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Abstract

This papers describes an estimator for a standard state-space model with coef-

ficients generated by a random walk that is statistically superior to the Kalman

filter as applied to this particular class of models. Two closely related estimators

for the variances are introduced: A maximum likelihood estimator and a mo-

ments estimator that builds on the idea that some moments are equalized to their

expectations. These estimators perform quite similar in many cases. In some

cases, however, the moments estimator is preferable both to the proposed likeli-

hood estimator and the Kalman filter, as implemented in the program package

Eviews.
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The fact that the general conditions of life are not stationary

is the source of many of the difficulties that are met with in

applying economic doctrines to practical problems.

ALFRED MARSHALL (1949, v.iii.24)

1 Introduction

Economists, from KEYNES (1939) to LUCAS (1976), have have been uneasy about using

regression analysis for estimating behavioral coefficients from economic time-series.

The assumption that the coefficients describing economic behavior remain invariant

over decades, let alone centuries, seems preposterous. KEYNES (1973, 294) objected

against regression analysis (“Tinbergen’s method”) for this, as well as other, reasons:

“One of the chief dilemmas facing you is, of course, . . . that the method requires not

too short a series whereas it is only in a short series, in most cases, that there is a

reasonable expectation that the coefficients will be fairly constant.”

Further, the assumption that alternative courses of economic policy will leave the

coefficients describing economic behavior unaffected points in a similar direction:

“What happens if the phenomenon under investigation itself reacts on the factors by

which we are explaining it?” (KEYNES 1939, 561). This point – known as the “Lucas Cri-

tique” – led to a rejection of allegedly Keynesian models in modern macroeconomics

(LUCAS and SARGENT, 1979).

Some economists tried to account for these problems by allowing coefficients

to change over time in a diffuse way, formalized by a random walk (COOLEY and

PRESCOTT 1973, SCHLICHT 1973, ATHANS 1974). Here the standard linear model

yt = a′ xt +ut , a, xt ∈Rn , ut ∼N
(
0,σ2) , t = 1,2, ...T

is replaced by

yt = a′
t xt +ut , ut ∼N

(
0,σ2) (1)

at+1 = at + vt , vt ∼N (0,Σ) (2)

with yt ∈R, xt ∈Rn observations, at ∈Rn coefficients to be estimated, ut ∈R normal

disturbances with variance σ2, and vt ∈Rn normal perturbations in the random walk
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(2) with variances σ2
1,σ2

2, ...,σ2
n , viz. a covariance matrix

Σ=



σ2
1 0

σ2
2

.

.

0 σ2
n

 .

As a straightforward estimation procedure for the time-paths of the coefficients

a′ = (
a′

1, a′
2, ... , a′

T

)
, the Kalman-filter has been proposed.1 It calculates aK al man

t =
E

{
at |

(
y1, y2, ... , yt

)
, (x1, x2, ... , xt )

}
for all t = 1,2, ... ,T .

This paper describes another method for estimating the time-paths of the coef-

ficients. This method – termed VC (for “varying coefficients”) – offers the following

theoretical advantages:

• The state of the coefficients at time t , viz. at , is estimated by using all informa-

tion, rather than merely observations up to t : aV C
t = E {at |(

y1, y2, ... , yT
)

, (x1, x2, ... , xT )
}
. This is preferable from a theoretical point of

view.

• The estimator uses an orthogonal parametrization, instead of the usual parame-

trization by initial values. This effaces the problems associated with estimating,

or otherwise providing, initial values.

• For the variances, a maximum likelihood estimator and a related moments

estimator are derived. The moments estimator has a straightforward interpre-

tation in small samples and coincides with the likelihood estimator in large

samples. This lends intuitive appeal to the maximum likelihood estimator and

statistical appeal to the moments estimator.

Further, VC provides the following practical advantages:

• It is implemented in software packages that are freely available and easy to

use (LUDSTECK 2004, SCHLICHT 2005a,b). The more elaborate implementation

(LUDSTECK 2004) relies on the commercial Mathematica program and uses

a global maximization of the criterion function, rather than some gradient

method as typically found in implementations of the Kalman filter. It permits,

in addition, the analysis of panel data, a feature that is not available in current

software packages, whether free or commercial.

1ATHANS (1974), SCHLICHT (1977). For the treatment of time-varying coefficients with the Kalman filter
see e.g. HAMILTON (1994, Sect. 13.8).
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• Although the VC moments estimator, the VC likelihood estimator, and the

Kalman filter yield almost identical results in many cases, the VC moments

estimator is, from a computational point of view, sometimes superior to the

other estimators in poorly conditioned (yet, we submit, practically important)

cases.

From a descriptive point of view, the VC method has a clear-cut interpretation as a

straightforward generalization of the method of least squares:

• While the method of ordinary least squares selects estimates that minimize the

sum of squares
∑T

t=1 u2
t , VC selects estimates that minimize the weighted sum

of squares
∑T

t=1 u2
t +γ1

∑T
t=2 v2

1 +γ2
∑T

t=2 v2
2 + ... +γn

∑T
t=2 v2

n , where the weights

for the changes in the coefficients γ1,γ2, ... ,γn are determined by the inverse

variance ratios, i.e. γi =σ2/σ2
i . In other words, it balances the desiderata of a

good fit and parameter stability.

• The time-averages of the regression coefficients are GLS estimates of the corre-

sponding regression with fixed coefficients, i.e. 1
T

∑
t at = aGLS .

Both features permit an easier interpretation of the results in relation to the original

data than seems possible from the Kalman filter perspective.

The paper is organized as follows: Sections 2 to 4 gives some notation, introduce

the filter and present some preliminary results. Sections 5 to 8 derive the likelihood

estimator and the moments estimator and compare them. Sections 10 to 11 illustrate

the estimators by means of some simulations and compare the performance with the

Kalman filter, as implemented in the popular program package EVIEWS (2005). The

final section 12 summarizes the argument and findings.

2 Notation

Define

y :=


y2

.

.

yT

 , u :=



u1

u2

.

.

uT

 , a :=



a1

a2

.

.

aT

 , v :=



v2

v3

.

