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More, than 90% of mitochondrial proteins are encoded 
by nuclear genes and are synthesized as precursor pro- 
teins on cytosolic polysomes [ 11. The translocation of 
mitochondrial proteins from the cytosol to their func- 
tional destination in one of the four mitochondrial sub- 
compartments (outer membrane, intermembrane space, 
inner membrane and matrix; Fii. 1) involves a complex 
series of steps. The field of mitochondrial protein im- 
port has undergone very rapid development in recent 
years. Most studies have used fungal mitochondria (the 
yeast saccbarom. c43?-a and NeuqDcwu crassa) 

in vitro and in vivo. This development includes the char- 
acterization of properties of precursor proteins, the res- 
olution of distinct translocation intermediates on the im- 
port pathways and the identifkation of components of 
the protein import machinery. 

Specific recognition of mitochondrial 
precursor proteins 

Mitochondrial precursor proteins contain positively 
charged targeting sequences. In many cases, targeting sig- 
nals are found in N-terminal peptide extensions of about 

I 

and translocation 
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Outer membrane Matrix Inner membrane Int’ermembrane space 

Fig. 1. Transport pathways of precursor 
proteins into mitochondria. 

Abbreviations 
CIP-general insertion protein; hsp60-heat-shock protein of 60 kD; PEP-processing enhancing protein. 
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20-70 amino acid residues, termed presequences (Hurt 
and van Loon, Trend Biochem Sci 1986,11:204-207) [ 21, 
which are cleaved off by specific peptidases inside the mi- 
tochondria. The main feature that mitochondrial targeting 
sequences have in common is the presence of positively 
charged amino acid residues and the nearly complete ab- 
sence of negativeiy charged residues. In addition, target- 
ing sequences may form amphiphilic structures under 
appropriate conditions [ 31. So far, no particular ammo 
acid sequence motif has been identitied in the target- 
ing peptides. This led to the suggestion that their sec- 
ondary structure may have an important role in directing 
proteins into mitochondria. In several cases, the mature 
(non-cleavable) regions of precursor proteins may con- 
tribute to the specifk high-athnity interaction of precur- 
sors with binding sites on the mitochondria, possibly via 
hydrophobic ‘assistant sequences’ [ 41. 

Proteinaceous receptors on the mitochondrial surface are 
responsible for the specifk recognition and high-atfinity 
binding of precursor proteins [5,6] (Pfanner and Neu- 
pert, J Biol C&em 1987, 262:75287536). In the current 
working model, at least two distinct receptor proteins 
are required for the binding of the various precursor 
proteins (Fig. 2) [6]. High-affinity binding sites could 
be reconstituted into liposomes, providing an important 
tool for the purifkation of receptor sites [5]. Antibod- 
ies which are directed against 45kD mitochondrial pro- 
teins inhibit import of precursor proteins, indicating that 
a 45 kD protein could be involved in translocation of pre- 
cursors (Ohba and Schatz, EMBO J 1987,6:2109-2115). 

A detailed analysis of the role of the surface receptors 
gave rise to an explanation for a previously surprising re- 
sult. Non-mitochondrial signals, such as chloroplast sig- 
nal sequences, are able to direct proteins into mitochon- 
dria, albeit with a low efficiency (Hurt et al, EMBO J 1986, 
5:1343-1350). It was observed that precursor proteins 
can bypass the proteinaceous surface receptors with a 
very low efficiency, i.e. can enter the mitochondrial im- 
port pathway at a later stage (PfaUer et al, J Biol C&m 
1989, 264:34-39). This bypass transport appears to be 
the only pathway used by non-mitochondrial signals. The 
very low Import rates make it likely that bypass import 
does not disturb the selectivity of mitochondtial protein 
uptake and the unique mitochondrial protein composi- 
tion [7]. 

