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Permeabilized Cells 
A n Approach to the Study of Exocytosis 

M A N F R E D G R A T Z L 

U n i v e r s i t y o f U l m , U l m , F e d e r a l R e p u b l i c o f G e r m a n y 

I. I N T R O D U C T I O N 

Biological membranes are highly asymmetrical structures that separate cells 
or subcellular compartments differing greatly in their composition. Well-
known cellular activities, such as secretion by exocytosis, uptake of extra-
cellular material by phagocytosis, formation of the multinucleated myotubes 
during development of striated skeletal muscle, and fertilization, require 
direct (open) communication between cells or subcellular compartments. 
This is achieved by the process of membrane fusion. At least two types 
of membrane fusion can be distinguished: in one type, extracellular mem­
brane surfaces interact with each other ( e . g . , cell-cell fusion), while 
in the other, interactions occur between membrane surfaces facing the 
cytoplasm ( e . g . , exocytosis). 

Exocytotic membrane fusion is difficult to analyze because the interact-
ing membrane surfaces are not accessible from the outside of the cell. 
Moreover, the complexity of the processes in the chain of events between 
Stimulation of a cell and release of secretory product makes it difficult 
to study or manipulate adequately membrane fusion in intact cells. 

Within the past few years, procedures have been developed that allow 
exocytotic membrane fusion to be investigated by permeabilization of the 
plasma membrane of secretory cells. While they leave the exocytotic machin-
ery intact, they allow for modifying the cytoplasmic composition as desired 
and determining exocytotic Output as a function of various manipulations. 
In this way, the properties of exocytotic membrane fusion can be recorded 
and compared with the fusion properties of more simple model Systems 
or with the secretory process as exhibited by intact cells. 

II. P E R M E A B I L I Z A T I O N T E C H N I Q U E S 

Three different techniques have been used to permeabilize cells: application 
of physical force (high-voltage discharges), of detergents, and of pore-
forming proteins. 

553 
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When cells in Suspension are briefly exposed to electric fields, their 
membranes become permeable to solutes. The size of the membrane-bound 
structure permeabilized depends on the strength of the electric field applied. 
Hence, one can permeabilize the cell membrane, permitting access to the 
cytosol, without risking damage of intracellular organelles. This technique 
has been initially applied to bovine adrenal medullary cells (1-3) and sub-
sequently also to other secretory cells. After this treatment, the adrenal 
medullary cells behave as if their cell membrane contains pores allowing 
passage for at least 1 h of substances of up to a molecular weight of about 
1000. 

Detergents such as digitonin and saponin have also been applied to 
chromaffin cells (4-9). Within a narrow ränge of concentration and time, 
these substances are suitable for permeabilizing the cell membrane without 
causing leakage of substances from secretory vesicles. Since the size of 
the pores created is not uniform, i . e . , the holes obtained with saponin 
vary between 0.1 ym and 1 um (10), intact chromaffin secretory vesicles, 
which have a diameter of about 0.25 pm, can escape. A careful examination 
of digitonin-permeabilized chromaffin cells shows that compared to alpha 
toxin poration (see below) significant changes in the ultrastructure and 
in the secretory behavior occur with digitonin (10a). The cells also lose 
proteins essential for exocytosis (10b). D ü r i n g measurement of C a 2 + - i n d u c e d 
release of chromogranin A and noradrenalin from digitonin-permeabilized 
chromaffin cells in primary cultures, it has been shown that part of the 
secretory product can be sedimented by centrifugation (9), which indicates 
that the secretory product remains membrane bound. T h u s , the release 
observed from digitonin-treated cells does not occur solely by exocytosis. 
A further drawback of the use of detergents as permeabilizing agents 
is their possible influence on the exocytotic process itself, a conclusion 
based on the observed inhibition by detergents of catecholamine release 
from electrically permeabilized cells (2). 

Natural proteins produced from T lymphobytes (11) or bacteria (12,13) 
or derived from the complement complexes (14) insert in target membranes 
and lead to the formation of "stabilized" pores because every hole is 
surrounded by a protein ring (14a). 

Two of these proteins, the staphylococcal a-toxin and Streptolysin O 
from Streptococci, were valuable for probing the exocytotic process. They 
attack both the cell membrane of PC 12 cells (a pheochromocytoma cell 
line from rat) as well as of bovine adrenal chromaffin cells in culture 
(9,15,16,16a-f). 