.

vT


or der T ×1 T ×1 T n ×1 (T −1)n ×1

4



S C H L I C H T A N D L U D S T E C K – V C - F I L T E R

X :=



x ′
1 0

x ′
2

.

.

0 x ′
T

 , P :=



−In In 0

−In In

. .

. .

0 −In In


or der T ×T n (T −1)n ×T n

(3)

and write (1), (2) as

y = X a +u, u ∼N
(
0,σ2IT

)
(4)

Pa = v, v ∼N (0,V ) , V := IT−1 ⊗Σ. (5)

Denote by ei ∈ Rn the n-th column of an n ×n identity matrix and define the

(T −1)× (T −1)n-matrix

Fi := I ⊗e ′i (6)

that picks the time-path of the i−th disturbance vi = (
vi ,2, vi ,3, ...vi ,T

)′ from the

disturbance vector v :

vi := Fi v.

Define further the T n ×n matrix

Z := 1p
T


In

In

.

In

 (7)

and note that the square matrix
(
P ′, Z

)
is of full rank. Note further that

P Z = 0, Z ′Z = In , P ′ (PP ′)−1 P +Z Z ′ = IT n (8)

where the last equality is implied by the identity

(
P ′ Z

)((
P

Z ′

)(
P ′ Z

))−1 (
P

Z ′

)
= IT n .
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3 Orthogonal Parametrization

For purposes of estimation we need a model that explains the observation x as

a function of the random variables u and v . This would permit calculating the

probability distribution of the observations x contingent on the parameters of the

distributions of u and v , viz. σ2 and Σ. The true model does not permit such an

inference, though, because the matrix P in (3) is of rank (T −1)n rather than of rank

T n and cannot be inverted. Hence v does not determine a unique y but rather the

set of solutions

A :=
{

a = P ′ (PP ′)−1 v +Zλ
∣∣∣λ ∈Rn

}
. (9)

For any v we have a ∈ A ⇔ Pa = v . Hence equation (4) and and the set (9) give

equivalent descriptions of the relationship between a and v in this sense.

In view of (9), any solution a to Pa = v can be written as

a = P ′ (PP ′)−1 v +Z λ (10)

for some λ ∈Rn . As y = X a +u, equation (4) can be re-written as

y = u +X P ′ (PP ′)−1 v +X Z λ. (11)

The model (10), (11) will be referred to as the equivalent orthogonally parame-

trized model. It implies the true model (4), (5). It implies, in particular, that at

is a random walk even though at depends, according to (10), on past and future

realizations of vt .

Equation (11) permits calculating the density of y dependent upon the parameters

of the distributions of u and v and the formal parameters λ. In a second step, all

these parameters – σ2
u , Σ, and λ – can be determined by the maximum likelihood

principle. This will give our likelihood estimates. Our moments estimates – to be

introduced later – will build on the equivalent orthogonally parametrized model as

well.

The orthogonal parametrization entails some advantages with respect to symme-

try and mathematical transparency, as compared to more usual procedures, such as

parametrization by initial values. By assuming some initial values a1 = ā1, the system

(2) can be solved recursively, giving a as a function of v and ā1, and the analysis

would then proceed in a similar way as indicated above. Theoretically speaking, and

with regard to likelihood estimation, all parameterizations are equivalent, but initial

values are more cumbersome to implement than the formal parametersλ. It is for this

reason that, in the context of Kalman filtering, initial values are estimated as posterior
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means, viz. by running the filter back and forth in order to determine the necessary

initial values ā1 iteratively (AKAIKE, 1989, 61-2). The orthogonal parametrization

proposed by SCHLICHT (1985, 55-8) will permit us to write down an explicit likelihood

function and estimate all relevant parameters in a unified one-shot procedure.

Although the orthogonal parametrization may appear not very intuitive at first

sight, it has a straightforward interpretation: The formal parameter vector λ ∈ Rn

expresses additive shifts in the level of the parameters a that leave the disturbance

vector v unaffected.

The formal parameter vector λ relates directly to the coefficient estimates of a

standard GLS regression. Equation (11) can be interpreted as a standard regression

for this parameter vector:

y = X Zλ+w (12)

with w := X P ′ (PP ′)−1 v +u distributed normally:

w ∼N (0,W ) , W := X B X ′+σ2IT (13)

with

B := P ′ (PP ′)−1 V
(
PP ′)−1 P (14)

The maximum likelihood (Aitken, GLS) estimate λ̂ satisfies

Z ′X ′W −1 (
y −X Z λ̂

)= 0 (15)

or

λ̂= (
Z ′X ′W −1X Z

)−1
Z ′X ′W −1 y

This can be related to the corresponding standard linear regression with constant

coefficients. Define the matrix of observations in conventional format as

X ∗ :=
p

T X Z = X


In

In

.

In

=


x ′

1

x ′
2

.

x ′
T

 . (16)

This matrix is assumed to be of full rank:

r
(
X ∗)= r (X Z ) = n (17)

7



S C H L I C H T A N D L U D S T E C K – V C - F I L T E R

Inserting (16) into (12) gives rise to

y = 1p
T

X ∗λ+w

and β̂ = 1p
T
λ̂ turns out to be the standard GLS estimator for the regression y =

X ∗β+w .

4 The Filter

This section derives the filter for given variances σ2 and Σ.

For given λ and X , the vectors y and a can be viewed as realizations of ran-

dom variables determined jointly by the system (10), (12) as brought about by the

disturbances u and v :(
y

a

)
=

(
X Z

Z

)
λ+

(
IT X P ′ (PP ′)−1

0 P ′ (PP ′)−1

)(
u

v

)

The marginal distribution of y is as given by (12) and (13). The conditional distribu-

tion of a for given y is

a ∼N
(
Zλ+B X ′W −1 (

y −X Zλ
)

, A
)

(18)

with

A := B −BW −1B ′

Hence a likelihood estimator for a can be derived by plugging the Aitken estimator

λ̂ from (15) into (18) and calculating the mean:

â := Z λ̂+B X ′W −1 (
y −X Z λ̂

)
. (19)

Note that Z ′B = 0 implies

Z ′â = λ̂

and hence

1

T

T∑
t = 1

ai ,t =βi , i = 1,2, ...,n (20)

with ai ,t as the i -th element of at and βi as the i -th element of the Aitken estimate in

the GLS regression y = X ∗β+w . Note further that the variance-covariance matrix of

w , as given in equation (13), tends to σ2IT if the the variances σ2
i go to zero. In this
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sense, the standard regression model is covered as a special limiting case of the model

discussed here: The time-averages of the estimated coefficients ai ,t are equal to the

corresponding Aitken estimates βi . For zero variance in the coefficients, equation

(11) turns into a standard unweighted linear regression.

