Fresenius' Zeitschrift für

Analytische Chemie

Labor- und Betriebsverfahren

Herausgegeben von W. Fresenius

unter Mitwirkung der Fachgruppe Analytische Chemie der Gesellschaft Deutscher Chemiker

vertreten durch H. Bode H. Kienitz W. Koch H. Specker

Band 252 · 1970

Springer-Verlag Berlin · Heidelberg · New York J. F. Bergmann München

Alle Rechte, einschließlich das der Übersetzung in fremde Sprachen und das der fotomechanischen Wiedergabe oder einer sonstigen Vervielfältigung, vorbehalten. Jedoch wird gewerblichen Unternehmen für den innerbetrieblichen Gebrauch nach Maßgabe des zwischen dem Börsenverein des Deutschen Buchhandels e. V. und dem Bundesverband der Deutschen Industrie abgeschlossenen Rahmenabkommens die Anfertigung einer fotomechanischen Vervielfältigung gestattet. Wenn für diese Zeitschrift kein Pauschalabkommen mit dem Verlag vereinbart worden ist, ist eine Wertmarke im Betrage von DM 0,30 pro Seite zu verwenden. Der Verlag läßt diese Beträge den Autorenverbänden zufließen.

Die Wiedergabe von Gebrauchsnamen, Handelsnamen, Warenbezeichnungen usw. in dieser Zeitschrift berechtigt auch ohne besondere Kennzeichnung nicht zu der Annahme, daß solche Namen im Sinne der Warenzeichen- und Markenschutz-Gesetzgebung als frei zu betrachten wären und daher von jedermann benutzt werden dürften.

Springer-Verlag / Berlin · Heidelberg · New York Printed in Germany — Copyright © by Springer-Verlag Berlin Heidelberg 1970

Druck: Wiesbadener Graphische Betriebe GmbH, Wiesbaden

Inhalt

Originalabhandlungen

Antweiler, H. J., Klemmer, G.: Zur quantitativ analytischen Aussagefähigkeit von Meßmethoden bei Lösungen von Protein- und Proteidgemischen	256
Baresel, D., Corinth, U., Stähr, A.: Zur Verteilung von Dotierungsstoffen in Selengleichrichterplatten. II. Methode zur Bestimmung der Tellurverteilung in Selengleichrichterplatten	14
Bergner, D., Dittmeyer, R., Fuchs, D., Hackl, J., Killian, K. P., Müller, K.: Problematik der Meßwertkontrolle und Ergebnisdarstellung bei Systemen der automatischen Erfassung und Auswertung von Labordaten	343
Berlet, H. H.: Säulen-chromatographische Vielfachanalyse von Kreatin und Kreatinphosphat in Gewebsextrakten	159
Borg, K. O., Westerlund, D.: Fluorometric Determination of Non-Fluorescent Amines by Ion-Pair Extraction	275
Brand, K., Arese, P., Rivera, M.: Der Anteil der Glykolyse und des Pentosephosphat-Weges am Glucoseumsatz in normalen und in Glucose-6-phosphat-Dehydrogenase-Mangel-Erythrocyten	210
Dörmer, P., Brinkmann, W.: Auflichtphotometrie von Mikroautoradiogrammen für quantitative Einbaustudien an Einzelzellen	84
Doss, M.: Fluorescence Analysis of Porphyrins in Thin-Layer Chromatograms	104
Duve, C. de: Methods of Separation of Subcellular Particles	346
Egge, H., Murawski, U., Ryhage, R., Zilliken, F., György, P.: Positional Isomers of Monoenoic Fatty Acids from Human Milk	123
Franck, H. P.: Über einen neuen Typ der Lysolecithin-Acylierung IV. Thermodynamische Untersuchungen mit einem Batch Mikrocalorimeter	215
Fresenius, W., Kienitz, H.: In Memoriam Prof. DrIng. Horst Luther	349
Friedel, R., Mattenheimer, H.: Über die Herkunft der Lactatdehydrogenase und anderer Zellenyzme im normalen Blutserum	204
Fritsch, WP., Hockeborn, M., Rick, W.: Kontinuierlicher Test zur Messung der Aktivität der Postheparinlipase	198
Gassen, H. G., Leifer, W.: Über einen Analysator in der Nucleinsäurechemie	337
Gauchel, F. D., Beyermann, K., Zahn, R. K.: Gas-chromatographische Bestimmung des DNS-Gehaltes biologischen Materials über den Thymingehalt	331
Gawehn, K., Wielinger, H., Werner, W.: Screening von Chromogenen für die Blutzuckerbestimmung nach der GOD/POD-Methode	222
Gleispach, H., Schandara, E.: Untersuchungen zur gas-chromatographischen Analyse von Menthol aus dem Urin	1 40
Göhde, W., Dittrich, W.: Simultane Impulsfluorimetrie des DNS- und Proteingehaltes von Tumorzellen	328
Grassl, M., Nelboeck-Hochstetter, M., Beaucamp, K.: Probleme der Analytik von Pyridin-Nucleotid-Coenzymen, I. β -Nicotinamid-adenin-dinucleotid	331
Günther, H.: Kopplung von Gas-Chromatographie und Infrarotspektroskopie mit dem Extrocell-System	145
Gutmann, I.: Neue enzymatische Analysenmethoden zur Bestimmung von Maltose, Stärke und Lactat in der Lebensmittelchemie	234
Harzer, K.: Analytische isoelektrische Fraktionierung der N-Acetyl- }-D-hexosaminidasen	170

