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TRANSPORT OF SUBUNIT POLYPEPTIDES OF FOF1-ATPase INTO
MITOCHONDRIA -

B. Schmidt and W. Neupert

Institut fir Physiologische Chemie der Universitat Miinchen,
Minchen, F.R.G.

ABSTRACT

The majority of mitochondrial proteins are coded for by nuclear genes
and are synthesized as precursor proteins on cytoplasmic ribosomes.
These precursor proteins are then transported to their sites of
function within the mitochondrion. We have analysed the transport of
the precursors to F,F_-ATPase subunit 2 (F1@) and subunit 9
(proteolipid, DCCD, ﬂiﬂding protein, Su9) into the mitochondria of
Neurospora crassa. Transport appears to involve at least two types of
specific components of the mitochondria: i. receptors which serve in
the recognition and binding of the precursor proteins by mitochondria
and ii. a proteolytic enzyme which catalyses the processing of the
precursor proteins within the mitochondria.

The recognition step is shown to be mediated by protease sensitive
components on the mitochondrial surface. Neurospora mitochondria

lost the ability to bind and transfer in vitro the precursors to

F1p and Su9 after mild trypsin treatment, but not after elastase
treatment.

The processing step is catalysed by a processing peptidase which is a
water soluble enzyme located in the mitochondrial matrix. Processing
appears not to be necessary for translocation across the inner
membrane. It can occur after the translocation has been completed.
Hypothetical pathways for the import of ATPase subunits are proposed.

INTRODUCTION

Most of the subunits of the mitochondrial F1F -ATPase are

coded for by nuclear genes and are synthesize8 as precursor proteins
on cytoplasmic ribosomes. These precursor proteins”are imported into
the mitochondria in a highly specific and rather complex process
(Neupert and Schatz 1981, Teintze and Neupert 1982). The precursor
proteins are synthesized on free cytoplasmic ribosomes and released as
water soluble polypeptides into an extramitochondrial pool
(Hallermayer et al. 1977, Suissa and Schatz 1982). Many but not all of
these precursor proteins carry aminoterminal additional sequences of
essentially unknown function (Zimmermann 1984). The precursors bind to
the mitochondrial surface apparently via specific receptor sites
(Hennig et al. 1983, Zwizinski et al. 1983). The bound precursor
proteins are then translocated to their functional sites within the
mitochondrion. With most, but not with all precursors a membrane
potential across the inner mitochondrial membrane is required for
import (Schleyer et al. 1982, Gasser et al. 1982a). Among the
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precursors which do require a potential are all thcse that are
inserted into the inner membrane and all those that have to cross
partially or completely the inner membrane. The import of outer
membrane proteins (Freitag et al. 1982, Gasser and Schatz 1983) and of
apocytochrome ¢ (Zimmermann et al. 1981) does not require a

membrane potential. Up to now it is not known whether or not the
translocation occurs at contact sites between inner and outer

membrane (see Zimmermann 1984 for discussion).

During or shortly after the translocation the aminoterminal peptide
extensions present on many precursors are removed (Teintze and Neupert
1982, Zimmermann 1984). In the case of yeast mitochondria, the
processing enzyme was further characterized (Bohni et al. 1983). It is
a water soluble protein located in the mitochondrial matrix. It
requires divalent metal ions such as zinc or manganese for activity.
The last step in the translocation process is the assembly of newly
transferred polypeptides into functional complexes. Very little is
known about these latter reactions.

In this report we will focus on two aspects of the biogenesis of
mitochondrial ATPase. These are (a) the recognition of the precursor
proteins by mitochondria and (b) the proteolytic processing of the
precursor proteins.

RECOGNITION

The first interaction between the precursor polypeptides and the
mitochondrial transport machinery is binding of precursors to the
mitochondrial surface. Earlier in vitro experiments employing

isolated mitochondria and precursor proteins synthesized in a
reticulocyte lysate showad that in the absence of translocation across
the mitochondrial membranes, precursors were still bound to
mitochondria (Zimmermann and Neupert 1980, Freitag et al. 1982, Gasser
et al. 1982a). Transport can be inhibited in such an in vitro

system by dissipating the electrical potential across the inner
mitochondrial membrane (Schleyer et al. 1982). The binding of the
precursors meets the following criteria: (i) the bound precursor is
very sensitive to proteolytic digestion, i.e. it is exposed on the
mitochondrial surface (Zimmermann and Neupert 1980, Schleyer and
Neupert 1984), (ii) binding is tight, the precursors cannot be removed
from the binding sites by washing of the mitochondria (Zwizinski et
al. 1983), (iii) the binding sites are saturable (Hennig and Neupert
1981), (iv) binding is specific as judged from the observation that
binding of precursors cannot be competed by the respective mature
proteins (Hennig and Neupert 1981) and (v) transfer occurs directly
from the binding sites upon reestablishment of a membrane potential
(Zwizinski et al. 1983). The conclusions drawn from these experiments
are that the binding sites are located on the mitochondrial surface
and that binding is an essential step in the transport pathway of each
precursor protein investigated so far.