The estimator (19) can be characterized in an easy way. For given observations X

and y and any given â, the estimated disturbances are

û = y −X â (21)

v̂ = P â (22)

and the weighted sum of squares of these disturbances is

Q := 1

σ2 û′û + v̂ ′V −1v̂ . (23)

The following theorem states that the likelihood estimator â can be obtained by

minimizing this expression.

Theorem 1. Minimizing the sum of squares (23) with respect to a yields a unique

solution that is numerically identical to estimator â given in (19).

Proof. Consider first the necessary conditions for a minimum of (23). Inserting

(21) and (22) into (23) and putting the derivative with respect to a to zero gives the

necessary condition (
X ′X +σ2P ′V −1P

)
a = X ′y (24)

1. It will be shown first that the system matrix

M := (
X ′X +σ2P ′V −1P

)
(25)

is of full rank. This will establish uniqueness. For S = 1
σ2 V we have

r (M) = r

((
X ′, P ′S− 1

2

)(
X

S− 1
2 P

))
= r

(
X ′, P ′S− 1

2

)
.

If
(

X ′, P ′
)

were not of full rank, there would exist vectors ct ∈Rn , T = 1,2, ...T , not

9
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all of them zero, such that

X ′c1 = P ′S− 1
2


c2

c3

.

cT

 (26)

Pre-multiplication by Z ′ gives

Z ′X ′c1 = 0.

Together with (17) this implies c1 = 0. As P ′S− 1
2 has full rank, (26) would imply all ct

to be zero – a contradiction. Hence the system matrix is of full rank.

2. As the system matrix is positive definite, this establishes that the second order

condition is fulfilled and that the solution to (24) gives indeed a global minimum.

3. We show now that (19) implies (24). Pre-multiplication of (19) by
(
X ′X+

σ2P ′V −1P
)

gives

(
X ′X +σ2P ′V −1P

)
â = (

X ′X +σ2P ′V −1P
)

Z λ̂

+X ′X B X ′W −1 (
y −X Z λ̂

)
+σ2P ′V −1PB X ′W −1 (

y −X Z λ̂
)

.

Since P Z = 0, the first term reduces to X ′X Z λ̂. Since W = X B X ′+σ2IT we have

X B X ′W −1 = IT −σ2W −1 and the second term reduces to

X ′ (IT −σ2W −1)(y −X Z λ̂
)= X ′ (y −X Z λ̂

)−σ2X ′W −1 (
y −X Z λ̂

)
.

Because P ′S−1PB = P ′ (PP ′)−1 P and (8), the third term reduces to

σ2 (
IT n −Z Z ′) X ′W −1 (

y −X Z λ̂
)

.

By using the definition of λ̂ in (15), this simplifies further to

σ2X ′W −1 (
y −X Z λ̂

)
.

Collecting terms gives

(
X ′X +σ2P ′V −1P

)
â = X ′y (27)

which is identical to the definition of a given in (24).

The normal equation (27) can be equivalently expressed in terms of the variance

10
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ratios

ri := σ2
i

σ2 , r =


r1

r2

.

rn

 . (28)

Define the matrix of variance ratios

R := diagr = 1

σ2Σ

and the covariance matrix

S := IT−1 ⊗R = 1

σ2 V. (29)

Using these expressions, the normal equation (27) can be written as

(
X ′X +P ′S−1P

)
â = X ′y. (30)

or, for short

M â = X ′y (31)

with M of order nT ×nT as the system matrix, as in (25).

The estimates for â and for the corresponding disturbances û and v̂ are

â = M−1X ′y

û = (
I −X M−1X ′) y

v̂ = P M−1X ′y.

All these are functions of the variance ratios r and the observations
(
y, X

)
.

Next turn to the covariance of the estimate â. As the estimate satisfies the normal

equation (31) it follows together with (1) and (2) that

â = M−1X ′ (X a +u)

= M−1 (
X ′X a +X ′u +P ′S−1Pa −P ′S−1Pa

)
= a +M−1 (

X ′u −P ′S−1v
)

. (32)

Given a realization of the time-path of the coefficients a, the estimator â is nor-

mally distributed with mean a and covariance

E
{
(â −a)2}=σ2M−1. (33)

The system matrix (25) is determined by the observations X and the variance ratios

11
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r . If we know in addition the variance of the error term σ2, equation (33) gives the

precision of our estimate. The next step is to determine the variance σ2 and the

variances Σ.

5 Maximum Likelihood Estimation of the Variances

This section derives a maximum-likelihood estimator for the variances.

The likelihood function for (12), (13) is

L
(
σ2,Σ

)
=− logdetW − ŵ ′W −1ŵ (34)

with

ŵ = (
y −X Z λ̂

)
The construction of the matrix W according to (13) and (14) is involved and

requires the inversion of large full matrices. A considerable simplification can be

achieved by expressing the likelihood in terms of the system matrix (25), the sum of

squares (23), and the variances σ2,Σ.

Theorem 2: Disregarding constants, the likelihood function (34) can be written

equivalently in terms of the variances σ2,Σ as

L
(
σ2, Σ

)
= −(

logdet M + (T −1)logdetΣ− (T n −T −n) logσ2)
−

(
1

σ2 û′û + v̂ ′V −1v̂

)
(35)

Proof. Consider the first term first. Define

N := X P ′ (PP ′)−1 S
1
2 .

