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Summary. This is the first part of an invcstigation of microdosimctric concepts relevant 
to numerical calcu]ations. The definitions of the microdosimctric quantities are reviewed and 
formalized, and seine additional conventions are adopted. The common interpretation of the 
quantities in terms of energy imparted to spherical sites is contrasted with their interpretation 
as the result of a diffusion process applied to the initial spatial pattern of energy transfers in the 
irradia%ed medium. 

Introduetion 

Fluetuations of energy deposition on a microdosimetric sca]e ]lave long been 
one of the major  topics of radiation biology. These fluctuations have been dealt 
with in crude form in the early target  and hit theories and in more sophisticated 
manner in Lea's  classie treatise [5]. A systematic t rea tment  has become possible 
after Rossi and his co-workers introdueed and developed the eoncepts of micro- 
dosimetry [1, 4, 9 - - t5 ] .  In  recent years the application of mierodosimetry to 
radiation biology has grown and the quantities specifie energy, z, and lineal energy, 
y, i.e. the statistieal variables which correspond to absorbed dose and to 
LET, are new ineluded in the list of basie radiation quantities defined by  
ICRU [3]. 

Mierodosimetrie techniques are well established for tissue regions with dia- 
meters of the order of i ~m, and the experimental data are in good agreemen~ 
with caleulations. With existing mierodos~metric equipment it is, however, no~ 
possible to obtain results for regions rauch smaller than 1 ~m. For this reason 
we have begun to derive such results theoretically. The method adopted for this 
purpose is the ealculation of mierodosimetrie data  from eharged partiele tracks 
generated by  Mehre Carlo methods [6--8]. Calculations of this type require not 
only numerical proeedures, they give rise also to questions eoneerning the defini- 
tion and interpretation of microdosimetrie quantities. Such questions will be dealt 
with in the following. 

The first problem one encounters is tha t  it is no~ always obvious whether the 
amount  of energy deposited er the number  of ions produeed in very small regions 
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a,re meaningful quantities. For larger regions the situation is less complieated 
beeause the energies imparted to such regions are usually large in the sense tha t  
the number of ionizations produced multiplied by  the W-valuë is a good approxi- 
marion to the energy imparted. In  faet, most microdosimetrie experiments are 
basëd on the colleetion of ionizations, but  the results are eommonly given in 
terms of imparted energy. I t  is doubtful whether such simplified t rea tment  is 
appropriate for vëry small regions whieh may  contain only one or a few elee- 
tronic alterations after being traversed by  a eharged partiele. Therefore, a eon- 
eeptual framework is desirable whieh diseriminates between the various quantities 
whieh may  be measured or computed. 

A dgorous theoretieal t rea tment  is required not only for coneeptual reasons hut  
also for the eomputationM proeedures. In  the ëxperimentM approaeh one obtains 
eertain quantities by  direet measurement,  and che may  disregard the eomplex 
intermediary factors whieh determine these quantities. The eomputational 
approach neeessitates a more eomplete deseription; the present inquiry is 
eoneerned with such a deseription. The t rea tment  is not eoneeived as an intro- 
duction to mierodosimetry or to its radiobiologicM applieations. ~'amiliarity 
with the original publications Il, 9 - - i2 ,  t5] or with review artieles which lead 
from the eonerete to the more abstraet  notions [2, 13, 14,] will therefore be 
helpful. 

The present investigation deMs not with numericM data for various types of 
radiation hut  with the mathematieal  baekground relevant to the derivation of 
such data. In  the analysis one ean adopt  two different, although essentially 
equivalent, points of view. One may  either eonsider the distribution of energy 
inerements in one repeatedly exposed mieroscopie region, or che may  analyse the 
spatial profile of energy density in an extended medium. The latter possibility, 
whieh is implied in some of Lea's methods [5], has been diseussed by  i~ossi [t3] 
but  is not usually invoked in the definition of mierodosimetric quantities. How- 
ever, it has proved valuable in numerieal ealculations, and has led to some 
notable relations between the mierodosimetric distributions and their mean values. 
These findings will be presented in the following survey of the mierodosimetrie 
quantities, their distributions, and their mean vMues. This first part  of the 
inqniry deals with the definition and interpretation of the quantities. 