In order to further characterize the nature of the binding sites,
mitochondria were exposed to mild protease treatment before they were
issayed for their ability to bind precursor proteins. It turned out
that very low doses of trypsin led to the complete loss of the binding
ictivity (Zwizinski et al. 1984). Fig. 1 shows that treatment of the
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Figure 1.

the import of ATPase subunit 2 (F ﬁ) and ADP/ATP carrier.
Mitochondria were pretreated w1th various amounts of trpysin or
elastase. They were then incubated with radiolabelled precursors
synthesized in a rabbit reticulocyte lysate. After incubation the

reactions were divided in two and the mitochondria in each portion
recovered by centrifugation. One portion was immunoprecipitated for
F,B. Import was taken to be the amount of mature F
Tﬂe second portion was subjected to hydroxylapatité

B formed.
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Protease pretreatment of mitochondria differentially affects

chromotography and

the pass-through fraction immunoprecipitated for ADP/ATP carrier. This

fraction of the carrier was taken to reflect ADP/ATP carrier imported

into mitochondria.

Su2: ATPase subunit 2 (F,p)
A: Trypsin treatment

B: Elastase treatment

mitochondria with about 500 ng trypsin/mg mitochondrial protein leads

to a 80% decrease of the import of F

B and of the A

With the latter protein it was demon&trated that it
binding of the precursor that is affected by the protease treatment. A
different response was observed when mitochondria were treated with

elastase.

DP/ATP carrier.
is actually the

In this case, mitochondria were still able to import the

precursors to Su9 and F,fbut a considerable loss of binding sites
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for the precursors to porin and ADP/ATP carrier was observed. Elastase
concentrations as low as 10-20 ng/mg mitochondrial protein were
sufficient to lead to this destruction of binding sites.

Apparently proteinaceous elements on the mitochcendrial surface act as
receptor molecules. They expose trypsin sensitive parts of their
structure to the cytoplasmic face of mitochondria. More than one
receptor may exist for the different precursor proteins to be
transported.

PROTEOLYTIC PROCESSING

It is clear from the fact that many precursor proteins are synthesized
with aminoterminal peptide extensions that these precursors have to be
proteolytically processed during or shortly after their transport into
mitochondria. Using an in vitro processing assay it was shown that

the processing activity referred to as processing peptidase is located
in the mitochondrial matrix (Bohni et al. 1980, Conboy et al. 1980,
Schmidt et al. 1984). It is a water soluble enzyme that can be
inhibited by chelating agents such as EDTA and o-phenanthroline

(Fig. 2). On the basis of these observations conditions were found

1 2 3
gy -
L

| ——— _p

Figure 2. Processing peptidase activity depends on the presence of
divalent metal ions. Precursor proteins were synthesized in
reticulocyte lysates and incubated with mitochondrial membrane free
extracts in the absence and presence of additions as outlined below.
The samples were immunoprecipitated for ATPase subunit 9. A fluorogram
of an SDS-geé+is shown

(1) + 2mM Mn®", + 2mM o-phenanthroline

(2) - no addé}ions

(3) + 2mM Mn

p = precursor, i = intermediate, m = mature Su9

under which transfer of the precursors to Su9 and F1f into
mitochondria occurred in the absence of processing (Fig. 3). This was
achieved by adding EDTA and o-phenanthroline to a reconstituted system
including precursor proteins synthesized in rabbit reticulocyte
lysates and isolated Neurospora mitochondria. The former chelator
cannot penetrate the mitochondria but binds metal ions in the
extramitochondrial space. Low concentrations of the membrane permeable
o-phenanthroline are then able to enter the mitochondria and inhibit
the matrix processing peptidase. In this system precursor proteins
were transported into the mitochondria and were no longer accessible
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Figure 3. Import of the precursor tc ATPase subunit 9 in the precence
of EDTA and o-phenanthroline. Precursor proteins were synthesized

in reticulocyte lysates. The lysates were adjusted to a EDTA
concentration of 5 mM and incubated in the absence and presence of 2
UM valinomycin and 50 uM o-phgnanthroline with isolated

mitochondria for 30 min at 25°C. Then mitochondria were

reisolated and either directly immunoprecipitated for Su9 or treated
with proteinase K in the absence and presence of Triton X-100 and then
immunoprecipitated. .

p = precursor, i = intermediate form, m = mature Su9.

