Logo Logo
Hilfe
Hilfe
Switch Language to English

Gratzl, Manfred; Krieger-Brauer, H. und Ekerdt, R. (1981): Latent acetylcholinesterase in secretory vesicles isolated from adrenal medulla. In: Biochimica et Biophysica Acta, Bd. 649: S. 355-366 [PDF, 1MB]

[thumbnail of Gratzl_Manfred_7161.pdf]
Vorschau
Download (1MB)

Abstract

A new procedure is described for the preparation of highly purified and stable secretory vesicles from adrenal medulla. Two forms of acetylcholinesterase, a membrane bound form as well as a soluble form, were found within these vesicles. The secretory vesicles, isolated by differential centrifugation, were further purified on a continuous isotonic Percoll™ gradient. In this way, secretory vesicles were separated from mitochondrial, microsomal and cell membrane contamination. The secretory vesicles recovered from the gradient contained an average of 2.26 μmol adrenalin/mg protein. On incubation for 30 min at 37°C in media differing in ionic strength, pH, Mg2+ and Ca2+ concentration, the vesicles released less than 20% of total adrenalin. Acetylcholinesterase could hardly be detected in the secretory vesicle fraction when assayed in isotonic media. However, in hypotonic media (<400 mosmol/kg) or in Triton X-100 (0.2% final concentration) acetylcholinesterase activity was markedly higher. During hypotonic treatment or when secretory vesicles were specifically lyzed with 2 mM Mg2+ and 2 mM ATP, adrenalin as well as part of acetylcholinesterase was released from the vesicular content. On polyacrylamide gel electrophoresis this soluble enzyme exhibited the same electrophoretic mobility as the enzyme released into the perfusate from adrenal glands upon stimulation. In addition to the soluble enzyme a membrane bound form of acetylcholinesterase exists within secretory vesicles, which sediments with the secretory vesicle membranes and exhibits a different electrophoretic mobility compared to the soluble enzyme. It is concluded, that the soluble enzyme found within isolated secretory vesicles is secreted via exocytosis, whilst the membrane-bound form is transported to the cell membrane during this process, contributing to the biogenesis of the cell membrane.

Dokument bearbeiten Dokument bearbeiten