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Abs t r ac t  A pair of degenerate polymerase chain reac- 
tion (PCR) primers (LEI-1, TCG GAT CC[C,T] 
[G,C]TG GGT AGG GGC GT; LEI-2, ACG GAT 
CC[G,C] [G,C][A,C]C TAT [A,T]TT ACA CC) defining 
a 0.15-kb segment of  Leishmania minicircle DNA was 
constructed. These primers amplified not only inter- but 
also intraspecifically polymorphic sequences. Individual 
sequences revealed a higher intraspecific than interspe- 
cific divergence. It is concluded that individual sequen- 
ces are of  limited relevance for species determination. In 
contrast, when a data base of 19 different sequences was 
analyzed in a dendrographic plot, an accurate species 
differentiation was feasible. 

Introduction 

Traditionally, Leishmania tropica is considered to cause 
cutaneous leishmaniasis, whereas the visceral type is be- 
lieved to result f rom an infection with L. donovani. Re- 
cently, however, increasing evidence suggests that L. 
tropica, too, can lead to visceral leishmaniasis (Kreutzer 
et al. 1993; Magill et al. 1993). Thus, it appears desirable 
to discriminate between the two species not only by their 
clinical manifestations but also on a genomic level. 

In an effort to achieve such discrimination, kineto- 
plast minicircle DNA was selected as a target sequence 
for polymerase chain reaction (PCR) amplification. Mini- 
circles are present in each cell in multiple copies (Lee et 
al. 1993), thus leading to a higher sensitivity, which is 
often required for detection of Leishmania in clinical 
specimens. Kinetoplast minicircle DNA of Trypanosoma 
is known to be polymorphic (Rogers and Wirth 1988; 
Stuart 1983); however, especially in Leishmania, the ex- 
tent on the nucleotide levels is poorly described. Except 
for L. mexicana amazonensis (Rogers and Wirth 1988; 
Lee et al. 1993) and L tarentolae (Kidane et al. 1984), 
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published sequences of  Leishmania minicircle DNA re- 
port only single examples for each species (Barker et al. 
1986; Smith et al. 1989; Laskay et al. 1991; Blackwell 
1992; de Bruijn and Barker 1992). 

The finding that intraspecific heterogeneity, even 
within a single isolate, can exceed interspecific heteroge- 
neity necessitated that an approach be found that is not 
dependent on single sequences. In this report a data-base 
approach to species differentiation is presented. 

Materials and methods 

DNA extraction 

Isolates from patients were available either as promastigote cell 
cultures cryoconserved in liquid nitrogen or in the amastigote 
form in hamster spleen cells stored at -70 ~ C in dimethylsulfoxide 
(DMSO). Diagnoses of five Leishmania donovani (D1-D5) and six 
L. tropica (T1-T6) infections were based on clinical symptoms 
and travel history. The L. mexicana strain LV4 was kindly provid- 
ed by W. Solbach, Erlangen, and is referred to as M1. All isolates 
were processed by pelleting 400 gl of the cell suspension, resus- 
pending the pellet in 400 gl TET buffer [50 mM TRIS-HC1 
(pH=8.0), 25 mM ethylenediaminetetraacetic acid (EDTA), 100 
mM NaC1, 0.4% Triton X-100], and adding 4 pl (20 mg/ml) pro- 
teinase K (Appligene, Illkirch, France). After incubation at 50 ~ C 
for 90 min followed by a centrifugation step, the DNA was puri- 
fied from the supernatant by silica-gel adsorption (Geneclean; BIO 
101, La Jolla) and eluted in 100 gl water. 