Unlike the pores created by electrical discharges or detergents, all 
a-toxin pores are the same size (see F i g . 1). In target membranes, the 
water-soluble toxin monomers (molecular weight 34 kD) form ring-structured 
hexamers surrounding a pore with a diameter of 2-3 nm (12). These struc-
tures do not permit the passage of myoglobin (17 kD) or Dextran 4 (4 kD) 
(12,13). Consequently, the toxin monomers cannot enter the cells. Also, 
the cytoplasmic enzyme lactate dehydrogenase is not released from chromaffin 
cells in primary cultures or from PC 12 cells under this treatment. However, 
the rapid efflux of 8 6 R b + from the cells demonstrates complete accessibility 
of the cytosol for small molecules (9,15,16). Also, the rapid equilibration 
of cellular A T P or C a 2 + or externally added substances like inositol-1,4,5-
trisphosphate, different vanadate species, and so forth, indicates an effec-
tive poration of the plasma membrane for molecules up to a molecular mass 
of about 1 kD (16a, 16g). Since catecholamines or the protein chromogranin A 
was not released from the secretory vesicles, a-toxin's attack is strictly 
confined to the plasma membrane. Therefore, the technically simple permea-
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FIGURE 1 Electron micrograph of a negatively stained fragment of rabbit 
erythrocyte membrane, lysed with S t a p h y l o c o c c u s a u r e u s a-toxin (20 pg 
toxin/108 cells). Numerous ring-shaped toxin polymers are seen over the 
membrane. The hexameric form of the toxin has an outer diameter of 10 nm 
and exhibits a central stain deposit that indicates an inner diameter of 
about 2.5 nm. Sodium silicotungstate staining. Scale bar indicates 100 nm. 
(Courtesy of J . Tranum-Jensen, Institute of Anatomy, Department C, 
University of Copenhagen, Denmark.) 

bilization by a-toxin represents an ideal technique for studying exocytotic 
membrane fusion. 

Streptolysin O (SLO) from beta-hemolytic Streptococci produces large 
pores in target membranes (14a). Catecholamine-secreting cells permeabilized 
with SLO retain an intact exocytotic machinery and antibodies to intracellular 
constituents, as well as tetanus toxin and botulinum A toxin, can be intro-
duced directly into these cells (16d-f). 

In addition to the three procedures described here, another closely 
related technique is the use of hemolytic Sendai virus as a permeabilizing 
agent (17). However, the size of the holes created with this procedure 
cannot be precisely defined. Therefore, this technique must be considered 
inferior to permeabilization with a-toxin or Streptolysin O . 

III. R E L E A S E S T U D I E S WITH P E R M E A B I L I Z E D 
C H R O M A F F I N C E L L S 

A . C a 2 + Requirement 

The concept of stimulus-secretion coupling was developed around 25 years 
ago (18). This coupling concept describes calcium as having a crucial role 
in the regulation of secretion by exocytosis. Injection of C a 2 + into mast 
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cells (19) and nerve (20) provided direct evidence for the role of intra-
cellular C a 2 + as a trigger substance. 

The C a 2 + concentration is precisely controlled within secretory cells 
by Systems present in the cell membrane and in subcellular structures. 
In resting cells, the free C a 2 + concentration is close to 10" 7 M but increases 
upon receptor activation and/or depolarization owing to an influx of C a 2 + 

from the extracellular space which contains high (mM) concentrations of 
C a 2 + (cf. Refs. 21-23). Receptor activation and linked processes can be 
circumvented by ionophores which have often been used to facilitate the 
C a 2 + influx. A complete exchange of the intracellular fluid as well as its 
exact control ( e . g . , by buffering substances) can be achieved if pores 
sufficiently large in size to permit exchange of small or even high-molecular 
weight substances can be created in the cell membrane. 

Compared to intact cells, permeabilized cells require much less C a 2 + 

for the release of secretory product. A n example is given for pheochromo-
cytoma cells (PC 12) (Fig . 2) . Intact cells require mM concentrations of 
C a 2 + but a-toxin permeabilized cells respond already to uM C a 2 + . 