The Established Definitions 

The b~sie mierodosimetric qu~nti~ies are the energy imparted, ~, the specifie 
energy, z, and the lineal energy, y. In  this section the existing definitions will be 
reviewed and a few additional conventions will be adopted. In  the following 
section the quantities will be reconsidered from a somewhat different point of 
view. 

Sinee the quantities are elosely linked, it is merely a mutter  of convenience 
whether in a given situation che uses ~, z, or y. An additional quanti ty is the 
number, n, of ionizations produeed in the region of interest. This quanti ty taust be 
eonsidered because it is the one commonly measured. Moreover it is an open 
question whether cellular effects are more elosely related to the energy imparted 
or to the number of ionizations produced. 
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ICRU [3] gives the following definition of the random variable G: 
The stochastic quant i ty  energy imparted, G, by  ionizing radiation to the 

marter  in a volume is: 

G=  ~: Gin-- ~ Gex~- ~ Q, (1) 
where 

~~in = the sum of the energies (exeluding rest energies) of all those directly and 
indirectly ionizing particles which have entered the volume, 

Gex = the sum of the energies (excluding rest energies) of all those directly and 
indirectly ionizing particles which have left the volume, and 

Q = the sum of all the energies released, minus the sum of all the energies 
expended, in any transformations of nuclei and elementary particles 
which have oecurred within the volume. 

The related quanti ty specifie ene:gy, z, is defined in the same document as the 
ratio of G to the mass, m, in the volume of reference. The lineal energy, y, is 
defined as the ratio of G to the mean chord lengtb, l, in the volume of interest. 
The quanti ty y is restricted to individual events, i.e. to energy deposition in the 
volume due to a pr imary particle and/or its secondaries. 

The definition of ~ may  appear incomplete insofar as it does not explicitly 
stare the energy levels below which charged or uncharged particles are no longer 
considered as ionizing, t towever,  the numerical values of these levels do not affect 
the meaning of the quantity.  Another possible objection against the definition is 
tha t  it m a y  not, e ren  in principle, be possible to locallze the energy transfers in 
the exposed medium with absolute precision. The volumes which will be considered 
in this and the following articles are, however, always sufficiently large so tha t  such 
difficulties, which may  be cormected with quantum mechanical uncertainty, can 
be disregarded. I t  will be assumed tha t  the imparted energy is localized in the 
exposed medium in such a way tha t  a value of G ean be assigned to any specified 
volume. 

A simflar assumption will be made regarding the number of ionizations, n, 
in a region. I t  will be postulated tha t  the concept of ionization is clearly defined 
eren  in a condensed medium and tha t  the ionizations have, at  least in principle, 
precise coordinates. Even if one disregards the characteristic differences be- 
tween gases and condensed media, there will always be inaceuraeies in experi- 
mental  determinations of n due to the diffusion of ions away from their points of 
formation; however one ca:: a t  least reduce this error by  considering positive 
instead of negative ions whenever one deals with regions sufflciently small that  
diffusion becomes important.  

The quantities G, z, y, or n refer to regions of specißed shape and size. In  the 
following, spherical regions will be considered if not otherwise stated. Further- 
more it will be assumed tha t  one deals with uniform and isotropic radiation fields 
in a uniform medium. This means tha t  orte is concerned ordy with those micro- 
scopic fluetuations which are due to the discrete nature of the radiation ~eld and 
its interaetion with marter.  Moreover, the temporal  distribution of energy deposi- 
tion will be disregarded; it will be assumed tha t  a speciiied absorbed dose is deliv- 
ered instantaneously. 
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The mierodosimetric quantities und their distributions will in the following be 
examined from a somewhat  more general s tandpoint  t han  usually adopted.  This 
requires some additional conventions. 