W

Herrmann, R.: Physikalische Grundlagen der Mikroskopphotometrie	81
Hertel, W., Sacher, V., Rohrlich, M.: Kombinierter Nachweis von ¹⁴ C-markierten Eiweißstoffen und Aminosäuren nach Säulen-Chromatographie an Sephadex. II	147
Hölzl, J.: Radio-gas-chromatographische Kontrolle des ¹⁴ C-Acetateinbaus in die Phosphatid- fettsäuren der Sojabohnen	137
Hoppe, W.: Röntgenstrukturanalyse von Makromolekülen	246
Hoppen, HO., Siekmann, L., Breuer, H.: Identifizierung von Aminosäure- und Peptidkonjugaten von Oestrogenen mit Hilfe der Massenspektrometrie	299
Horn, K., Landgraf, R., Ruhl, T., Scriba, P. C.: Verbesserte mikrochemische Jodbestimmung von Schilddrüsenhormonen	267
Horne, T.: Chemical Methods for Use with Vickers Multichannel 300	241
Jung, G., Breitmaier, E., Voelter, W.: Analyse von Hydroxysteroiden mit Hilfe der ¹⁹ F-NMR-Spektroskopie. Strukturbestimmungen und quantitative Analysen von Hydroxysteroidgemischen im Mikrogrammbereich	304
Kahle, K., Weiss, L., Klarwein, M., Wieland, O.: Klinisch-chemische Erfahrungen mit einem neuen Chromogen für die Blutzuckerbestimmung nach der GOD/POD-Methode unter Verwendung eines automatischen Analysiergerätes	228
Kaiser, R.: Probleme der Kopplung Gas-Chromatographie mit Massenspektrometrie im Bereich niederer Konzentrationen	119
Kettrup, A., Riepe, W.: Korrelation massenspektroskopischer, IR-spektroskopischer und potentiometrischer Analysendaten zur Ermittlung der Stabilität von Metallchelaten	1
Kienitz, H.: Massenspektrometrie unter den Bedingungen der Kopplung mit der Gas-Chromatographie	3, 350
Kiss, T.: Maßanalyse und Katalyse. VII. Thermometrische Endpunktsindikation bei Substitutionstitrationen und Titrationen in nichtwäßrigem Medium (DMSO)	12
Klöppel, A., Post, D., Schneider, G., Schütz, H.: Abtrennung quartärer Ammoniumverbindungen über zerlegbare lonenpaarextrakte mit nachfolgender Identifizierung	279
Kranz, Th., Lüben, G.: Beitrag zur radioimmunologischen Bestimmung von humanem Placentalactogen	271
Krüger, K. W.: Dünnschicht-chromatographische Bestimmung von Trimethylaminohydrochlorid in Cholinchlorid	373
Lingens, F., Sprößler, B.: Enzymatische Bestimmung von L-Tryptophan mit Hilfe der Chorismatmutase aus Claviceps paspali	232
Lorentz, K., Flatter, B., Mutschler, B.: Neues Verfahren zur photometrischen Bestimmung von Proteasen auf Grund der Reaktion von p-Benzochinon mit Aminogruppen	218
Lorenz, W., Benesch, L., Barth, H., Matejka, E., Meyer, R., Kusche, J., Hutzel, M., Werle, E.: Fluorometric Assay of Histamine in Tissues and Body Fluids: Choice of the Purification Procedure and Identification in the Nanogram Range	94
Machleidt, W., Kerner, W., Otto, J.: Automatische Säulen-Chromatographie von Peptiden im Nanomolmaßstab	151
Michal, G., Nelböck, M., Weimann, G.: Cyclophosphate. III. Spaltung verschiedener Cyclophosphate durch Phosphodiesterase aus Herz und Fettgewebe	189
Michal, G., du Plooy, M., Woschée, M., Nelböck, M., Weimann, G.: Cyclophosphate. II. Messung der Aktivierung des Phosphorylasesystems durch Cyclophosphate	183
Müller-Mulot, W.: Zur Analytik der kristallisierten dimeren Dehydroascorbinsäure	20
Naidu, P. P., Rao, G. G.: Titrimetric Determination of U(IV) alone and in Mixtures with V(IV), Mn(II), Ce(III) and Fe(II). Application to the Analysis of Steels and Alloys	7
Nocke, L.: Methode zur gleichzeitigen Bestimmung von Pregnandiol und Pregnantriol aus einer Urinprobe	322