Translocation of precursors into and across the 
mitochondrial membranes 

Precursor proteins with a stable tertiary structure can- 
not be inserted into mitochondrial membranes (Eilers 
and Schatz, Nature 1986, 322:228-232). Precursors are 
at least partially unfolded before, or during, membrane 
translocation. This can be clearly demonstrated by the 
reversible accumulation of precursors spanning both mi- 
tochondrial membranes. The N-terminal portion of the 
precursor enters the matrix space, whereas a (folded) C- 
terminal region remains in the cytosol (Schleyer and Ne- 
upert, cell 1985, 43:339-350) [8]. Moreover, destabiliza- 

tion of the ternary structure of precursor proteins (‘un- 
folding’), e.g. by the introduction of point mutations, can 
increase the rates of import into mitochondria [ 91. 

Import of mitochondrial precursor proteins requires 
hydrolysis of ATP (Pfanner and Neupert, FEBS Left 1986, 
209:152-l 56; for a summary, see [lo] >. ATP is involved in 
the generation or maintenance of a translocation-compe- 
tent (loosely folded) precursor conformation. In partic- 
ular, incompletely folded polypeptide chains require less 
ATP for import than their more strongly foIded coun- 
terparts [ 111. Translocation into the outer mitochondrial 
membrane of a chemically denatumted (unfolded) pre- 
cursor protein is completely independent of ATP [12]. 
Since the specilic import criteria, such as high-alfinity 
binding to surface receptors, are fulfilled by the chemi- 
cally unfolded precursor [5], the role of ATP seems to 
be (directly or indirectly) related to modulation of the 
conformation of precursors. Yeast mutants which are de- 
fective in a subset of stress proteins (‘heat-shock pro- 
teins’) of the 70 kD class have been shown to be deficient 
in import of some mitochondrial proteins [13]. Seventy- 
kilodalton stress proteins are generally thought to be in- 
volved in modification of the conformation of proteins in 
an ATP-dependent manner [14]. In fact, Murakami et UI! 
[ 151 demonstrated that 70 kD stress proteins, and a fur- 
ther cytosolic component, stimulate transport of a pre- 
cursor protein into mitochondria in vitro, The present 
working model includes the participation of 70 kD stress 
proteins, and possibly other factors, in the generation or 
maintenance of a transport-competent conformation of 
precursor proteins. It seems unJikely that cytosolic factors 
also have a role in other steps of mitochondrial protein 
import, such as targeting of precursors, since several pre- 
cursors can be imported in the absence of any cytosolic 
factor [ 5,101. 

The outer mitochondrial membrane contains apparently 
a common membrane insertion site used by all precursor 
proteins studied so far with the exception of cytochrome 
c (Fig. 2). This site, which is saturable with precursor pro- 
teins, is termed the ‘general insertion protein’ (GIP) 161. 
Insertion into the outer membrane seems to require a 
high degree of unfolding of precursors and relatively high 
levels of ATP (Pfanner et al, Cell 1987,49:81-23). After 
interaction with GIP, the precursors are inserted into the 
inner membrane. This step depends on the electrical po- 
tential across the inner membrane; the potential (negative 
inside) may exert an electrophoretic effect on the posi- 
tively charged targeting sequences (Pfanner and Neupert, 
EMBO J 1985, 4:28192825) [3]. Butow and colleagues 
(Kellems et al, J Cell Bioll975, 65:1-14) proposed that 
proteins are translocated at morphologically visible sites 
of close contact between mitochondrial outer and in- 
ner membranes. The.experimental proof for transloca- 
tion of precursor proteins via contact sites was provided 
by the demonstration of reversible trapping of precursors 
in contact sites (Schleyer and Neupert, 1985). Contact 
sites are stable structures which can be enriched in sub- 
mitochondrial vesicles (Schwaiger et a~!, J Cell Bioi 1987, 
105:235-246). Precursor proteins which are inserted into 
contact sites are extracted from the membranes by pro- 
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Fig. 2 Mechanisms and steps of mitochondrial protein import. 

tein denaturants such as urea or at alkaline pH [ 161. The 
contact sites can be saturated by membrane-spanning 
precursors [ 171. In summary, proteinaceous components 
seem to be of great importance for both the structure and 
the function of contact sites. 