PCR amplification 

Primers LEI-1 and LEI-2 were obtained from Genzentrum (Mar- 
tinsried, Germany). PCR amplifications were performed employ- 
ing a "hot-start" technique in which 38.2 gl DNA solution and 
1 gl each of both primers (50 gM each) were overlaid with two 
drops of mineral oil (Sigma) and denatured at 96 ~ C for 2 rain. Af- 
ter cooling of the solution to 80 ~ C, a mixture of 5 gl 10x buffer 
[100 mM TRIS-HC1 (pH=8.3), 500mM KC1], 1.5 gl 50 mM 
MgC12, 0.5 gl deoxynucleotide triphosphate (dNTP) mix (25 mM 
each, United States Biochemical Corporation, Cleveland), and 
0.3 gl (8 u/gl) Taq polymerase (United States Biochemical Corpo- 
ration, Cleveland) was added. A total of 35 cycles of denaturing at 
92 ~ C for 60 s, annealing at 53 ~ C for 60 s, and extension at 72 ~ C 
for 90 s were performed. Reaction products were visualized in a 
1.3% agarose gel containing 0.2 p.g ethidium bromide/ml. 



Table 1 Amplified sequences obtained with primers LEI-I and LEI-2 
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AAAAAT--GCCAAAAATCGGCTCCGGGGCGGGAAACTGGGGGTT 