Inhaltsverzeichnis V

Oertel, G. W., Penzes, L. P.: Bestimmung von Oestrogenen durch Densitometrie ihrer ABS- oder DANSYL-Derivate	306
Ortner, H. M., Schreiber, B. E., Spitzy, H.: Eine einfache Möglichkeit zur Bestimmung der spezifischen Aktivitäten der Schilddrüsenhormone und ihrer Vorstufen im Blutserum nach Radiojodgabe	260
Papenberg, J., Piper, W., Kalke, W., Knobloch, U.: Über die Wirkung von Albumin auf die elektrophoretische Wanderungsgeschwindigkeit der menschlichen Serumlipoproteine auf Agarose-Gel	174
Papenberg, J., Piper, W., Knobloch, U.: Charakterisierung von menschlichen Serumlipoproteinen mittels Gelfiltration auf Agarose (Sepharose 2 B)	248
Pauschmann, H.: Analogrechner für die BSB ₅ -Titration	345
Raith, L., Wiedemann, M., Karl, H. J.: Bestimmung des Metabolismus und der Produktionsrate von Testosteron, Dehydroepiandrosteron und Dehydroepiandrosteronsulfat	290
Rick, W., Hockeborn, M., Fritsch, WP.: Zur Substratspezifität der menschlichen Pankreaslipase	198
Rossmann, I., Siegmund, P., Körber, F.: Spektrophotometrische Methode zur Bestimmung von Penicillinase	199
Rüssel, H. A.: Gas-chromatographische Fluorbestimmung in Organmaterial und Körperflüssigkeiten	143
Schönhöfer, P. S., Skidmore, I. F., Krishna, G., Bourne, H. R.: Zwei einfache und empfindliche Methoden zur Bestimmung der cAMP Phosphodiesterase	182
Schulte, K. E., Henke, G., Tjan, K. S.: Aktivierungsanalytische Bestimmung von 28 Spurenelementen nach Vortrennung durch Flüssigkeitsextraktion und Fällung	358
Schwerdtfeger, E.: Automatische Bestimmung von Enzymaktivitäten in pflanzlichen Extrakten	237
Scriba, P. C., Gerb, A. C., Kluge, F., Boss, N., Müller, O. A.: Eine verbesserte fluorimetrische Serumcortisolbestimmung	284
Seiler, N., Schneider, H., Sonnenberg, KD.: Massenspektrometrische Identifizierung von biogenen Aminen in Form ihrer 1-Dimethylamino-naphthalin-5-sulfonyl-Derivate	127
Seiler, N., Thobe, J., Werner, G.: Elektrophorese im trägerfreien Pufferstrom. II. Eine modifizierte Trennkammer	179
Sernetz, M., Thaer, A.: Immersionsrefraktometrie an lebenden Zellen mit der Brechzahlgradientenmethode	90
Sethi, S., Rai, R. S.: Separation of 234 Th from Inactive Thorium, Uranium and Iron by Adsorption on Bi(IO ₃) ₃ , Bi(IO ₄) ₃ or Pb(IO ₃) ₂	5
Siekmann, L., Hoppen, HO., Breuer, H.: Zur gas-chromatographisch-massenspektrometrischen Bestimmung von Steroidhormonen in Körperflüssigkeiten unter Verwendung eines Multiple Ion Detectors (Fragmentographie)	294
Stastny, J., Dubey, L.: Investigations on the Fluorescense Properties of Some C6-Substituted Oestrogens under Varying Conditions of the Kober-Ittrich-Brown Reaction	309
Stegemann, H.: Protein-Mapping, Schnell-Dialyse und Molekulargewichtsbestimmung im Mikrogramm-Bereich	165
Szasz, G.: Die Qualitätskontrolle im klinischen Enzymlabor	344
Teich, J., Baumgärtel, E.: Röntgenographisches Verfahren zum Nachweis von Fluorochromaten(III) neben Holz sowie neben Chrom(III)-arsenat. 5. Mitteilung über Chrom(III)-verbindungen als Fixierungsprodukte von Holzschutzmitteln	367
Thaer, A.: Anwendung der Mikroskopphotometrie in der Cytochemie	82
Wässle, W., Sandhoff, K.: Einfaches Verfahren zur kontinuierlichen Verfolgung von hydrolytischen Enzymreaktionen	194

