Logo
DeutschClear Cookie - decide language by browser settings
Ahnert-Hilger, G. and Bader, M. F. and Bhakdi, S. and Gratzl, Manfred (1989): Introduction of Macromolecules into Bovine Adrenal Medullary Chromaffin Cells and Rat Pheochromocytoma Cells (PC12) by Permeabilization with Streptolysin O: Inhibitory Effect of Tetanus Toxin on Catecholamine Secretion. In: Journal of Neurochemistry, Vol. 52: pp. 1751-1758
[img]
Preview

PDF

1MB

Abstract

Conditions are described for controlled plasma membrane permeabilization of rat pheochromocytoma cells (PC12) and cultured bovine adrenal chromaffin cells by Streptolysin O (SLO). The transmembrane pores created by SLO invoke rapid efflux of intracellular 86Rb+ and ATP, and also permit passive diffusion of proteins, including immunoglobulins, into the cells. SLO-permeabilized PC12 cells release [3H]dopamine in response to micromolar concentrations of free Ca2+. Permeabilized adrenal chromaffin cells present a similar exocytotic response to Ca2+ in the presence of Mg2+/ ATP. Permeabilized PC12 cells accumulate antibodies against synaptophysin and calmodulin, but neither antibody reduces the Ca2+-dependent secretory response. Reduced tetanus toxin, although ineffective when applied to intact chromaffin cells, inhibits Ca2+-induced exocytosis by both types of permeabilized cells studied. Omission of dithiothreitol, toxin inactivation by boiling, or preincubation with neutralizing antibodies abolishes the inhibitory effect. The data indicate that plasma membrane permeabilization by Streptolysin O is a useful tool to probe and define cellular components that are involved in the final steps of exocytosis.