TCTGCGAAAATCG-AAAAATGGGTGCAGAAATCCCGTTCAAAAAACGGTC AAAAAT--GCCAAAAATCGGCTCGGAGGCGGGAAACTGGGGGTT 

TCTGCGAAATCGG-AAAAATGGGTGCAGAAATCCCGTTCATTTTTTGGCC AAAATT--GCCATTTTTGGGCTCCGGGGCGGGAAACTGGGGGTT 

TCTGCGAAAT~GG~AAAAATGGGTGCAG~ATCCCGTTCATTTTTTGGCCAAAATT-.GCCATTTTTGGG~TCCGGGGCGGGAAACTGGGGGTT 

TCTGCGAAATCGG-AAAAATGGGTGCAGAAATCCCGTTCATTTTTTGGCC AAAATT--GCCATTTTTGGGCTCCGGGGCGGGAAACTGGGGGTT 

TCTGCGAAAATCG~AAAAATGGGTGCAGAAATCCCGTTCATTTTTGGCCGAAAATT~GGCATTTTTGGGCT~GGAGGCGGGAAACTAGGGGTT 

TCTGCGAAAAGCG-AAAAATGGGTGCAGAAATCCCGTTCATTTTTGGCCG AAAATT--GGCATTTTTGGGCTCGGAGGCGGGAAACTAGGGGTT 

TCTGCGAAATTCG-AAAAATGGGTGCAGAAACCCCGTTCATTTTTGGCCG AAAATT--GCCATTTTTGGGCTCCGGGGCGGGAAACTAGGGGTT 

TCTGCGAAAATCG-AAAAATGGGTGCAGAAACCCCGTTCATTTTTGGTCG AAAAAC--GCCATTTTTGGGCTCGAGGGCGGGAAACTAGGGGTT 

TCTGCGAAAATCG-AAAAATGGGTGCAGAAATCCCGTTCATATTTTCCCG GAAAAT--GCCATTTTTGGGCTCCGGGGCGGGAAACTAGGGGTT 

TCTGCGAAAAGCG-AAAAATGGGTGCAGAAATCCCGTTCATTTTTGGCCG GAAAAT--GCCATTTTTGGGCTCGGAGGCGGGAAACTAGGGGTT 

TCTGCGAAAACCG-AAAAATGGGTGCAGAAATCCCGTTCATTTTTGGCCG GAAAAT--GCCATTTTTGGGCTCGGAGGCGGGAAACTAGGGGTT 

TCTGCGAAAACCG-AAAAATGGGTGCAGAAATCCCGTTCATTTTTGGCCG GAAAAT--GCCATTTTTGGGCTCGGAGGCGGGAAACTAGGGGTT 

TCTGCGAAAACCG-AAAAATGGGTGCAGAAATCCCGTTCATTTTTGGCCG GAAAAT--GGCATTTTTGGGCTCGAGGGCGGGAAACTAGGGGTT 

TCTGCGAAAACCG-AAAAATGGGTGCAGAAATCCCGTTCATTTTTGGCCG GAAAAT--GCCATTTTTGGGCTCCGGGGCGGGAAACTAGGGGTT 

TCTGCGAAAACCG-AAAAATGGGTGCAGAAATCCCGTTCATAATTTGGCG AAAAAT--GCCATTTTTGGGGTCGGAGGCGGGAAACTAGGGGTT 

TCTGCGAAATTCG-AAAAATGGGTGCAGAAATCCCGTTCATAATTTGGCG AAAAAT--GCCATTTTTGGCCTCGAGGGTGGGAAACTAGGGGTT 

TCTGCGGAAACCGGAAAAATGAGCGCAGAAACCCCGTTCATAATTTGGGG GAAATTCGGCCGAAAACAG-CTCGGGGCGGGGAAACTGGGGGTT 

TCTGCGGAAACCGGAAAAATGAGTGCAGAAACCCCGTTCATAATTTGGGG GAAATTCGGCCGAAAACAG-CTCGGGGCGGGGAAACTGGGGGTT 

TCTGCGGAAACCGGAAAAATGAGTGCAGAAACCCCGTTCATAATTTGGGG GAAATTCGGCCGAAAACAG-CTCGGGGCGGGGAAACTGGGGGTT 

TCTGCGGAAACCGGAAAAATGAGTGCAGAAACCCCGTTCATAATTTGGGG GAAATTCGGCCGAAAACAG-CTCGGGGCGGGGAAACTGGGGGTT 

TCTGCGGGGAGGGCAAAAATGAGTGCAGAAACCCCGTTCATAATTTGGGG GAAATTCGGCCGAAAACAG-CTCGGGGCGGGGAAACTGGGGGTT 
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Fig. 1 Dendrogram of the amplified sequences. Sequences start- 
ing with D, T, and M correspond to Leishmania donovani, L. tropi- 
ca, and L. mexicana, respectively 

Cloning and sequencing 

PCR products (0.15 kb) were excised from the agarose gel and 
the DNA purified by silica-gel adsorption (QIAEX; Qiagen 
Corp., Chatsworth). Using the flanking BamHI sites of LEI- 1 and 
LEI-2, the products were ligated into BamHl-cut pBluescript II 
HSK-vectors (Stratagene, La Jolla) and used to transform 
XL1-Blue cells (Stratagene, La Jolla) by electroporation. Se- 
quencing was performed according to Sanger et al. (1977) using a 
Sequenase 2.0 kit (United States Biochemical Corporation, 
Cleveland). 

Sequence analysis 

Sequence comparisons and the dendrographic plot were obtained 
using the program CLUSTAL in the PC/GENE software package 
0ntelliGenetics, Mountain View) employing a method developed 
by Higgins and Sharp (1988). Computation parameters were set to 
a K-tuple value of 5, a gap penalty of 5, a window size of 10, and 
a filtering level of 2.5. All sequences described originated from 
separate PCR amplifications. 

Results 

Leishmania kinetoplast minicircle DNA sequences am- 
plified with the primers LEI-1 and LEI-2 are listed in Ta- 
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Table 2 Number of identical amplification products produced by 
multiple PCR on single isolates of Leishmania donovani, L. tropi- 
ca, and L. mexicana 

Isolate 

D1 T1 M1 

Individual PCR reactions 10 4 5 
Identical sequences 3 0 3 

ble 1. The primer sequences themselves are excluded. 
Only 5 of 32 sequences were redundant (D1X3 and 
D1X6, with D1X2; T4X1, with T3X2; and MIX3 and 
M1X4, with M1X2). A dendrogram derived from a maxi- 
mum of 25 of these sequences showed isolates belonging 
to the same Leishmania species grouped in separate 
branches (Fig. 1). The number of identical bases between 
all L. donovani sequences was 67 (74%), with the lowest 
individual intraspecific identity being 81% (between se- 
quences D1X2 and D2XI). The L. tropica sequences we- 
re 80% identical, with the lowest individual intraspecific 
identity being 87% (between sequences T1X4 and 
T6X1). The highest interspecific identity was 92% (be- 
tween isolates T2X1 and D1X2). 