VI Inhaltsverzeichnis

Weder, H. J., Bickel, M. H.: Verbessertes Gerät zur Gleichgewichts-Dialyse	253
Welz, B., Wiedeking, E.: Bestimmung von Spurenelementen in Serum und Urin mit flar loser Atomisierung	mmen- 11 1
Werner, W., Rey, HG., Wielinger, H.: Über die Eigenschaften eines neuen Chromoge die Blutzuckerbestimmung nach der GOD/POD-Methode	ns für 224
Wiedemann, M., Raith, L., Karl, H. J.: Untersuchungen über die Adsorption von Steroid Florisil und Amberlite. Methode zur getrennten Bestimmung der Glücuronide Sulfate von Androgenen	
Wisser, H., Stamm, D.: Teilautomatisches Bestimmungsverfahren von Adrenalin und adrenalin im Harn	Nor- 98
Zachau, H. G.: Struktur von Nucleotiden und Nucleinsäuren	327
Kurze Mitteilungen	
Costian, D.: Colour Reaction of Nitrated Polymers and Copolymers of Styrene with Na	OH 379
Kraus, Lj., Dumont, E.: Trennung von Phenothiazinen auf pH-Gradient-Schichten	380
Lassner, E.: Plastik — ungeeignetes Verpackungsmaterial für Analysenproben zur Krstoffbestimmung	ohlen- 380
Mishra, I. B.: Electrodeposition of Cobalt from Aqueous Tripolyphosphate ($P_3O_{10}^{5-}$) Sc	olution 378
Neeb, R.: Zur massenspektrometrischen Erfassung kleiner Chrommengen als Chrom(III)-	oxinat 22
Rao, A. L. J., Puri, B. K.: Conductometric Determination of Cd, Co, Cu, Ni and Zi Simultaneous Determination of Cu-Cd, Cu-Co, Cu-Ni, Cu-Zn and Cd-Ni, Co-Ni, Zn	
Rao, A. L. J., Puri, B. K.: Polarographic Determination of Indium(III) in Monoethanol Solution	lamine 376
Terlouw, J. K., Ridder, J. J. de: Mass Spectrometric Determination of Metal Chelates. III. titative Determination of Iron at the Picogram Level Using the Isotope Dilution Method	
Buchbesprechungen	382
Referate	
I. Allgemeine analytische Methoden, Apparate und Reagentien	383-39 3
II. Anorganische Substanzen	4-41, 393-399
IV. Spezielle Anwendungsgebiete	
Produkte aus Industrie und Landwirtschaft	1-65, 399-410
4. Biologisches Material 69	5-80, 411-416
Namenverzeichnis	417
Sachverzeichnis	437

Neue Geräte und Chemikalien am Schluß der Hefte

- Sheppard, H., Sachs d'Asaro, B.: Nature 177, 1089 (1956).
- Stahl, E.: Dünnschicht-Chromatographie, 2. Aufl. Weinheim: Verlag Chemie. 1967. Sprühreagentienverzeichnis: Nrn. 88/89, 122, 141, 144, 230, 261.
- 14. Sullivan, G., Brady, L. R.: Lloydia 28, 68 (1965).
- Vidic, E.: Arzneimittelforsch. 3, 34-41 (1953); vgl. diese Z. 141, 306 (1954).
- Weinig, E., Machbert, G.: Vortrag 45. Tagg. Dtsch. Ges. Gerichtl. Soz. Med., Freiburg, Okt. 1966. Ref.: Deut. Z. Ges. Gerichtl. Med. 62, 178 (1968).
- Wollmann, Ch., Nagel, S., Scheibe, E.: Pharmazie 21, 665-667 (1966); vgl. diese Z. 234, 437 (1968).