The quantities are defined on extended regions ra ther  than  on points. I t  will 
however be more convenient  to eonsider them as functions deßned on points 
th roughout  the irradiated medium. This presents no difficulties if the reference 
regions are spheres. For  a specified sphere radius, r, one assigns those values ~, 
z, y, und n to u point  whieh apply to the sphere of  radius r centered around the 
point. Al though this is merely a convention, it will simplify the formalism and 
clarify termhmlogy.  

The quantities depend on the parameter  r and are functions of  the position x 
in the exposed mediumL Accordingly an  explicit nota t ion such as er(X) or 
zr (x) m a y  be employed whenever this is necessary in the interest of  clari ty;  other- 
wise the index r or the a rgument  x can be omitted.  The random variables depend 
also on absorbed dose D, und D m a y  therefore be inserted as an additional 
argument.  Many theoretical considerations in microdosimetry deal however with 
energy deposition in individual events. I n  this case the absorbed dose need no t  
be eonsidered. 

Alternative Interpretation of the Mierodosimetric Quantities 

The variables ~ and z are defined in terms of  the energy impar ted  to a speeific 
region in the exposed medium;  consequently z is an average concentrat ion of  
energy over such a volume. ()ne can, however, take a different view [t3] and con- 
sider z as an actual  concentrat ion at  individual points th roughout  the medium 
which results f rom a dissipation process applied to the original spatial distr ibution 
of impar ted  energy ~. Assume tha t  energy is impar ted  to the irradiated medium at  
diserete points, Tl .  These points will be called transfer points. Ler e~ be the energy 
inerements 8 whieh have been impar ted  at the transfer points Ti. I f  euch of  these 
energy trans/ers, s~, is dissipated uniformly over a sphere of  radius r 
centered at  the corresponding transfer  point, then  the resulting concentrat ion at 
any point, P ,  th roughout  the medium is numerical ly equal to the funct ion Zr 
defined in terms of  the energy content  of  spherieal sites of  radius r a round the 
point  P .  

This double interpretat ion of  z suggests t ha t  the mierodosimetrie quantit ies 
ean no t  only be invoked when one deals with geometrieally defined sensitive sites 
in the irradiated material,  bu t  t ha t  t hey  equally apply to situations where radia- 
t ion produets  diffuse in a homogeneous medium before they  interaet.  I n  the follow- 
ing the expression local eoneentrat ion will somewhat  loosely be used to  refer to z 

1 ]~or brevity x is written for the co-ordinates (x 1, x2, x2). In the eontext of numerieal 
calcnlations where this eould lead to confusion the eo-ordinates will be given explicitly. 

The term energy imparted will be restrieted to er, i.e. it refers to a region of radius r. The 
term imparted energy will be used in the general sense of deposited or absorbed energy in the 
exposed medium. 

Formally e~ can be defined as the difference between the loss of kinetic energy of the 
incoming ionizing particle due to a collision at the point T~ and kinetio energy of the ioni- 
zing particles released in this collision. -- An eren shorter definition is that s~ is the limit 
value of e~ at the point T~ as r goes to zero. 
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ig. I. Schematic diagram of a microscopic pattern of energy deposition, a) The inchoate 
distribution. The transfer points, T~, ~re represented by dots. The cross reloresents a randomly 
chosen reference point, the circles spherieal sites of two different radii around ~his point. 
b) The distribution of loeal coneentration which results from a dissiloation corresponding to the 
smal]er radius, c) The distribution of local concentration which results from a dissipation 
corresponding to the larger radius, d) The b]urred distribution of local concentr~tion resulting 

from a more realistic diffusion process 
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in this interpretation. This is in analogy to the term loeal energy density whieh 
had been used when the quantity z was originally introdueed [15]. I-Iowever, the 
word energy is omitted in the present context to indicate that  the coneept refers 
not neeessarily to a dissipation of the imparted energy due to energy transport in 
the true sense, it applies equally to diffusion of free radicals or other radiation- 
indueed ehemieal speeies, or to intraeellular movement of sublesions. A eondition 
for the applieability of the eoneept is merely that  these radiation produets are 
proportional to the imparted energy. 