Exocytosis in intact cells is the complete transfer of small as well as 
large molecules from a intracellular vesicular compartment to the extracellular 
space, a process morphologically characterized by fusion of secretory vesi­
cles with the cell membrane. Therefore, a parallel release of small and 
large secretory products (catecholamines as well as d o p a m i n e - ß - h y d r o x y l a s e 
and chromogranins) but not of cytoplasmic lactate dehydrogenase was used 
as a biochemical parameter for secretion by exocytosis from chromaffin 
cells (cf. Refs. 24-26). Cell preparations permeabilized b y high-voltage 
discharges or by a-toxin or Streptolysin O meet these criteria, suggesting 
that release occurs by exocytosis ( 1 - 3 , 9 , 1 5 , 1 6 ) . Proof for exocytotic release 
from permeabilized catecholamine-secreting cells was also obtained in a 
study of the catecholamine metabolism in these cells (16c). It was shown 
that the enzymes oxidizing catecholamines, which are present in the cyto-
plasm, cannot come into contact with the membrane-bound catecholamines 
indicating that the cytoplasm is avoided during the release of catecholamines 
in a-toxin permeabilized cells (16c). As an example, the Ca 2 + -dependent 
release of the soluble contents of the storage vesicles, but not of the 
cytosolic marker enzyme, from a -toxin permeabilized adrenal medullary 
chromaffin cells in tissue culture is shown in Figure 3. 

The ränge of C a 2 + concentrations required for exocytosis in permea­
bilized cells certainly is in accordance with the measurements of C a 2 + within 
intact cells. Adrenal medullary chromaffin cells or pheochromocytoma cells 
(PC 12) contain about 0.1 yM free C a 2 * within the cytoplasm (27,28). 
Stimulation increases this value by a factor of roughly 3 or more. The 
measurement of free C a 2 + concentrations within cells certainly is not an 
easy procedure. One can assume that the true C a 2 + concentration in these 
cells is slightly higher than estimated for the following two reasons. First , 
C a 2 + determination using indicator substances only gives the average con­
centration within a given cell and not the concentration close to the plasma 
membrane where, owing to its influx from outside, the largest increase 
could be envisaged. Second, these substances, in order to provide a good 
signal, must be present within the secretory cells in fairly high amounts, 
and the indicator, being a C a 2 + chelator itself, would thus report a smaller 
C a 2 + concentration than actually exists. In addition to the difficulty of 
adjusting free C a 2 + concentrations to the low values used in studies with 
permeabilized cells, the possible influence on subcellular C a 2 + pools by 
the permeabilization procedure or by the media used may also have c o n -
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FIGURE 2 C a 2 + requirement of dopamine release by intact (A) and by a-toxin permeabilized 
PC12 cells. (From Ref. 15, by permission). 
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FIGURE 3 C a 2 + dependence of noradrenalin and chromogranin release 
from a-toxin-permeabilized chromaffin cells. C a 2 + triggers parallel secretion 
of noradrenalin and chromogranin A but has no effect on lactate dehydroge-
nase from the cells. (From Ref. 9, by permission.) 

tributed to the reported differences in the C a 2 + sensitivity of catecholamine 
release by permeabilized chromaffin cells. Nonetheless, there is no doubt 
that about 1000 times less C a 2 + needs to be added to elicit hormone release 
from permeabilized chromaffin cells than from intact cells. 

B. Role of A T P 

Freshly isolated adrenal medullary cells permeabilized electrically require 
A T P to be stimulated successfully with yM concentrations of C a 2 + (1-3). 
If the same cells are kept in tissue culture and permeabilized with deter­
gents, the effect of A T P is inconsistent (4-6). PC 12 cells permeabilized 
with a-toxin do not require A T P at all (16). These differences in A T P 
requirement may reflect cell-type-specific properties of the release process 
or the different permeabilization procedures used. 

It is likely that the lack of A T P sensitivity of permeabilized PC 12 
cells is inherent to this pheochromocytoma cell line. While chromaffin cells 
in primary culture exhibit decreased secretion when A T P production by 
glycolysis and oxidative phosphorylation is blocked (29,30), PC 12 cells 
do not respond to such a treatment (31). T h u s , the properties of secretion 
by intact cells are in accordance with findings obtained with permeabilized 
cells. The reason for the different behavior of PC 12 and chromaffin cells 
is not clear. However, a fact worth considering is that, in PC 12 cells, 
the preferential arrangement of secretory vesicles is near the cell membrane 
(32), whereas in chromaffin cells the secretory vesicles are distributed 
throughout the cytoplasm (cf. Ref. 33). In other words, movement of 
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secretory vesicles toward the cell membrane seems to be essential in chro­
maffin cells but not in PC 12 cells. In conjunction with this, the sole 
requirement of organelle movement for A T P is of considerable interest 
(34,35). Another possibility could be that a phosphorylation step is essen­
tial to prime for exocytosis. Along this line, studies have been carried 
out using intact chromaffin cells, permeabilized cells, or subcellular fractions 
(36-39). Finally, an effect of ATP-dependent proton translocation across 
the secretory vesicle membrane has been considered (40). 