With (13), (14), and (29) we have

W =σ2 (
N N ′+ IT

)
. (36)

Consider now

det M

detPP ′ = det M det
(
PP ′)−1

= det M det

( (
PP ′)−1 0

0 In

)

12
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= det M det

(( (
PP ′)−1 0

0 In

)( (
PP ′)−1 0

0 In

)(
P

Z ′

)(
P ′, Z

))

= det M det

((
P ′, Z

)( (
PP ′)−1 0

0 In

)( (
PP ′)−1 0

0 In

)(
P

Z ′

))

= det

(( (
PP ′)−1 0

0 In

)(
P

Z ′

)
M

(
P ′, Z

)( (
PP ′)−1 0

0 In

))

= det

( (
PP ′)−1 P MP ′ (PP ′)−1 ,

(
PP ′)−1 P M Z

Z ′MP ′ (PP ′)−1 Z ′M Z

)

= det

( (
PP ′)−1 P X ′X P ′ (PP ′)−1 +S−1,

(
PP ′)−1 P X ′X Z

Z ′X ′X P ′ (PP ′)−1 Z ′X ′X Z

)

= det

( (
PP ′)−1 P X ′X P ′ (PP ′)−1 +S−1,

(
PP ′)−1 P X ′X Z

Z ′X ′X P ′ (PP ′)−1 Z ′X ′X Z

)

= det

(
S 0

0 In

)−1

det

(
N ′N + I(T−1)n , N ′X Z

Z ′X ′N Z ′X ′X Z

)
= detS−1 det

(
N ′N + I(T−1)n

) ·
det

(
Z ′X ′X Z −N ′X Z

(
N ′N + I(T−1)n

)−1 Z ′X ′N
)

.

Because

Z ′X ′X P ′ = 0

we have

Z ′X ′N = 0

and we obtain the result

det M

detPP ′ = detS−1 det
(
N ′N + I(T−1)n

)
det

(
Z ′X ′X Z

)
. (37)

As N ′N and N N ′ have all non-zero eigenvalues in common, and adding the

identity matrix shifts the eigenvalues by unity, the products of the eigenvalues of(
N ′N + I(T−1)n

)
and of

(
N N ′+ IT

)
and the corresponding determinants are identical.

In view of (36) we obtain from (37)

det M

det(PP ′)
= detW det

(
Z ′X ′X Z

)
(detΣ)T−1

(
σ2)T n−T−n

13
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and hence

logdetW = logdet M + (T −1)logdetΣ− (T n −T −n) logσ2

− logdet
(
PP ′)− logdet

(
Z ′X ′X Z

)
.

For any given problem, the last two terms are constant and can be dropped.

Hence the first term in the likelihood function (35) is established.

Consider the second term next. The sum of squares at a = â is

Q : = 1

σ2 û′û + v̂ ′V −1v̂

= 1

σ2

(
y ′− â′X ′)(y −X â

)+ â′P ′V −1P â

= 1

σ2 y ′y − 2

σ2 y ′X â + 1

σ2 â′ (X ′X +σ2P ′V −1P
)

â

= 1

σ2 y ′y − 1

σ2 y ′X â

From (19) and (30) we find y ′X ′â = y ′y − y ′ŵ + y ′X B X ′W −1ŵ . Inserting this into (35)

yields

Q = 1

σ2

((
ŵ ′+ λ̂′Z ′X ′) ŵ − (

ŵ ′+ λ̂′Z ′X ′) X B X ′W −1ŵ
)

. (38)

From the definition (13) we find

X B X ′W −1 = IT −σ2W −1.

and (38) reduces to

Q = ŵ ′W −1ŵ − λ̂′Z ′X ′W −1ŵ . (39)

As w = y −X Z λ̂, (15) implies that the last term in (39) vanishes and we obtain

Q = 1

σ2 û′û + v̂ ′V −1v̂ = ŵ ′W −1ŵ

which completes the proof.

6 Moments Estimation of the Variances

The maximum likelihood estimates of the variances lack intuitive appeal. The mo-

ments estimator that will be developed in this section has, for any sample size, a

straightforward interpretation: It is defined by the property that estimated variances

are equalized to their expectations. It will turn out that the estimators coincide for

14
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large samples, and do not differ much even in small samples, the intuitive appeal

of the moments estimator carries over to the likelihood estimator, and the attrac-

tive large-sample properties of the likelihood estimator carry over to the moments

estimator.

The estimated coefficients â along with the estimated disturbances û and v̂ are

random variables brought about by realizations of the random variables u and v .

Consider û = y −X â = X (a − â)+u first. With (32) we obtain

û = (
IT −X M−1X ′)u +X M−1P ′S−1v.

Regarding v̂ , pre-multiplying (32) by Fi from (6) yields

v̂i = Fi
(
I(T−1)n −P M−1P ′S−1)v +Fi P M−1X ′u

Thus û and v̂i are linear functions of the normal random variables u and v , and

their expected squared errors can be calculated.

E
{
û′û

} = E
{(

u′ (IT +X M−1X ′)+ v ′S−1P M−1X ′) ·((
IT −X M−1X ′)u +X M−1P ′S−1v

)}
= E

{
u′ (IT −X M−1X ′)(IT −X M−1X ′)u

}+
+E

{
v ′S−1P M−1X ′X M−1P ′S−1v

}
= trE

{
u′ (IT −X M−1X ′)(IT −X M−1X ′)u

}+
+trE

{
v ′S−1P M−1X ′X M−1P ′S−1v

}
S

= trE
{(

IT −X M−1X ′)uu′ (IT −X M−1X ′)}+
+trE

{
X M−1P ′S−1v v ′S−1P M−1X ′}

= trσ2 (
IT −X M−1X ′)(IT −X M−1X ′)+ trσ2X M−1P ′S−1P M−1X ′

= σ2tr
((

IT −X M−1X ′)(IT −X M−1X ′)+X M−1P ′S−1P M−1X ′)
= σ2tr

(
I −2X M−1X ′+X M−1X ′X M−1X ′+X M−1P ′S−1P M−1X ′)

= σ2tr
(
IT −2X M−1X ′+X M−1 (

X ′X +P ′S−1P
)

M−1X ′)
= σ2tr

(
IT −X M−1X ′)

= σ2 (
T − trX M−1X ′)

Next, consider the variance of v̂i .