The antibody used in this experiment was raised against the mature
Su9. It reacts only incompletely with the precursor form, which
carries a prepeptide of 66 amino acids in addition to the 81 amino
acids of the mature protein (Viebrock et al. 1982). Therefore, the
intensities of the precursor bands in this figure do not represent the
actual amounts of precursor associated with the mitochondria.

to added protease. They were associated with the mitochondrial
membranes. Upon addition of excess metal ions, the transported
precursors were processed to mature sized polypeptides in the absence
of a membrane potential. The conclusion drawn from these experiments
is that processing can occur after translocation of precursor proteins
into the mitochondria. A membrane potential is apparently required
only for translocation, but not for processing (Zwizinski and Neupert,
1984).

Another interesting feature of processing peptidase is that it cleaves
the precursor to Su9 in two steps (Fig. 4) (Schmidt et al. 1984). The
two cleavage sites display striking similarities as deduced from
radiosequencing experiments and from the primary structure of the
pre-peptide determined by sequencing of the cloned c-DNA (TABLE 1)
(Viebrock et al. 1982). These cleavage sites are similar to putative
cleavage sites in yeast pre-cytochrome c peroxidase (Kaput et al.
1982). It remains to be determined whether these sequences are really
the complete recognition sites for the processing peptidase. It is
furthermore not clear whether there is only one metal ion dependent
processing peptidase in the mitochondrial matrix. This question can
only be answered by purification of the(se) enzyme(s) to homogeneity.
This has not yet been achieved.
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Figure 4. Time course of processing of the precursor to ATPase subunit
9 in vitro. Precursor proteins were synthesized in rabbit

reticulocyte lysates and incubated for various time periods with a
membrane free extract of mitochondria. After incubation the samples
were immunoprecipitated for subunit 9. A fluorograph of an SDS-gel is
shown.

(1) 60 min, (2) 5 min, (3) 10 min, (4) 15 min, (5) 30 min,

p: precursor; i: intermediate; m: mature subunit.

CONCLUSIONS

The results presented in this report give some insights into the
mechanism by which precursor proteins to the F,F_-ATPase are
transported into mitochondria. A hypothetical %hgme for the assembly
pathway of ATPase subunit 9 as derived.from these results is presented
in Fig. 5. ' )

The binding of soluble precursor proteins is mediated by proteins on
the mitochondrial surface with receptor-like function. It will be a
considerable effort to purify these receptors because the ligands are
not available in chemical quantities. In contrast, the precursor form
is available in the case of cytochrome c and it was therefore possible
to purify a protein with the characteristics of a receptor for
apocytochrome ¢ (Kohler et al. 1984). The receptor for apocytochrome
c, however, is not functioning in the uptake of precursors of ATPase
subunits, or of any other precursor analysed so far. It remains an
open question, how many different receptors are involved in the
recognition of mitochondrial precursor proteins.

TABLE 1: Comparison of the amino acid sequence at the two
cleavage sites of the precursor to ATPase subunit 9.

-1 L+

a. -gln-ala-phe-gln-lys-arg-ala-tyr-ser-ser-glu
-32 !31

b. -ala-gln-val-ser-lys-arg-thr-ile-gln-thr-gly

The cleavage sites are indicated by the arrow. The second cleavage
site is shown in a., the first one in b..
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OM IM

Figure 5. Hypothetical pathway of the biogenesis of ATPase subunit 9
in Neurospora. The precursor is synthesized on free cytoplasmic
ribosomes (1.) and released as water soluble species into the
cytoplasm (2.). After binding to a receptor on the mitochondrial
surface (3.), the precursor is translocated into the inner
membrane(4.). Processing occurs in two steps (5., 6.) in the mito-
chondrial matrix. Subsequently the protein is assembled into F

OM: outer membrane, IM: inner membrane, R: receptor

Recognition and binding are followed by the translocation of the
precursor polypeptides into or across the inner mitochondrial
membrane. The aminoterminal portions of the precursors thereby become
accessible to the processing peptidase. The processing of subunit 9 of
ATPase appears to be of particular interest since it occurs in (at
least) two steps. Both steps seem to be catalysed by the same enzyme
as judged from the striking similarities of the cleavage sites and
the inhibitor sensitivity. Two step proce551ng has been described
before for the precursors of cytochrome ¢, (yeast and Neurospora)

and cytochrme b2 (yeast) (Gasser et al. §82b Teintze et al.

1982). However,“in these cases the second processing step is not
performed by the metal dependent matrix enzyme, but by an enzyme with
rather different properties which is probably located on the outer
face of the inner mitochondrial membrane.
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