Dr. D. Post Institut f. Rechtsmedizin der Universität D-6300 Gießen, Frankfurter Str. 58

$9.\ Steroid hormonanalyse$

Z. Anal. Chem. 252, 284—287 (1970)
© by Springer-Verlag 1970

Eine verbesserte fluorimetrische Serumcortisolbestimmung

P. C. Scriba*, A. C. Gerb, F. Kluge, N. Boss und O. A. Müller

II. Medizinische Klinik der Universität München (Komm. Direktor: Prof. Dr. M. M. Forell)

Eingegangen am 5. Mai 1970

An Improved Fluorometric Determination of Cortisol in Serum. The fluorometric determination of cortisol in serum was improved by the following measures:

- 1. Daily preparation of the fluorescence reagent (ethanol abs.: conc. $H_2SO_4 = 3:7$, v/v) at 0°C.
- 2. Fluorometry 80 min after the addition of the fluorescence reagent to dichloromethane extracted cortisol.
- 3. Filling of a special micro-cuvette by a pump system avoiding bubble formation in the cuvette.
- 4. Spectrofluorometer with optimal absorption (464 nm) and emission (522 nm) for cortisol.

The method is of satisfactory sensitivity for cortisol ($< 1~\mu g/100~ml$), precision ($10~\mu g/100~ml$: S.D. = $0.5~\mu g/100~ml$) and reproducibility from day to day (variation coefficient = $6-7^{\circ}/_{\circ}$). The specificity of the method is demonstrated by the low values ($< 2~\mu g/100~ml$) of total-adrenalectomized patients under dexamethasone maintainance ($2\times0.25~mg/day$). The normal range (mean $\pm 2~S.D.$, logarithmic distribution) of 9° 0 a.m. serum cortisol values of control persons is $9.7-32.0~\mu g/100~ml$. Examples of the application of the method for diagnostic and therapeutic questions are reported.

Zusammenfassung. Durch täglich frische Zubereitung eines stabilen Fluorescenzreagenses, durch Fluorimetrie 80 min nach Zugabe des Fluorescenzreagenses zum dichlormethanextrahierten Cortisol, durch streng blasenfreie Füllung einer Spezialmikroküvette mittels Pumpvorrichtung und durch optimale Messung der Cortisolfluorescenz im registrierenden Spektralfluorimeter bei 464 nm (Anregung) und 522 nm (Emission) wurde die fluorimetrische Serumcortisolbestimmung verbessert. Die Methode erlaubt eine Serumcortisolbestimmung mit hoher Empfindlichkeit ($< 1~\mu g/100~\text{ml}$), Präzision an einem Tag (Variationskoeffizient = $4.7~\text{°/}_0$ für $10~\mu g/100~\text{ml}$) und Präzision von Tag zu Tag (VK = $6-7~\text{°/}_0$, Kontrollserum). Für die Spezifität der Methode sprechen die niedrigen Serumcortisolwerte von Adrenalektomierten unter Dexamethasonsubstitution ($< 2~\mu g/100~\text{ml}$). Die klinische Brauchbarkeit der Methode für diagnostische und therapeutische Fragen wird diskutiert.

^{*} Mit Unterstützung der Deutschen Forschungsgemeinschaft, SFB 51.

Einleitung

Die fluorimetrische Serumcortisolbestimmung nach Mattingly [4] ist durch mangelnde Empfindlichkeit (> 3 $\mu g/100$ ml), hohe Basisfluorescenz (3–5 $\mu g/100$ ml) und schlechte Präzision belastet. Ausgehend von der Methode Spencer-Peets [5] wurden die in der Arbeitsvorschrift angegebenen Modifikationen zur Verbesserung der Methode eingeführt [2,3].

Arbeitsvorschrift

1. Herstellung des Fluorescenzreagenses

In einen durch Eis gekühlten Erlenmeyer-Kolben werden zu 150 ml Äthanol absol. p.a. (Merck 972) unter ständigem, möglichst hochtourigem Rühren (Magnetrührer, Vermeidung von Blasenbildung) über einen durch einen Schliff verbundenen Tropftrichter innerhalb von 120 min 350 ml $\rm H_2SO_4$ 95 $-97^{\rm o}/_{\rm o}$ p.a. (Merck 731) zugesetzt.