15
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E
{

v̂ ′
i v̂i

} = E
{(

u′X M−1P ′F ′
i + v ′ (I(T−1)n −S−1P M−1P ′)F ′

i

) ·(
Fi P M−1X ′u +Fi

(
I(T−1)n −P M−1P ′S−1)v

)}
= E

{
u′X M−1P ′F ′

i Fi P M−1X ′u
}+

+E
{

v ′ (I(T−1)n −S−1P M−1P ′)F ′
i Fi

(
I(T−1)n −P M−1P ′S−1)v

}
= E

{
tru′X M−1P ′F ′

i Fi P M−1X ′u
}+

+E
{
trv ′ (I(T−1)n −S−1P M−1P ′)F ′

i Fi
(
I(T−1)n −P M−1P ′S−1)v

}
= trE

{
Fi P M−1X ′uu′X M−1P ′F ′

i

}+
+trE

{
Fi

(
I(T−1)n −P M−1P ′S−1)v v ′ (I(T−1)n −S−1P M−1P ′)F ′

i

}
= σ2trFi P M−1X ′X M−1P ′F ′

i +
+σ2trFi

(
I(T−1)n −P M−1P ′S−1)S

(
I(T−1)n −S−1P M−1P ′)F ′

i

= σ2trFi P M−1X ′X M−1P ′F ′
i +

+σ2trFi
(
I(T−1)n −P M−1P ′S−1)S

(
I(T−1)n −S−1P M−1P ′)F ′

i

= σ2trFi SF ′
i +σ2trFi P M−1X ′X M−1P ′F ′

i +
+σ2trFi

(−2P M−1P ′+P M−1P ′S−1P M−1P ′)F ′
i

= (T −1)σ2
i +

+σ2trFi
(
P M−1 (

X ′X +P ′S−1P
)

M−1P ′−2P M−1P ′)F ′
i

= (T −1)σ2
i −σ2trFi P M−1P ′F ′

i

The moments estimators are defined by selecting variancesσ2 andσ2
i , i = 1,2, ...,n

such that the expected moments E
{
û′û

}
and E

{
v̂ ′

i v̂i
}

, i = 1,2, ...,n are equalized to

the estimated moments û′û and v̂ ′
i v̂i , i = 1,2, ...,n. As both the expected moments

and the estimated moments are functions of the variances, the moments estimators,

denoted by σ̌2 and σ̌2
i , i = 1,2, ...,n, respectively, are defined as a fix point of the

system

û′û
σ̌2 = T − trX M−1X ′ (40)

v̂ ′
i v̂i

σ̌2
i

= (T −1)− σ̌2

σ̌2
i

trFi P M−1P ′F ′
i , i = 1,2, ...n (41)

16
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Summing (40) and (41) gives the corresponding calculated sum of squares (23):

Q = (n +1)T −n − trM−1X ′X − tr

 n∑
i = 1

σ̌2

σ̌2
i

M−1P ′F ′
i Fi P

 (42)

By definitions (3), (6), and (29) of P , Fi , and S we have

n∑
i = 1

σ̌2

σ̌2
i

P ′F ′
i Fi P = P ′S−1P (43)

and (42) reduces to

Q = (n +1)T −n − tr
(
M−1 (

X ′X +P ′S−1P
))= T −n

which implies

σ̌2 = 1

T −n

(
û′û + v̂ ′S−1v̂

)
.

7 Another Representation of the Moments Estimator

The relationship between the likelihood estimator and the moments estimator can

be elucidated with the aid of the criterion function

K
(
σ2, Σ

)
= −(

logdet M + (T −1)logdetΣ−T (n −1)logσ2)− 1

σ2 û′û − v̂ ′V −1v̂

(44)

defined in analogy to the concentrated likelihood function (35).

Theorem 3. Minimization of the criterion function (44) with respect to the vari-

ances σ2 and Σ yields the moments estimators as defined in (40), (41).

Proof. Note that the envelope theorem together with (43) implies

∂

∂σ2

(
1

σ2 û′û + v̂ ′V −1v̂

)
= − 1

σ4 û′û (45)

∂

∂σ2
i

(
1

σ2 û′û + v̂ ′V −1v̂

)
= − 1

σ4
i

v̂i
′v̂i (46)

In view of (43) we obtain further

17
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∂ logdet M

∂σ2 = trP ′S−1P M−1

∂ logdet M

∂σ2
i

= −σ
2

σ4
i

tr
(
M−1P ′F ′

i Fi P
)

.

With these results we find

∂K

∂σ2 = −trP ′S−1P M−1 + T (n −1)

σ2 + 1

σ4 û′û = 0 (47)

∂K

∂σ2
i

=− σ2

σ4
i

trP ′F ′
i Fi P M−1 − (T −1)

1

σ2
i

+ 1

σ4
i

v̂i
′v̂i = 0 (48)

By definition (25) we have

(
X ′X +σ2P ′S−1P

)
M−1 = I

and therefore

σ2tr
(
P ′S−1P M−1) = tr

(
IT n −X ′X M−1)

= T n − tr
(
X M−1X ′)

and (47) can be written as

T − tr
(
X M−1X ′) = û′û

σ2

which is identical to (40), while (48) reduces directly to (41).

8 The Relationship Between the Likelihood and the Mo-

ments Estimator

The likelihood estimates σ̂2 and Σ̂maximize L () and the moments estimates σ̌2 and

Σ̌ maximize K (). Hence we have

L
(
σ̂2, Σ̂

)
≥ L

(
σ̌2, Σ̌

)
K

(
σ̂2, Σ̂

)
≤ K

(
σ̌2, Σ̌

)

18
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and

K
(
σ̌2, Σ̌

)
−L

(
σ̌2, Σ̌

)
≥K

(
σ̂2, Σ̂

)
−L

(
σ̂2, Σ̂

)
(49)

with strict inequality if the estimators differ.

The difference between the moments criterion (44) and the likelihood criterion

(35) is

K
(
σ2, Σ

)
−L

(
σ2, Σ

)
= n logσ2

and (49) implies

σ̌2 ≥ σ̂2 (50)

with strict inequality if the estimators differ.