Despite the efforts carried out, the mode of A T P action in exocytosis 
is still unknown. It is noteworthy that chromaffin cells kept in tissue 
culture, similar to PC 12 cells after permeabilization with a -toxin, were 
not dependent on A T P . However, after a washout period the A T P require­
ment of catecholamine release by the chromaffin cells could be clearly 
demonstrated (Fig . 4). Under these precisely controlled conditions A T P 
could not be substituted by any of the nucleotides tested (9). A parallel 
finding has been reported with freshly isolated chromaffin cells (3) This 
clear-cut difference in the A T P requirement between chromaffin cells and 
PC 12 cells may help to find the ATP-dependent step in exocytotic secretion. 

C. Effect of Neurotoxins 

The clostidial neurotoxins tetanus toxin and botulinum A toxin belong to 
the most poisonous substances known (20a). By means of the large pores 
generated by SLO, neurotoxins can be introduced into chromaffin cells 
(16d-f). It has been observed that tetanus toxin and botulinum A toxin 
following Separation of their disulfide linked-chains are able to block C a 2 + -
induced catecholamine release. The heavy chain of the toxins has no 
effect, but the light chains block exocytosis (16d-f). T h u s , a new 
tool, the light chains of the clostridial neurotoxins for the analysis 
of the components involved in exocytosis, has been detected (16d-f). 
Furthermore, appropriate permeabilized cells should permit identification 
of the target of tetanus toxin within the cells, as well as detection 
of its reactive domain within the light chain, and consequently provide 
an approach to elucidate the mechanism of the action of these neurotoxins 
at the molecular level. 

D. Modulation of Catecholamine Release 

All observations reported agree that the amount or nature of monovalent 
cations does not modify the characteristics of secretion by permeabilized 
cells. From the divalent cations tested M g 2 + could not be substituted for 
C a 2 + and high concentrations (>mM) and M g 2 + inhibit the release elicited 
by MM C a 2 + (1-3,6,16). The reported ability of S r 2 + , C d 2 + , M g 2 + , and 
B a 2 + to replace or block the effect of C a 2 + (6) must be interpreted with 
caution because the experiments were carried out with very high C a 2 + 

concentrations (mM). Moreover, no chelators were present during these 
experiments, i . e . , it is not known how much C a 2 + was still present or 
whether a redistribution of ions or an actual influence on the Ca 2 + -sensitive 
target was the cause. T h u s , further experiments are required to character-
ize the effect of divalent cations in order to obtain a solid basis for the 
comparison of secretion by intact secretory cells with such permeabilized 
cell preparations. 

Freshly isolated chromaffin cells permeabilized electrically demonstrate 
a large inhibition of C a 2 + - i n d u c e d catecholamine release by Chloride and 
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FIGURE 4 Effect of A T P on C a 2 + - e v o k e d catecholamine release from a -
toxin-permeabilized chromaffin cells. (From Ref. 9, by permission.) 

other anions (3), but chromaffin cells kept in primary cultures and permea­
bilized with digitonin or saponin (4,6) are not affected by the nature of 
the anions present. This difference is not yet understood. Recently, it 
has been observed that changes in the medium composition with respect 
to anions likewise do not modify dopamine release from a-toxin-permeabilized 
PC 12 cells in culture (16). 