Fig. I is a two-dimensional representation of the distribution of imparted 
energy in an exposed medium. In  Fig. I a a pattern of points is given which stands 
for the transfer points, i.e. for ionizations or exeitations. The energy imparted, 
er, at a point, P, ehosen at random in the medium is equal to the sum of all trans- 
fers, s~, belonging to those transfer points which lie inside the sphere of radius r 
aronnd P. Orte randomly ehosen referenee point, P, is indieated in Fig. t a by a 
small eross, and spheres around P are symbolized by two eireles of different 
radii, r. In this example the energy imparted for the smaller radius is the sum of 
the 2 transfers eontained in the smaller sphere, while the energy imparted for 
the larger radius is the sum of the 5 transfers eontained in the larger sphere. 
The speeifie energy is the sum of the trar~sfers inside the region divided by the 
mass of the region. 

I f  instead of energy imparted one eonsiders the number of ionizations, and if 
for this purpose it is assumed that  all the points in the pattern of Fig. I a symbolize 
ionizations, the value of the variable, nr, for the smaller radius is 2 and for the 
larger radius 5. This example corresponds to the situation in mierodosimetrie 
measurements with spherical proportional counters. 

Figs. I b and t c illustrate the alternative interpretation. I-Iere the dises indieate 
the spheres of energy dissipation around the transfer points. At the referenee point, 
P, whieh is again symbolized by a small eross the value of the quantity energy 
imparted is the sum of the individual overlaps at this point weighed by the eor- 
responding transfers, e~. The speeifie energy is obtained if orte weighs eaeh over- 
lap by si/m, where m is the mass of the sphere of dissipation. I f  all transfer 
points are assumed to be ionizations, then the value of nr at the referenee point 
is equal to the multiplicity of overlaps at this point. In agreement with the eon- 
elusion from Fig. i a  this is 2 for the smaller radius (see Fig. tb)  and 5 for the 
larger radius (see Fig. t e). 

The total volume represented by the spheres in Figs. t b and 1 e resembles the 
struetnre whieh Lea has termed assoeiated volume [5]. In faet, it is identieal to 
Lea's associated volume if one eonsiders ionizations only. Sinee a term whieh des- 
ignates the total volume eovered by the spheres in Figs. I b and I e is desirable, 
the word assoeiated volume will also be used in the more general sense. Whether 
the term is used in the more narrow sense of Lea's definition or in the general 
sense, will be understood from the context. 

Lea [5], among others, has observed that  in the eell one may deal not with 
well-defined sensitive sites but with "diffuse" targets. Similarly it may be more 
realistie to eonsider a dissipation proeess which results in a blurred distribution 
rather than a uniform distribution over a sphere. Such a blurred distribution is 
symbolized in Fig. I d; it will be further considered in the hext section. 
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F o r m a l i z a t i o n  of  the  D e f i n i t i o n s  

The relations between the discrete increments si at the transfer points, T~, 
and the variables er and Zr can be formalized in the following way: Ler h (x) be 
what might either be called a dissipation function or a radial profile of the 
reference site : 

I 
l~Vr for x ~ r  

ä ( x )  = (2) 

0 for x> r, 

where V r - 4 / 3  7~r a is the volume of the sphere of radius r. 
Then the specific energy, Zr(X), at a point in the medium with the 

coordinate vector x i s :  
I 

Zr(X): ~ ~i c iß( Ix-  x/I); (3) 

@ is the density of the irradiated medium, xi stands for the coordinate vector of 
the transfer point T~. The summation extends over all transfer points. 