2. Cortisolextraktion aus Serum

Je 2 ml frisches oder aufgetautes Serum (Doppelbestimmungen) werden in kurze 20 ml-Schliffgläser pipettiert. Jeder Probe wird über eine Bürette, deren Küken nicht gefettet sein darf, 10 ml Dichlormethan zugesetzt. Die Extraktion erfolgt, indem die Proben in einem Rotor, dessen Achse mit der Horizontalen einen Winkel bildet, welcher garantiert, daß keine der beiden Phasen den Schliff erreicht, 20 min bei 40 Upm gedreht werden. Nach Absaugen des Serumüberstandes unter Vermeidung von Diehlormethanverlusten wird der Extrakt mit 2 ml 0,1 N NaOH 10 sec auf einem Schüttelrotor gewaschen. Nach Trennung der Phasen wird der NaOH-Überstand abgesaugt. Zu 7,5 ml Dichlormethanextrakt werden in hohen, graduierten 20 ml-Schliffgläsern je 4 ml bis zu diesem Zeitpunkt gerührten Fluorescenzreagens (0°C) pipettiert, unmittelbar anschließend wird die Probe 30 see auf dem Schüttelrotor gemischt. Nach Trennung der Phasen (mindestens 7 min) wird die überstehende Dichlormethanphase mit einer 0,2 ml-Pipette abgesaugt, welche so innerhalb der Dichlormethanphase geführt wird, daß zu keiner Zeit Luft angesaugt werden kann. Wenn nur noch etwa 0,2 ml Dichlormethan übrig sind, wird die Pipettenspitze kurz in die Fluorescenzreagensphase eingetaucht, sofort wieder leicht angehoben und der Rest des Dichlormethans sowie etwa 0,3 ml der Fluorescenzreagensphase abgesaugt.

3. Fluorimetrie

Die Fluorescenzintensität von Cortisol nimmt unter diesen Bedingungen bis zur 70. min zu und ist danach stabil [2]. Deshalb wird 79 min nach Zugabe des Fluorescenzreagenses zum Dichlormethanextrakt die Küvette gefüllt (Abb. 1) und in der 80. min gemessen. Das registrierende Spektralfluorimeter Beckman mit Xenon-Hochdrucklampe ist mit seinem ersten Monochromator auf 464 nm eingestellt (Spaltbreite entspricht 20 nm); die Emission wird bei 522 nm (Spaltbreite entspricht 5 nm) im Auflichtverfahren gemessen. Das Gerät wird so geeicht, daß 30 μ g Cortisol pro 100 ml Eichlösung 100 Skalenteilen entsprechen. Cortisolwerte über 30 μ g/100 ml werden durch Stufenschaltung ablesbar. Bei 10 maligem Abwiegen für einen Arbeitsstandard von 10 μ g

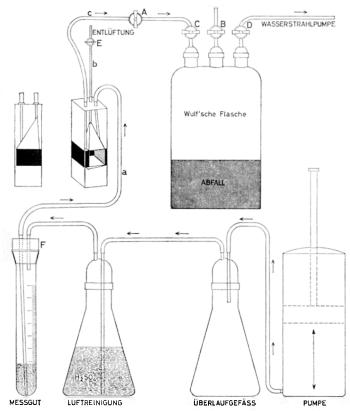


Abb. 1. Füllung und Entleerung der Mikroabsaugküvette. Mikroabsaugküvette: 3 Seitenwände der Küvette sind aus Schwarzglas, Schichtdicke 1 cm, Füllvolumen 1,2 ml, Einfullstutzenende im schrägen unteren Drittel des Kamins, Entlüftungsstutzen an der Spitze und Absaugstutzen am tiefsten Punkt des Füllraumes. Die Küvette wurde in Abänderung der Küvette Nr. 185 der Fa. Hellma, Mühlheim/Baden, gebaut. - Füllung: Hahn A und D zu, Hahn C und B auf. Wenn der Kunststoffstopfen F luftdicht auf das graduierte Schliffglas (20 ml) gesetzt wird, drückt getrocknete und gereinigte Luft das Meßgut durch Schlauch a in die Küvette, wobei die Luft über den geöffneten Hahn E entweicht. Nach Füllung der Küvette wird Hahn E geschlossen und Hahn A geöffnet, bis die Flüssigkeitssäule Hahn A erreicht. Zugleich wird die Leistung der Aquariumspumpe gedrosselt, damit der Druck in der Küvette nicht zu hoch wird. Die Messung beginnt, wenn der Hahn E geschlossen ist. - Entleerung. Während der Messung wird die Wulfsche Flasche evakuiert (Hahn C und B geschlossen und D geöffnet). Nach der Messung (15 sec) wird bei geschlossenem Lichtweg die Küvette durch Öffnung der Hähne A und C leergesaugt. Nach Entleerung des Schlauches c wird auch der Hahn E geöffnet und schließlich der Stopfen F gelockert. Entscheidend ist bei diesem Füllvorgang die Vermeidung des Entstehens von feinsten Bläschen in dem mit Dichlormethan gesätt. Fluorescenzgemisch, welche durch Reflektion in der Küvette die Messung verfälschen. Das geschieht durch Füllung der Küvette mittels einer Pumpe gegen die Summe von atmosphärischem Druck und Strömungswiderstand in der Entlüftungscapillare

Cortisol/100 ml wurde ein Mittelwert von $x \pm s = 10.09 \pm 0.42 \,\mu\text{g}/100$ ml bestimmt (Variationskoeffizient = $4.2^{\,0}$ ₀).