Permeabilized cells appear to be an almost ideal tool to elucidate the 
role of intracellular messengers. That is why the participation of the 
protein kinase C System in secretion by exocytosis also has been analyzed 
by using such preparations. Phorbolesters, which can Substitute the 
natural diacylglycerol as activator of protein kinase C, apparently decrease 
the requirement for C a 2 + of catecholamine release in freshly isolated, elec-
trically permeabilized cells (41), as well as in digitonin-permeabilized 
chromaffin cells in primary culture (42). The latter, however, is less 
sensitive to this d r u g . Surprisingly l-oleyl-2-acetyl-glycerol (OAG), an 
activator of purified kinase C, does not show a detectable effect in elec-
trically permeabilized cells (43). In permeabilized rat pheochromocytoma 
cells (PC 12) activation of protein kinase C by the diacylglycerol analog 
OAG or the phorbolester TPA ameliorates C a 2 + induced exocytosis (16c,43a). 
Using a-toxin-permeabilized PC 12 cells, it could also be shown that the 
activation by TPA is dependent on the presence of M g 2 + / A T P (16c), which 
clearly indicates the involvement of an active protein kinase C System. 
Exposure of these cells to G T P - y - S inhibits Ca 2 + -dependent release in 
bovine cells but stimulates it in chicken cells. As the inhibitory action 
on bovine cells persisted in the presence of phorbolester, it was concluded 
that a GTP Dinding protein (G protein) may inhibit the action of protein 
kinase C (43). A Ca 2 + -independent stimulatory effect of GTP analogs was 
reported for bovine chromaffin cells in primary culture (43b), whereas 



P e r m e a b i l i z e d Cells 561 

C a 2 + - t r i g g e r e d exocytosis in a-toxin-permeabilized pheochromocytoma cells 
(PC 12) was inhibited by G T P y S (16c). This effect could be abolished 
by pertussis toxin but not by cholera toxin, indicating that exocytosis 
by PC 12 cells can be modulated by a pertussis toxin-sensitive G protein 
(16c). Further analysis of the G proteins present in chromaffin cells seems 
to be necessary to fully understand the role of these proteins in intra­
cellular signal transduction. In this context it is noteworthy that low-
and high-molecular-mass GTP binding proteins have been detected at a 
Strategie location, namely the secretory vesicle membrane in chromaffin 
cells (43c,d) . 

Application of drugs interacting with calmodulin in intact chromaffin 
cells (44,45) and injection of anticalmodulin antibodies into chromaffin cells 
using erythrocytes as a vehicle (46) suggested the possibility of calmodulin 
Controlling the C a 2 + sensitivity of the release process. The reported data 
using permeabilized cells do not support this view, at least as far as t r i -
fluoperazine is concerned. Neither electrically nor detergent-permeabilized 
cells responded to low concentrations of this d r u g ; 10 yM trifluopera-
zine caused the Ca 2 + -independent catecholamine release to increase, suggest-
ing a damage of secretory vesicles (3,16d,47). Since introduetion of an 
antibody against calmodulin into SLO-permeabilized PC 12 cells did not 
affect the Ca 2 + -dependent secretory response, an involvement of calmodulin 
in the final steps of exocytosis is less likely (16d). 

The different techniques to permeabilize the cell membrane of chromaffin 
cells allow for introducing small and large molecular substances into the 
intracellular environment which would not penetrate otherwise. The examples 
given above demonstrate the usefulness of permeabilized cell preparations 
to determine the molecular requirements for exocytosis. 

IV. COMPARISON WITH OTHER PERMEABILIZED 
SECRETORY CELLS 

A . Endocrine and Exocrine Pancreas 

Much of our knowledge on the process of secretion by exocytosis stems 
from numerous investigations of the chromaffin cell. It was therefore 
feasible to use mainly chromaffin cells as an object for permeabilization 
studies. 

However, such studies have also been condueted on other endocrine 
cells: The pancreatic islet cells produce several key hormones in carbo-
hydrate metabolism, including insulin, glucagon, and somatostatin. Knowl­
edge of the release process of these hormones is of particular importance 
in understanding diabetes and other endocrine disorders. The high-voltage 
technique has been used to determine the molecular requirements for exo­
cytosis in islet cells (48-51). 

It is not surprising that also in these cells yM C a 2 + was sufficient 
to release insulin after permeabilization. The A T P requirement has been 
studied in more detail (48). Cells that had reeeived an A T P washout treat­
ment were found to be dependent on this nucleotide. On the other hand, 
cells that were not washed out did not require the addition of A T P . This 
is similar to the Situation seen with a-toxin-permeabilized chromaffin cells 
in primary culture, which also exhibit A T P dependence only after a washout 
period (9). 