I t  is readily seen that  the equation agrees equally with the interpretation in 
terms of geometrically defined sites or in terms of a dissipation process over 
spherical regions. The corresponding relations for er(X), yr(x) or nr(x) 
involve analogous expressions and need therefore not be spelled out. 

The increments, si, of imparted energy together with the coordinates of the 
transfer points, Ti, represent the original spatial pattern of imparted energies 
which results so]ely from the energy transport and transfer by ionizing particles. 
This spatial distribution which exists prior to any subsequent dissipation pro- 
cesses (see Fig. I a) will in the following be termed inchoate distribution. 

From Eqs. (2) and (3) it is apparent how the definitions of the micro- 
dosimetric quantities have to be modified to apply to sites without sharp 
boundaries or to a realistic diffusion process which leads to a blurred distribution. 
The modification consists in choosing an appropriate form of the function h (x). 
The most obvious choice is a Gaussian distribution: 

h (X) = e-x2/r~/V, (4) 

where the normalization factor 
c o  

V = f 4 z x 2 e-z~/r~dx = 79312f 3 (5) 
0 

can be considered as an effective volume of the diffuse site or of the domain of 
dissip~tion. 

With this definition one obtains the following relation instead of Eq. (3) : 

_ I ~ st e -(~-~0~/r' Z r ( X ) -  @V ~ " (6) 

The usual assumption in mierodosimetry of a step funetion for h (x) will in the 
following be ealled the sharp boundary mode], the assumption of a Gaussian 
h (x) will be termed the blurred boundary model. In a later seetion certain mean 
values of the specifie energy will be considered which ~re relevant to r~diobio- 
logy. I t  will be seen that  the mean values of z in the sharp boundary and the 
blurred boundary mode] are closely related. This will be taken as an indication that  
it is usually sufficient to use the simple step funetion in Eq. (3). However, a second 
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conclusion is equally relevant,  namely  tha t  it is not  always essential in micro- 
dosimetrie measurements  to measure the ionization in regions with sharp bounda- 
ries. Somewhat  diffuse boundaries, as they  are unavoidable with wall-less pro- 
portional counters, will not  necessarily invalidate the results. 

The following par t  of this investigation will deal with the definition and inter- 
pretat ion of  microdosimetric distributions. 

Act,:nowledgement. We are indebted to Dr. Harald H. Rossi for numerous discussions and 
helpful suggestions. 

Appendix 
The deseription of the inchoate distribution in terms of the transfers e~ 

together  with the coordinates of the transfer  points, Ti,  is limited insofar as it 
can not  represent continuous energy loss processes of charged particles. While 
such processes, if they  indeed exist, m a y  be of  little practieal significanee, it is still 
desirable to admit  them in a generalized concept. For  this purpose one can 
introduce the inchoate energy density, z 0 (x): 

1 

where @ is the density of the irradiated medium. The summat ion  extends again 
over all transfer points, and d (I x - x~])is the dclta-funetion with the proper ty  
tha t  its volume integral is cqual to un i ty :  

I~(Ix- x~l)dx= ~, (a2) 
V 

where V is any  volume which eontains the point  with the coordinate xi.  The 
iadex 0 in z0(x ) indicates t ha t  this inchoate density is the limit of Zr (x)as the 
radius, r, approaches zero. 

Continuous energy loss processes, when thcy  oecur, are automat ical ly  accounted 
for if Zo(X ) is defined not  in terms of  Eq. (A.i) but  as the limit of Zr(X): 

z0(x )=  lim Zr(X). (A.3) 
q ' - ~ 0  

I f  one uses the inchoate density z0(x), Eq. (3) is replaced by :  

~~(x) = I ~ ( [ x -  x']) ~0(x') dx', (A.~) 
,gt 

where the integrat ion extends over the surrounding of x t ha t  contributes to the 
integral. 

I n  practice Eqs. (3) and (AA) are equivalent ; it will be sufficient to use Eq. (3) 
in numerical eomputations.  
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