For purposes of comparison and computation it is useful to parametrize the

likelihood function and the criterion function by the variance σ2 and the variance

ratios r = (r1,r2, ...,rn) instead of the variances σ2 and Σ. As Σ=σ2diag r we have

L
(
σ2,σ2diagr

) = − logdet M − (T −1)

n∑
i = 1

logri + (T −1)logσ2 − 1

σ2 Q∗ (r )

(51)

K
(
σ2,σ2diagr

) = − logdet M − (T −1)

n∑
i = 1

logri + (T −n) logσ2 − 1

σ2 Q∗ (r )

(52)

with

Q∗ (r ) := û′û + v̂ ′S−1v̂ =σ2Q.

Maximizing these functions with respect to σ2 yields the necessary conditions

σ̂2 = 1

T −1
Q∗ (r̂ ) (53)

σ̌2 = 1

T −n
Q∗ (ř ) (54)

for maxima of the functions L and K , where r̂ and ř denote the variance ratios of

the likelihood and the moments estimator, respectively.

Inserting (53) into (51) and (54) into (52), and disregarding constants, yields the

concentrated likelihood function L ∗ and the concentrated criterion function K ∗:
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L ∗ (r ) = − logdet M − (T −1)logQ∗ (r )− (T −1)

n∑
i = 1

logri

(55)

K ∗ (r ) = − logdet M − (T −n) logQ∗ (r )− (T −1)

n∑
i = 1

logri

(56)

We note that

L ∗
(

r̂
)

≥ L ∗
(

ř
)

K ∗
(

r̂
)

≤ K ∗
(

ř
)

and hence

K ∗
(

ř
)
−L ∗

(
ř

)
≥K ∗

(
r̂

)
−L ∗ (r̂ )

or equivalently

Q∗ (ř ) ≥Q∗ (r̂ ) .

As Q∗ is decreasing in the ri ’s (compare (46), we will expect by and large smaller

variance ratios for the moments estimator as compared to the likelihood estimator,

and hence slightly greater stability in the estimated coefficients over time, and, in

view of (50) a larger variance in the disturbance u.

For long time series, the likelihood criterion (55) and the moments criterion (56)

are practically identical and the estimates will coincide.

9 Computation

Note that it is only necessary to estimate the variance ratios in a first step. Once these

ratios are determined, the variances follow directly through (53) or (54) and (28).

Regarding computation of the variance ratios, there are basically two strategies

available. One is to start from (55) or (56) and determine the variance ratios r by a

maximization routine. This strategy is implemented in LUDSTECK (2004). The other

is to use a gradient method. The VC-package by SCHLICHT (2005a) uses this approach

for the moments estimator. It proceeds from (40), (41) and (54). These equations

imply
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v̂ ′
i v̂i

Q∗ = ři (T −1)+ trFi P M−1P ′F ′
i

(T −n)
, i = 1,2, ...n. (57)

and therefore

ři = 1

T −1

(
(T −n) v̂ ′

i v̂i

Q∗ − trFi P M−1P ′F ′
i

)
or

r̂i = 1

T −1

(
(T −1) v̂ ′

i v̂i

Q∗ − trFi P M−1P ′F ′
i

)

The iteration starts with some initial values for the variance ratios r 0 and com-

putes new ratios of estimated variances on the left-hand side of (57) and the corre-

sponding ratio of expected variances on the right-hand side. If the ratio of estimated

variances is larger than the ratio of expected variances, the corresponding variance

ratio ri is increased, or, in the opposite case, reduced. This adjustment continues

until (57) is satisfied for all variance ratios.

Both approaches – the direct and the gradient approach – do not require matrix

inversions, which may pose problems for large systems as the the inverse of the sparse

T n×T n band matrix M is full. The solution to the normal equation can be computed

in both cases conveniently by a Cholesky decomposition of the system matrix M . The

determinant of system matrix M – which is needed in case of direct maximization –

or the traces in (57) – which are needed in the case of the gradient method – can be

determined in the course of the Cholesky decomposition as by-products.

10 Practical Performance

In order to convey an impression about how the estimation procedure works in prac-

tice, we discuss in the following a small example and some simulations. Estimation

involves in all cases minimizing (23), which reduces to minimizing the weighted sum

of squares

u′u +∑
i
γi v ′

i vi

with weights
(
γ1,γ2, ... ,γn

) = (
σ2

σ2
1

, σ
2

σ2
2

, ... , σ
2

σ2
n

)
. These weights, rather than the vari-

ances, determine the estimated time-paths of the coefficients for any given set of

observations. Hence we concentrate in the following on the estimation of these

weights, rather than the variances.

Consider first the simplest case of two explanatory variables – an intercept term
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Figure 1: Time-varying intercept and slope for equation (58) with 95 percent confi-
dence bands with data for Germany 1951-91.

and a single exogenous variable. The following model

dYt = at +bt dut +εt (58)

with dYt as the percentage change in the GDP, dut the change in the unemployment

rate, εt as the error term, and at ,bt the time-varying coefficients of intercept and

slope has been estimated. Taking data from Germany (provided in SCHLICHT 2005a),

the moments estimator yields γ̌a = 3.48 and γ̌b = 11.8, σ̌2
ε = 1.22, σ̌2

a = 0.35, and σ̌2
b =

0.10. The corresponding likelihood estimates are γ̂a = 2.83, γ̂b = 10.3, σ̂2
ε = 1.15, σ̂2

a =
0.4, and σ̂2

b = 0.11. The estimates obtained by the Kalman-Filter, as implemented

in the program EVIEWS (2005), are γEV
a = 2.25, γEV

b = 8.88, σ2EV
ε = 1.01, σ2EV

a = 0.45,

and σ2EV
b = 0.11. The estimates for the time-paths of the coefficients obtained from

these three sets of estimators are practically indistinguishable. The estimated time

paths for intercept at and slope bt together with their 95 percent confidence bands

(here for the moments estimator) are given in Figure 1. For comparison we note

the OLS estimates āOLS = 4.22 and b̄OLS = −2.98 with standard errors SE (a)OLS =
0.27 and SE (b)OLS = 0.30 whereas the corresponding averages of the time-varying

specification are āV C = 4.0 and b̄V C =−2.65 with average standard errors SE
(
aV C

)=
0.66 and SE

(
bV C

) = 0.62. Hence the averages of the results of the VC method are

similar to the results obtained by ordinary least squares – see the discussion around

equation (20) above.