Elevation of the glucose level in the extracellular fluid in the presence 
of C a 2 + is the natural Stimulus for insulin secretion from intact pancreatic 
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B cells. Neither glucose nor glucose-6-phosphate modified insulin release 
from permeabilized cells, but phosphoenolpyruvate stimulated the release. 
This suggests that the latter substance may act as an intracellular modulator 
of insulin release. Further experiments along this line may be helpful to 
settle a long-lasting controversy on whether glucose itself or some of its 
metabolites may act as the principal Stimulus of insulin release (cf. Ref. 52). 

Inhibition of insulin release from pancreatic islets has been reported 
for phalloidin (50), which stabilizes F-actin, cytochalasin B (49), which 
alters microfilament function, and vinblastin (49), which impairs microtubule 
function. By contrast, none of these substances affected catecholamine 
release from electrically permeabilized chromaffin cells (3). 

Insulin secretion has also been investigated using digitonin-permeabilized 
islets of Langerhans (53,54). Both forskolin and phorbolesters, in addition 
to C a 2 + , have been observed to stimulate insulin release in this preparation 
(53). Concerning phorbolesters, a parallel finding was recently noted using 
electrically permeabilized islets; thus a physiological role for protein kinase 
C cascade in insulin secretion can be envisioned (51). 

Also, exocrine pancreatic acinar cells which produce digestive enzymes 
were rendered permeable by intense electric fields (55). Without C a 2 + 

present, less than 0.5% of the cellular content of amylase was released 
but about 4% was released upon addition of 10 yM free C a 2 + . Cyclic nucleo-
tides did not affect the exocytotic machinery within these cells, However, 
similar to the behavior of pancreatic B cells and chromaffin cells, amylase 
release was increased by phorbolesters. 

B. Platelets and Mast Cells 

Secretion from and aggregation of platelets are important processes cooperat-
ing in hemostasis. Both can be elicited by thrombin, a protein with a central 
role in the regulation of blood clotting. This protein induces Serotonin 
release from intact platelets even in the absence of extracellular C a 2 + . 
It also causes phosphatidyl inositol breakdown leading to diacylglycerol 
formation, activation of protein kinase C, and phosphorylation of proteins 
with molecular masses of 40 kD and 20 k D , the latter being light-chain 
platelet myosin (cf. Ref. 56). When permeabilized by high-voltage dis-
charges, platelets in the presence of A T P and yM concentrations of C a 2 + 

release Serotonin from the storage vesicles and acid hydrolases from the 
lysosomes. This release is increased by further addition of thrombin (57-61). 
In permeabilized platelets with low (0.1 yM) concentration of C a 2 + , thrombin 
also increases diacylglycerol formation, presumably by hydrolysis of phos-
phatidylinositols (61) and phosphorylation of proteins with a molecular 
weight of about 40 kD and 20 k D . Diacylglycerol itself causes enhanced 
phosphorylation of these two proteins (59). The results obtained so far 
are consistent with the view that secretion from platelets as studied with 
permeabilized cells is dependent on yM C a 2 + and members of the 
phosphatidylinositol/protein kinase C cascade are probably potent modulators. 
The relation of protein phosphorylation to the secretory response is not 
yet known (cf. Chapter 25). However, further studies may help to provide 
some insight into the nature of mechanisms involved in this ATP-dependent 
step of exocytosis. 

Mast cells permeabilized with Sendai virus release histamin upon addition 
of yM C a 2 + . This requires no A T P and a nonhydrolyzable A T P derivative 
had no effect (17). However, when permeabilized with Streptolysin O, rat 
mast cells that have been pretreated with metabolic inhibitors secrete histamine 
provided that C a 2 + and a nucleoside triphosphate are present (59a). 
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C . Sea U r c h i n E g g s 

Within seconds after fusion of sperm and e g g , the membranes of cortical 
vesicles fuse with the cell membrane. This example of massive exocytosis 
has been studied with intact eggs, with a preparation containing cortical 
vesicles plus cell membrane ("isolated cortices"), as well as with permea­
bilized eggs, with the aim of obtaining Information on the mechanism of 
exocytosis in these cells. 

The properties of the co-called cortical reaction in intact eggs are 
very similar to the secretion by exocytosis observed in other cells. It 
is associated with a rise in intracellular free C a 2 + (62,63), can also be 
activated by the ionophor A23187 (64), as well as by injection of C a 2 + (65). 
As a measure of secretion, enzymes present in the cortical vesicles are 
determined (66,67). 