4. Qualitätskontrolle

Die Methode erlaubt die Bestimmung von weniger als 1 µg Cortisol in 100 ml Eichlösung (x + s = 1.0 $+0.3 \,\mu\text{g}/100 \,\text{ml}$, N=20). Sie ist durch eine hohe Genauigkeit an einem Tag (Eichlösung, x + s = 10.7 $\pm 0.5 \,\mu \text{g}/100 \,\text{ml}, N = 20, VK = 4.7 \,\text{g}$, ausgezeichnete Richtigkeit (Wiederfindeversuche für Cortisol + Serum, Korrelationskoeffizient r = 0.999, Regression b = 0.964) und Reproduzierbarkeit von Tag zu Tag (Kontrollserum: $VK = 6-7^{\circ}/_{\circ}$) gekennzeichnet. - Die Spezifität der Methode zeigte sich an den niedrigen Serumcortisolwerten von adrenalektomierten Patienten unter Dexamethasonsubstitution [4]. Die Methode erfaßt allerdings auch Corticosteron, welches unter diesen Bedingungen eine 3,2fach stärkere Fluorescenzintensität als Cortisol aufweist. Falsche hohe Serumcortisolwerte ergeben sich durch Verunreinigungen mit Siliconfett, Gummi oder dessen Weichmacher sowie bei Behandlung mit Aldactone® (Abb. 2). — Cortisolwerte im Serum und Plasma sind gleich (r = 0.997; b = 0.999). Eine ge-

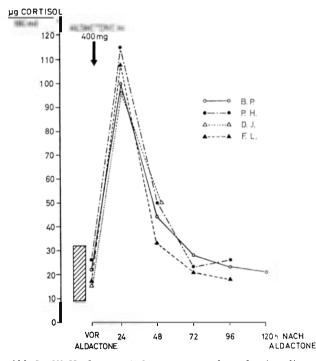


Abb.2. 900-Nüchterncortisolwerte vor und nach einmaliger Injektion von Aldactone. Schraffiert ist der Normalbereich des 900-Nüchterncortisols Nebennierengesunder angegeben. 3-4 Tage nach Injektion von Aldactone ist die fälschliche Erhöhung der Cortisolwerte nicht mehr nachweisbar

übte Kraft kann mit dieser Methode 34 Seren in 8 h untersuchen (Doppelbestimmungen).

Ergebnisse und Diskussion

Der Normalbereich des 900-Nüchterncortisols Nebennierenrindengesunder liegt zwischen 9,7 und 32.0 µg/100 ml. Die 900-Nüchterncortisolwerte zeigen eine logarithmische Verteilung um den Mittelwert von 17,6 µg/100 ml. Bei adrenalektomierten Patienten sinken die Serumcortisolwerte auf etwa 2 µg/100 ml ab, wenn sie mit täglich 2 mal 0,25 mg Dexamethason p.o. substituiert werden. Der Bereich von etwa 2 bis 9,7 µg-0/0 steht somit für die Messung "erniedrigter" Serumcortisolwerte zur Verfügung.

5 bisher untersuchte Patienten mit M. Addison hatten 900-Nüchterncortisolwerte unter diesem Normalbereich. Die Werte lagen auch nach Infusion von 25 E ACTH in 4 h unter dem bei Gesunden entsprechend höheren Normalbereich (1300: 38,4 bis 72,3 μg/100 ml). — Von 30 Patienten, die wegen eines Hypophysentumors operiert worden waren, hatten 22 um 900 und 2300 nach Infusion von 25 E ACTH im Vergleich zum Normalbereich Nebennierengesunder erniedrigte Serumcortisolwerte. Damit hatten etwa 750/0 dieser Patienten eine sekundäre Nebennierenrindeninsuffizienz [3].

Der Vergleich der Serumcortisolspiegel nebennierenrindeninsuffizienter Patienten unter oraler Cortisoltherapie mit dem normalen Tagesrhythmus Nebennierengesunder zeigt, daß die nebennierenrindeninsuffizienten Patienten besonders in den frühen Morgenstunden unter oraler Cortisoltherapie zu niedrige Serumcortisolspiegel haben. Zur Überbrückung dieser Cortisoldurststrecken wurde ein neues Behandlungsschema abgeleitet [3].

5 Patienten mit einem Cushing-Syndrom zeigten bei der ACTH-Belastung erhöhte Serumcortisolwerte. Das Cushing-Syndrom ist ferner durch einen aufgehobenen 24 h-Rhythmus des Serumcortisols und durch eine fehlende Supprimierbarkeit des 900-Nüchterncortisolwertes bei Gabe von 1 mg Dexamethason am Abend vorher ausgezeichnet.