All this does not tell very much, however, about how well the method recovers the

variances and time-paths of the coefficients. In order to obtain an impression about

this, some simulations were conducted.

The first exploration was to assume a model with an intercept term at and a

single explanatory variable xt with coefficient bt . A time series for the explanatory
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Figure 2: Optimally calculated expectations (thin lines) and VC estimates (thick lines)
for intercept (left) and slope (right), together with the realizations of the coefficients
(x) and the VC confidence bands. The example has been selected to visually exhibit
differences between the true expectations and the VC estimates; usually the weights
are estimated better and the curves lie quite close together. As the estimated smooth-
ing weights are considerably smaller than the true weights, the time-paths of the
VC estimates are less smooth than the true expectations (True weights are γa = 10
and γb = 100, while the estimated weights are γ̌a = 1.60 and γ̌b = 14.76 here. The
true variances are σ2

u = 0.1, σ2
a = 0.01, and σ2

b = 0.001, the estimated variances are
σ̌2

u = 0.040, σ̌2
a = 0.025, and σ̌2

b = 0.0029.)

variable was generated with xt ∼N (0,100) , t = 1,2, ... ,50. Further it was assumed

that ut ∼N (0,0.1), (at −at−1) ∼N (0,0.01), and (bt −bt−1) ∼N (0,0.001). Typically

the optimally computed expectations of the time paths (calculated by using the

true variances) and the VC estimates lie very close together. Figure 2 illustrates a

somewhat atypical run with estimated smoothing weights that deviate from the true

smoothing weights by the order of five. The optimally estimated time-paths of the

coefficients (based on the true variances) and the estimated time-paths (based on

the estimated coefficients) move together. This illustrates the general impression

that the filtering results, especially the qualitative time-patterns, are not extremely

sensitive with regard to the weights used for filtering.

It is, obviously, never possible to extract the movement of the true coefficients

from the data, irrespective how long the time series is. (Only the estimation of

the weights will improve with the length of the time series.) The best that can be

done is to estimate the expectations of the coefficients. Given the variances, the VC

estimate (which is the mean of a normally distributed vector) is optimal and cannot

be improved upon, and the standard of comparison must be the estimates obtained

with optimal weights, as in Figure 2.

The distribution of the weights in the above setting is illustrated in Figure 3.

The time series for x, u, and v have been generated as described above and the VC
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Figure 3: Histogram of estimates for the log10 weights. The theoretical values are
log10γa = 1 and log10γb = 2. The distribution of estimates clusters around this peak.
(T = 50, 5000 trials.)

moments estimation applied 5000 times. The histogram illustrates that the estimates

cluster around their theoretical values.

Consider now the case of three exogenous variables: An intercept term a1,t , and

two explanatory variables x2,t and x3,t with associated coefficients a2,t and a3,t . (The

first explanatory variable is always taken as unity, i.e. x1,t = 1.) Thus the model is

summarized by

yt = a1,t +a2,t x2,t +a3,t x3,t +ut , t = 1,2, ... ,T

ai ,t = ai ,t−1 + vi , i = 1,2,3, ...n, , t = 2,3, ... ,T (59)
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Figure 4: The time paths of the coefficients a1, a2, and a3: Theoretical expectations
(thin lines), VC estimates (thick lines) and values (x) , with estimated confidence
bands. The theoretical weights are γ1 = 10, γ2 = 100, and γ3 = 1000, the estimated
weights are γ̌1 = 28.2, γ̌2 = 177.4, and γ̌3 = 994.9. The theoretical variances are σ2

u = 1,
σ2

1 = 0.1, σ2
2 = 0.01, and σ2

3 = 0.001, the estimated variances are σ̌2
u = 1.30, σ̌2

1 = 0.046,
σ̌2

2 = 0.0073, and σ̌2
3 = 0.0013.
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Figure 5: Histograms for the log10 weight estimates. The theoretical weights are
log10γ1 = 1, log10γ2 = 2, and log10γ3 = 3. The estimates cluster around these values.
(T = 50, 1000 trials.)

with

ut ∼N
(
0,σ2

u

)
, vi ,t ∼N

(
0,σ2

i

)
.

We follow, again, the example given in the Mathematica notebook (LUDSTECK,

2004) to permit easy replication. The explanatory variables x2,t and x3,t are generated

as normally distributed random variables, both with variance 100 and contempora-

neous covariance 50. The number of periods is taken as T = 50. For our example we

take σ2
u = 1., σ2

1 = 0.1, σ2
2 = 0.01, and σ2

3 = 0.001. A typical run is illustrated Figure 4.

Taking 1000 replications yields the distribution of estimates for the variance ratios

given in Figure 5.
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11 The VC Estimator and the Kalman Filter: Some Sim-

ulations

The VC estimator has been devised specifically for the model with time-varying coef-

ficients (1), (2) that can also be estimated by means of the Kalman filter (HAMILTON

1994, Sect. 13.8). It is of interest, therefore, to compare the practical performance of

the estimators by means of a simulation study. We concentrate on the estimation of

weights, again, because the weights are determining the estimation of the time path

of the coefficients in both cases. Given the weights, the estimation of the time-paths

of the coefficients in VC is theoretically optimal, anyway, and the Kalman filter, being

one-sided, can not do better. (We note however that, for given weights, both methods

seem to produce nearly identical estimates for the time-paths of the coefficients.)

For purposes of comparison, we have conducted a small Monte-Carlo simulation

study for some plausible parameter combinations. The Kalman-filter computations

are performed using the popular statistical program package EVIEWS (2005). With

regard to the Eviews estimates it is to be noted that the package uses a gradient

method that requires initial values for the variances. We have supplied the true values

(which are, of course, in practical applications, unavailable) as initial values for the

Eviews estimates throughout. Hence the practical performance of the program may

be overstated in our examples.2 For the VC estimator, we have used the moments

rather than the likelihood version because some preliminary checks suggested to us

that the moments estimator is to preferred in short time series and equivalent to the

likelihood estimator for longer time series.