A preparation of cortical vesicles attached to the inner surface of 
the plasma membrane (isolated cortices) can be obtained from sea urchin 
eggs adhering to a coated surface, after shearing away the upper part 
of the cell (68). Addition of C a 2 + , B a 2 + , and S r 2 + , but not of M g 2 + , elicits 
discharge. Treatment with drugs affecting microtubules or microfilaments, 
with cyclic nucleotides, or with A T P neither enhanced nor inhibited this 
process (69). Experiments carried out with isolated cortices as well as 
with eggs permeabilized by high-voltage discharges have shown that a 
supply of A T P is not necessary in these preparations (70). However, the 
sensitivity of exocytosis to C a 2 + is increased by A T P and the fraction 
of vesicles reacting falls in the absence of this nucleotide. Finally, in 
a reconstituted System, consisting of purified cortical vesicles and plasma 
membrane, it was shown that A T P was not necessary for exocytosis (71). 
In vitro exocytosis in isolated egg cortices is inhibited by elevated M g 2 + 

concentrations. This inhibition can be overcome by increasing the free 
C a 2 + concentration (72). Many other conceivable modulators of the C a 2 + -
dependent cortical reaction did not show any effect. Trifluoperazine inhibited 
Ca 2 + -dependent exocytosis, but because of the increased Ca 2 + -independent 
release observed at slightly higher concentrations of this d r u g , the authors 
were not confident in attributing its inhibitory effects to an action on 
calmodulin rather than to its detergent-like activity (72). Another group 
using an antibody to calmodulin, which inhibits exocytosis in isolated 
cortices, concluded that calmodulin or other similar C a 2 + - b i n d i n g modulatory 
proteins may be involved in exocytosis (73). 

V . C O N C L U S I O N 

Investigation of exocytotic membrane fusion in permeabilized cell prepara­
tions has shown that there is an absolute requirement for Ca + in the 
yM r ä n g e . The target (receptor) of this cation, i . e . , the protein and/or 
the lipid it interacts with, remains to be identified. 

The specificity of C a 2 + bin ding to its receptor is to be compared with 
the ionic requirements of the secretory vesicle/plasma membrane interaction. 
While there is agreement on the fact that M g 2 + in high (mM) concentrations 
inhibits the effect elicited by yM C a 2 + and that M g 2 + cannot replace C a 2 + , 
it has not yet been completely worked out whether other divalent or t r i ­
valent cations can act like C a 2 + does. 

Another unsolved problem is the question of exactly how A T P acts 
in exocytotic secretion. It must be borne in mind that some endocrine cells 
can do without A T P . Also, in the sea urchin egg there is no direct influence 
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of A T P . Furthermore, isolated secretory vesicle fusion requires no ATP 
added (74-76). T h u s , it may be concluded that the exocytotic membrane 
fusion catalyzed by C a 2 + has to be differentiated from other ATP-requiring 
processes which may precede the fusion step. In particular, A T P may 
assure the movement of the secretory vesicles toward the cell membrane 
or the docking of the secretory vesicle to the cell membrane prior to 
membrane fusion. 

Modulation of exocytosis via the protein kinase C System is certainly 
an ATP-dependent step. Within the intact cell this pathway is affected 
by receptor-coupled, GTP-binding proteins at the level of the plasma 
membrane. Modulation of exocytosis via intracellular GTP binding proteins 
is indicated by the effects of GTP analogs on C a 2 + - t r i g g e r e d exocytosis 
in permeabilized cells and first reports on the intracellular distribution 
of these proteins within secretory cells. However, the nature and the 
role of these proteins in exocytotic membrane fusion remain to be elucidated. 

Recent reports on the inhibitory effect of the clostridial neurotoxins 
on exocytotic release of catecholamines from permeabilized chromaffin cells 
indicate that a novel tool has been detected to define intracellular molecules 
participating in exocytotic membrane fusion. Further work concerning the 
intracellular action of tetanus toxin and botulinum A toxin will certainly 
allow us to define the mechanism of action of these highly poisonous neuro­
toxins . 

The processes of exocytotic membrane fusion in different secretory 
cells probably have the same principal basic mechanisms. Permeabilizing 
cell preparations appears to be an ideal method for following these mecha­
nisms. 
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