Die angegebene Methode erlaubte ferner, die hypothalamisch-hypophysäre Hemmwirkung von zur Therapie verwandten Corticoiden am Menschen quantitativ zu erfassen. Synthetische Corticoide gehen nicht in diese fluorimetrische Cortisolbestimmung ein. Deshalb kann man den normalen 24 h-Rhythmus des Serumcortisols mit dem Cortisolrhythmus nach einmaliger oraler Corticoidgabe vergleichen. Die Integraldifferenz dieser beiden Cortisoltageskurven bis zum Kurvenschnittpunkt entspricht der suppressiven

Wirkung von Corticoiden. Trägt man dieses Integral auf der Ordinate gegen den Logarithmus einer Corticoiddosis auf der Abszisse auf, so ergibt sich eine lineare Dosiswirkungskurve [1]. Diese Methode erlaubt somit, die supprimierende Wirkung von Corticoiden unter Berücksichtigung der Wirkungsdauer der Corticoide am Menschen zu messen.

Obwohl heute absolut spezifische Verfahren zur Bestimmung der Sekretionsrate und der Metabolic Clearance-Rate von Cortisol zur Verfügung stehen, stellt das vorgeschlagene Verfahren eine relativ einfache und ausreichend spezifische klinische Suchmethode für diagnostische und bestimmte wissenschaftliche Fragestellungen dar, welche insbesondere dann von Wert ist, wenn Untersuchungsproben in großer Zahl anfallen.

Weitere Einzelheiten finden sich in der Dissertation von A. C. Gerb [2].

Literatur

- Boss, N., Kluge, F., Gerb, A. C., Hoffmann, H., Scriba, P. C.: Sympos. Dtsch. Ges. Endokr. 16 (1970) (im Druck).
- 2. Gerb, A. C.: Dissertation, Univ. München 1969.
- Kluge, F., Gerb, A. C., Boss, N., Fahlbusch, R., Scriba, P. C.: Klin. Wochschr. 48, 929 (1970)
- 4. Mattingly, D.: J. Clin. Path. 15, 374 (1962).
- Spencer-Peet, J., Daly, J. R., Smith, V.: J. Endoer. 31, 235 (1965).

Priv.-Doz. Dr. med. Peter C. Scriba II. Med. Klinik der Universität D-8000 München 15, Ziemssenstraße 1

Z. Anal. Chem. 252, 287—290 (1970)
© by Springer-Verlag 1970

Untersuchungen über die Adsorption von Steroiden an Florisil und Amberlite. Methode zur getrennten Bestimmung der Glucuronide und Sulfate von Androgenen

M. WIEDEMANN, L. RAITH und H. J. KARL 1. Medizinische Klinik der Universität München

Eingegangen am 26. Mai 1970

Studies on the Adsorption of Steroids on Florisil and Amberlite. Method for the Separate Determination of Glucuronides and Sulfates of Androgenes. Conditions for adsorption of C₁₉- and C₂₁-steroids on florisil were testet with radioactive steroids. By this procedure the glucuronides of Androsterone, Etiocholanolone, Dehydroepiandrosterone and Testosterone and also Tetrahydrocortisol and Tetrahydrocortisone were isolated from urin. Combination of a florisil column and a column filled with amberlite, which adsorbs conjugated steroids, makes it possible to determine glucurone- and sulfate esters separately. Compared with the common extraction with organic solvents, this adsorption of hydrolysed steroids on florisil and conjugated steroids (sulfates) to amberlite is more simple, less expensive and better reproducible.

Zusammenfassung. Mit radioaktiven Steroiden wurden die Bedingungen für die Adsorption von C₁₉- und C₂₁- Steroiden an Florisil getestet und mit diesem Verfahren aus Urin die Glueuronide von Androsteron, Ätiocholanolon, Dehydroepiandrosteron und Testosteron sowie Tetrahydrocortisol und Tetrahydrocortison angereichert. Durch Kombination einer Florisil- und einer Amberlitesäule, an der die konjugierten Steroide adsorbiert werden, können darüber hinaus nach isolierter Spaltung der Glueuronide die Glueuron- und Schwefelsäureester getrennt bestimmt werden. Verglichen mit der üblichen Extraktion mit organischen Lösungsmitteln ist die Adsorption der hydrolysierten Steroide an Florisil und der nicht hydrolysierten Sulfate an Amberlite wesentlich einfacher, billiger und besser reproduzierbar.