As in the previous illustrations, the simulation is based on a simple model with

an intercept term at and a slope coefficient bt that describes the effect of a single

explanatory variable xt ∼N (0,5). The disturbance term is taken as ut ∼N (0,1) in

all simulations. The starting values of the coefficients are taken as a1 = 1 and b1 = 1.

Thus the variance of the disturbance ut is relatively large, as compared to the variance

in the explanatory variable xt , and given the average levels of the coefficients at and

bt around unity. This comparatively ill-conditioned setting has been selected to bring

out differences between the methods that would not be visible otherwise.

We have simulated time series of different length and for different combinations

of variances. The cases studied are given by all combinations of

• the length of the time series from T ∈ {40,60,80,100}

• variances from σ2
a ∈ {0.001,0.01} and σ2

b ∈ {0.001,0.01}

2The fact that Eviews performed much worse if good starting values were not supplied indicates a
possibly crucial problem for real applications.
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For each combination of these parameters we have generated K = 1000 realizations

of the time series by obtaining pseudorandom draws for the xt ,ut ,νa,t , and νb,t . It is,

however, problematic, to directly compare the estimates of σu ,σa , and σb with their

theoretical values because the pseudorandom variates may deviate considerably

from their theoretical values in small samples. In order to avoid this possible source

of error, we have standardized the pseudorandom series by multiplying them with

appropriate scale factors.

The relative performance of the VC moments estimator in comparison to that

of the Kalman filter is then evaluated by computing the mean squared error of the

logarithms of the estimated weights

MSE10
(
γi

)
:= 1

K

K∑
k=1

(
log10γ

est i mated
i ,k − log10γ

tr ue
i ,k

)2

for i = a,b and all combinations of the parameters.

The reason for concentrating on the deviations of the logarithms is that the

weights seem to act multiplicatively in the decomposition. Yet the use of logarithms

gives rise to the problem that the logarithm of a weight approaches infinity if the

the variance of the corresponding coefficient is estimated as being close to zero, viz.

that the coefficient is estimated as remaining constant over time. This renders the

computation of mean squared errors infeasible. In order to avoid artifacts produced

in this way, we have computed VC estimates under the restriction σ2
u/σ2

i ≤ 1010

and forced the Eviews estimates to conform to this restriction as well. (A weight of

1010 enforces, in the setting studied here, constancy of the corresponding parameter

anyway. By imposing the restriction, we avoid the problem that differences in weights

above this threshold may affect our results.)

Table 1 summarizes our findings. It gives the mean squared errors of the estimated

logarithms of the weights for the various parameter constellations, as obtained by the

Eviews Kalman filter, and the VC moments estimator, respectively. The performance

of the VC estimator is slightly better.

A closer look at the results reconfirms the impression that both estimators per-

form very similar—with the caveat that the Eviews estimates have been calculated by

using the theoretical values as starting values. Figure 6 illustrates this for the case by

σ2
u = 1, σ2

a = 0.01, σ2
b = 0.001, and T = 60. The distributions of the estimates for the

weights are practically indistinguishable.
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EV VC EV VC EV VC EV VC(
γa ,γb

)
(1000, 1000) (100, 1000) (1000, 100) (100, 100)

T = 40 MSE10
(
γa

)
29.9 24.6 26.7 24.8 30.5 23.4 27.2 24.2

MSE10
(
γb

)
25.1 22.6 25.8 23.4 12.7 11.8 13.2 11.9

T = 60 MSE10
(
γa

)
29.2 24.3 19.2 18.3 29.5 23.4 20.0 18.4

MSE10
(
γb

)
21.6 20.3 21.4 20.0 6.9 6.6 7.1 6.9

T = 80 MSE10
(
γa

)
26.4 22.3 12.1 11.7 27.1 21.4 13.0 12.2

MSE10
(
γb

)
16.8 15.5 17.0 15.7 2.9 3.1 3.3 3.3

T = 100 MSE10
(
γa

)
23.3 19.9 8.1 7.6 24.0 19.3 9.2 8.6

MSE10
(
γb

)
13.2 12.3 13.6 12.5 1.3 1.3 1.6 1.5

Table 1: A comparison between the Kalman filter as implemented in Eviews (EV )
and the VC moments estimator (VC), based on 1000 replications for each parameter
constellation. The EV estimator is obtained by using the true variances as initial values
while the VC estimator does not use initial values; yet the VC estimator outperforms
the Kalman filter slightly.
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Figure 6: Histograms for the estimated log weights for intercept (left) and slope
(right). Each pair of columns gives the frequencies of estimates obtained by the
Eviews Kalman filter (left column) and the VC moments estimator (right column).
The distributions are nearly identical. The estimated weights cluster around their
theoretical values (log10γa = 2 and log10γb = 3). (The case depicted here is not
well conditioned, being characterised by σ2

u = 1, σ2
a = 0.01, σ2

b = 0.001, and T =
60, 1000 replications. In roughtly a third of the cases, one or the other weight is
estimated exceeding 106 which implies that the corresponding parameter is estimated
as invariant over time. Yet even here, both methods produce practically identical
results.)

12 Concluding comments

The VC estimator discussed here is specifically designed to deal with linear models

where the coefficients are following a random walk. The main advantage over the

Kalman filter can be seen in its mathematical and descriptive transparency, its ease

of use and its free availability. Our simulations suggest that the VC moment estimator

and the Eviews Kalman filter perform very similar, provided the starting values of

the Eviews filter are provided correctly. For practical purposes this is not feasible,

though, and our experience suggests that the performance of the Eviews filter is

quite unsatisfactory if proper initial values are not supplied. In our simulations we

have used the true parameter values as starting values, though. Yet even under these

circumstances, the VC estimator seems to perform slightly better. Our conclusion

is that VC filter is preferable for studying the specific class of models for which it is

designed. The Kalman filter remains, however, applicable to a much larger class of

models. In this sense the method described here does not provide a substitute but

rather a complement to existing approaches.
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