Cloning of the products from individual PCR reac- 
tions done with isolates D1 (L. donovani), T1 (L. tropi- 
ca), and M1 (L. mexicana) resulted in multiple sequen- 
ces for the same isolate (Table 2). 

different sequences that can be amplified with LEI-1 
and LEI-2 must be considerably greater than the 
eight described herein. This might be true to a lesser 

degree for L. mexicana strains, where three of only 
five sequences were identical (Table 2). The identity 
between the individual sequences amplified from 
isolate D1 (76%) is similar to the intraspecific value 
(74%). Possible explanations could be an exchange 
of genetic information from a gene pool shared 
by the members of the respective species or species-spe- 
cific mechanisms for the generation of sequences 
diversity. 

Intraspecific polymorphism 

The primers LEI-1 and LEI-2 detected a marked intra- 
specific polymorphism with identities of only 74% and 
80% within L. donovani and L. tropica, respectively. 
With the possible exception of D1X2, which showed a 
high homology to L. tropica sequences, the homogene- 
ous distribution of the computer-generated, pairwise sim- 
ilarity scores obtained by matching each sequence to 
every other within the same species (data not shown) 
does not readily allow for the distinction of different 
classes of sequences within a given species. 

Interspecific polymorphism 

Discussion 

Primer construction 

Both primers are located on interspecifically conserved 
sequences described previously (de Bruijn and Barker 
1992) with emphasis given to the 3'-end being the less 
degenerate one. This observation is in agreement with 
the findings by Sommer and Tautz (1989) that the 3'-ter- 
minal nucleotides have to match perfectly for successful 
priming. To achieve the greatest possible sensitivity, the 
primers were synthesized degenerately, that is, as mix- 
tures of 4 (LEI-I) and 16 (LEI-2) individual sequences. 
This not only facilitated the acquisition of amplification 
products from all five Leishmania donovani and all 
six L. tropica isolates as well as the L. mexicana 
strain, but these primers were also capable of detecting 
the described intraspecific as well as intrastrain variabil- 
ity. 

Intrastrain polymorphism 

A marked polymorphism within individual isolates was 
observed with identities being as low as 82% (between 
sequences D1X2 and D1X5). In an attempt to evaluate 
the intrastrain polymorphism detectable by the primers 
LEI-1 and LEI-2, we performed ten individual PCR am- 
plifications of the L. donovani isolate D1. Because only 
three of the ten independently amplified sequences were 
identical, it can be assumed that the total number of 

The number of bases conserved between all L. donovani 
and L. tropica sequences was 58 (64%). However, only 2 
of the 33 nonconserved bases would allow for a species 
differentiation between the L. donovani and L. tropica se- 
quences presented herein, whereas the remaining 31 non- 
conserved bases would not. It can be extrapolated that the 
number of discriminating nucleotides will decrease even 
further as the number of available sequences increases. 
No "specific" mutation at all could be considered if L. 
mexicana were to be differentiated as a third species. 
Therefore, individually found sequences are of little value 
in distinguishing between Leishmania species. This ob- 
servation suggests that the usual way of establishing indi- 
vidual consensus sequences in an effort to distinguish be- 
tween the different species will be of little value for mini- 
circle DNA. 

As a possible alternative, we suggest the use of the 
presented sequences (possibly without identical and 
highly similar sequences, leaving the following 19 se- 
quences: T1X1, T1X2, T2X1, T2X2, T3X1, T4X1, 
T4X2, T5X1, T6X1, D1X1, D1X2, D2X1, D2X2, D3X1, 
D4X1, D5X1, MIX1, M1X2, and MIX5) as a data base 
to construct a dendrogram such as that shown in Fig. 1, 
since all of the given sequences fall within separate 
branches representing the individual species. It can be 
speculated that further sequences will follow suit. 
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