Processing and folding df imported precursors 

The positively charged targeting sequence (presequence) 
is proteolytically cleaved off by the processing pepti- 
dase in the mitochondrial matrix. The processing pep- 
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tidase was purified and was found to be a soluble pro- 
tein of about 57 kD [18]. A protein of about 52 kD 
which is mainly associated with the inner mitochondrial 
membrane greatly enhances the processing activity; it is 
termed the ‘processing enhancing protein’ (PEP) [ 181. 
However, the processing peptidase and PEP do not form 
a detectable complex. PEP may bind precursor proteins 
protruding into the matrix space and then present them 
to the processing peptidase. ‘lWo previously described 
yeast mutants which are defective in maturation of mi- 
tochondrial precursor proteins were found to be defi- 
cient in processing peptidase and PEP, respectively (Yaffe 
and Schatz, Proc Nat1 Acad Sci USA 1984,81:4819-4823) 
[ 19,201. The biochemical purification and characteriza- 
tion of these two components of the mitochondrial im- 
port machinery thus allowed the determination of the 
functional defect in the two mutants. Processing pep- 
tidase and PEP have significant homology in their pri- 
mary sequences, suggesting that they may have originated 
from a common ancestor [ 20,211. Several precursor pro- 
teins undergo a second proteolytic cleavage step either in 
the mitochondrial matrix or in the intermembrane space 
[ 11. The proteases which perform these processing steps 
have not yet been identied. 
Recently, a new procedure for the selection of yeast 
mutants affected in mitochondrial protein import was 
worked out by testing the functional assembly of a 
nuclear-encoded matrix protein [20]. Several new mu- 
tants were found in addition to the two mutants de- 
scribed above. One of the mutants is defective in a consti- 
tutively expressed stress protein (‘heat-shock protein’) of 
about 60 kD (hsp60) [ 221. Hsp60 is homologous to the 
chloroplast ribulose 1,5-bisphosphate carboxylase (Ru- 
bisco) subunit-binding protein and the Escbericbia coli 
heat-shock protein groEL [23] (Hemmingsen et aA, Na- 
ture 1988,333:330-334). These three proteins are named 
‘chaperonins’, since they apparently ensure proper pro- 
tein interaction during the assembly of oligomenc protein 
complexes. Hsp60 interacts with precursor proteins that 
are transported into the mitochondtial matrix; this step is 
a prerequisite for assembly of the precursors into protein 
complexes and for the further transport of precursors 
into, or across, the inner mitochondrial membrane (see 
below). Hsp60 may act by conferring a conformation on 
precursors which is required for assembty or intramito- 
chondrial sorting [ 221. The action of a stress protein in 
the mitochondrial matrix may represent a second ATP- 
dependent step in mitochondrial protein import, in ad- 
dition to the ATP-dependent unfolding of cytosolic pre- 
cursors. 

lntramitochondrial sorting of precursors 

Precursor proteins destined for the outer mitochondrial 
membrane or the mitochondrial matrix follow relatively 
simple sorting pathways (Fig. 1,2). Outer membrane pro- 
teins interact with a’ specific receptor on the mitochon- 
drial surface, insert into the membrane, with the help 
of GIP, and then become assembled in the outer mem- 
brane. Matrix proteins also interact with specitic recep- 

tors and with GIP and are then translocated through con- 
tact sites into the matrix [ 11. 

