b i j e c t i o n between the set of i n t e r m e d i a t e 
g r o u p s V, G ' <= K c z G , a n d the set of G ' - s t a b l e s u b g r o u p s of Nopp. 

P r o o f of the L e m m a . By the proof of 2.5, the Operation of G ' on N and 
N o p p is the same. So the second set in the lemma is in bijection with the set 
of G'-stable subgroups of N. T o any V with G ' c z V c z G we associate 
V n N a N , and to a G'-stable group U a N we associate V ( U ) = U\x G'. It 
is then routine to check that these assignments are well-defined and mutal ly 
inverse. 

E n d of the P r o o f of 5.2. N o w we know that # d o m ( F i x ) = # { W c z H 
sub-Hop f algebra} = # { U \ U c N G'-stable} = # { V \ G ' c K c G}. By the 
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classical Ga lo i s theory, this last number equals # { E \ k a E a K y 

R e m a r k . It is not very satisfying that this " M a i n Theorem in the H o p f 
Case " is proved in essence by reduction to the classical case. However, the 
theorems shows that the "almost classical Ga l o i s extensions" are sti l l quite 
close to the classical case. Its proof demonstrates again the technique of 
Ga lo i s descent which reduces the property of being //-Galois to certain 
properties of the Ga lo i s group of the norma l closure. 

Theorem 5.2. prompts the question: Wha t happens if we chose "the 
wrong //"? We recall the construction of 2.5. Wha t happens if we take N in 
the place of Nopp in the construction? We only deal wi th the case N = G , 
i.e., K \ k is classically Galo is . Then N is tr iv ial ly normal ized by G (not 
necessarily centralized), the cocycle { p g \ g e G } on N is just conjugation, 
and we get a form //' of k [ N ~ \ . The sub-Hop f algebras W of //' correspond 
to /^-invariant, i.e., normal subgroups U of N. So we know already: The 
image of F ix has the same cardinality as the set of Ga l o i s extensions E 
between K and k . But actually these two sets are equal. In order to show 
this, let H [ be the sub-Hop f algebra of //' which belongs to U < ] N. We 
cla im F\\(H\ ) = F \ x ( U ) a K . Set E = F \ x ( U ) . We tensor from the left with 
K = K (retaining the~ for clarity) and obta in 

(K® Hf
L!)®k (K® K ) a (K® H'ö)®R (K® K ) > (K® K ) 

K®H[ corresponds under the vertical i somorphism to K \ _ U \ So 
k®¥\\(H'u) = Fi\(k® H ' L I ) is the subalgebra of K®K which corresponds 
to the subalgebra F i x ; i ( ^ [ ^ ] ) = {.ve ÄT'S'| F o r a l l we U, p ( u ) ( x ) = x } under 
the vertical isomorphism. Let E ' be the image of K® E in K s . N o w it wi l l 
be enough to show E ' — Fix(Ä?[£/]) (since by faithful flatness this implies 
E = Fix(//' t /)). By reasons of dimension, it suffices to show E ' a Fix(ÄT[£/]). 
Take x e E and its image i = X g(x)e.<> i n K s . U permutes the eg, i.e., for 
we U we have p { u ) ( x ) = Y, g ( x ) e u g - Th is is equal to x iff g ( x ) = u g { x ) for 
all we U, but this is true since U is normal and U leaves x fixed. Let us sum 
this up in our final result: 

5.3. T H E O R E M . A n y G a l o i s e x t e n s i o n K \ k can be e n d o w e d with an 
H - G a l o i s s t r u c t u r e such that the f o l l o w i n g v a r i a n t of the M a i n T h e o r e m 
holds: T h e r e is a c a n o n i c a l b i j e c t i o n between s u b - H o p f a l g e b r a s of H and 
normal i n t e r m e d i a t e f i e l d s k a E a K . 

£ field} = # range(Fix) . Q . E . D . 

KlU^®kKscz KIN^®RKS 
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This (and earlier results) shows that in the construct ion o f H o p f Ga l o i s 
extensions there is a certain arbitrariness, in contrast to the c lassical case, 
where the Ga lo i s group always comes with the field. 
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