Precursor proteins which are destined for the intermem- 
brane space or the inner membrane follow more elabo- 
rate sorting pathways (Figs. 1, 2). Most of them also use 
surface receptors, GIP and contact sites for transport into 
the matrix. After proteolytic processing and interaction 
with hsp60, the precursors are redirected into or across 
the inner membrane (Hattl et al, CeU 1986,47:939-951) 
[ 241. The mechanisms of retranslocation from the ma- 
trix space into or across the inner mitochondrial mem- 
brane resemble the transport mechanisms in prokary- 
otes, the ancestors of mitochondria. This led to the fol- 
lowing model of intramitochondrial sorting (‘consetva- 
tive sorting’> [24]. The mitochondrial genes that otigi- 
nally encoded mitochondrial proteins were transferred to 
the nucleus and acquired a segment coding for a posi- 
tively charged presequence. The presequence directs the 
precursors through contact sites into the mitochondrial 
matrix. After the first proteolytic cleavage, which results 
in the removal of the positively charged targeting se- 
quence, the precursor is released into its ancestral fold- 
ing and assembly pathway. Several precursors carry a sec- 
ond targeting signal in the C-terminal half of the prese- 
quence. This relatively hydrophobic signal strongly re- 
sembles prokaryotic leader sequences which direct the 
export of prolouyotic proteins [I]. In fact, the second tar- 
geting signal seems to direct translocation of precursors 
across the inner mitochondrial membrane, and is cleaved 
off at the intermembrane space side of the membrane. 
Originally, it was proposed that the second (hydropho- 
bic) signal sequence acts as a ‘stop-transfer sequence’ by 
preventing the further translocation of a precursor pro- 
tein into the matrix (van Loon and Schaa, EMBO J 1987, 
6:2441-2448); the precursor protein would then reach its 
location in the inner membrane or the intermembrane 
space by lateral dilhtsion in the inner membrane. As dis- 
cussed above, this model does not apply to the sort- 
ing pathways of precursor proteins studied so far. How- 
ever, the possibility that some precursors of integral inner 
membrane proteins may follow such a pathway cannot 
be excluded. 

Cytochrome c, a protein of the intermembrane space, 
uses an import pathway which is quite distinct from 
the pathways of the other mitochondrial precursor pro- 
teins. The precursor protein, apocytochrome c, can in- 
sert into the outer mitochondrial membrane without the 
aid of surface receptors or GIP 16,251. Cytochrome c 
heme lyase, a protein of the intermembrane space which 
is responsible for the covalent addition of heme to the 
apoprotein, seems to have a crucial role in the translo- 
cation of cytochrome c into the intermembrane space. 
Mutants which are defective in cytochrome c heme lyase 
are deficient in binding and import of cytochrome c 
[26] (Dumont et al, EM30 J 1987, 63235-241). Apo- 
cytochrome c may spontaneously insert into the outer 
membrane and binds with high atlinity, forming a com- 
plex which includes heme lyase. After addition of heme, 
the holoprotein is released into the intermembrane space 
[ 251. C-terminal portions of the precursor protein are ap- 
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parently important for targeting of apocytqchrome c to 
mitochondria (Stuart et aA, EMBO J 1987,6:2131-2137). 

Why are several (often very hydrophobic) proteins syn- 
thesized within mitochondria, although most mitochon- 
drial proteins are encoded by nuclear genes? One pos- 
sible explanation is that such hydrophobic proteins can- 
not be translocated through the cytosol and the two 
mitochondrial membranes, or that they would not be 
able to assume the correct orientation and conforma- 
tion for assembly when imported from outside the or- 
ganelle. Nagkzy ef al [27] excluded these possibilities 
using an elegant approach. They replaced the mitochon- 
drial gene for a membmne protein by an artificial nuclear 
gene that also contained a segment encoding a prese- 
quence. The protein was successfiAly imported into mi- 
tochondria and functionally assembled into a multi-sub- 
unit complex. Hence, the most likely reason for the lack 
of transfer of the remaining mitochondrial genes to the 
nucleus appears to be the divergence of the genetic code. 

Conclusions 

Rapid progress in the field of mitochondrial protein im- 
port led to the identiiication of several components of 
the import machinery by biochemical and genetic ap- 
proaches. The generation and characterization of defined 
transkxation intermediates on the import pathways of 
precursor proteins opens the way for the identification 
of more components. The conformation of precursor 
proteins is important for membrane translocation and 
assembly of proteins. Elucidation of the functional and 
structural properties of mitochondrial precursor proteins 
and of the transport components is not only essential 
for the understanding of mitochondrial biogenesis, but is 
also important for the unravelling of intracellular protein 
transport and biogenesis of cell organelles in general. 
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