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Summary. This is the last part of an investigation of mierodosimetric concepts relevant to 
numerical caleulations. A formula is derived which permits the computation of the dose average 
lineal energy, ~», er the corresponding average of the speeifie energy without the neecl to 
determine the probability distributions,/(y) er Il(Z). A detailed treatment is given for two 
cases of practical importance. The first ease corresponds to spherical sites with diameters of the 
order of i ~m and to neutrons up to 15 MeV. The second ease corresponds to microseopie sites 
which are small enough that the ehange of the stopping power of eharged partieles traversing 
the site ean be neglected. 

Introduetion 
Two earlier articles [14, i5] have dealt with established microdosimetric 

quantities [i0, 18, 27, 28] and with sampling proeedures whieh b a d  flora simulated 
particle tracks [24 to 26] to the probabili ty distributions of these quantities and to 
their mean raines. Such sampling, like all Monte Carlo procedures, may  require 
extensive computations for suffieient statistieal aceuracy. In  this last par t  of the 
s tudy a formula is derived whieh permits the direct caleulation of ?/D without the 
necessity to compute the explieit probabili ty distribution /(y). This possibility is 
important  because the quant i ty  yD is particularly relevant to theoretical radiation 
biology [i9]. We refer main]y to the quanti ty YD which is the microdosimetric 

analogen to the dose average, LD, of linear energy transfer. However it will be 
understood tha t  all eonsiderations apply equally to the elosely related quant i ty  
ZDI* 

The formula will permit  the numerieal determlnation of ~~ from simulated 
random fracks without the need to apply sampling proeedures. This is the case of 
prineipal interest in the present context;  it will therefore be discussed in detail. In  
certain cases the formula can also yield direet analytical expressions for ~D So tha t  
no simulated particle fracks are needed. The eondition for this possibi]ity is tha t  
one deals with sites which are large enough tha t  energy-loss straggling and the 
finlte fange of Ô-rays in the particle fracks can be negleeted. The most  important  
practieal case where this condition is mer is tha t  of intermediate energy neutrons 
and of sites not rauch smaller than  l ~zm [3, 4]. Equations whieh apply to this 
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CA 15307 from the National Caneer Institute. 
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situation will be given. Except  for some illustrative examples no numerical 
evaluations will be presented. Some numerical results have been given in a 
preliminary report [17]. 

Apart  from the dose average ~D orte deals in microdosimetry with the frequency 
average ?~F and with the corresponding average of specifie energy or with its 
inverse the mean event frequency per unit absorbed dose [18]. The quanti ty ~F is 

the microdosimetrie analogon of the track average, LT, of LET. Aceordingly it  
would be desirable to obtain formulae which permit  direct numerieal derivation 
of the quanti ty ~TF from simulated particle tracks. However we have not found 
such formulae; it appears tha t  ~F has to be derived from simulated partiele tracks 
by  such sampling procedures as described in the previous article [t5]. The 
frequency average ~F will therefore not be eonsidered in the following. One may  
however note tha t  simple relations for ~F exist in the case of sites large enough tha t  
energy-loss straggling and the range of (~-rays ean be negleeted. These relations and 
some numerieal results have been reported earlier [20]. 

The Funetion T (x) 

In  order to derive the formula for YD orte needs an auxiliary function. This 
function will be introdueed in the following. 

Consider a p a t t e r n  of energy deposition in a uniform medium exposed to a 
uniform radiation field. As in the earlier articles this will be called the inchoate 
distributiõn; it consists of the trans]er Toints, T~, with the corresponding energy 
trans]ers, s~. 

Ler a transfer point be randomly ehosen. I tere  and in the following the notion 
of random ehoice of a transfer point, T~, is to be understood in the way tha t  the 
seleetion probabili ty is proportional to s~, i.e. it is assumed tha t  the chance of a 
transfer point to be selected is proportional to the energy transfer, s~, belonging to 
the point. One can then ask for the expected energy imparted within a distance x 
from the seleeted transfer point; in the present context this quanti ty will be 
ealled T(x). One can also ask for the expected energy, t(x)dx, imparted in a 
spherical shell of radius x and thickness dx centered at  the transfer point, i.e. one 
can ask for the distribution of impar ted  energy in distanee from a randomly ehosen 
inerement, s~. 

With these definitions one has: 
d T(x) (~.) 

t(x) d~ 

The two functions have the characteristics of a sum distribution and a differential 
distribution; however they are not normalized 1. 

The function T(x) ean be split into two separate components. The first 
componeut which one might call T 1 (x) includes the contributions from the same 
particle frack as the reference point. The second eomponent includes the con- 

1 Sinee the symbol for the function is always aceompanied by its argument there will be no 
possibility of confusion between T(x) and the symbol, T~, for transfer points. 

According to the terminology used in the Appendix of the preceding article T(x) could be 
written ~c, i.e. T (x) is the mean wlue of the centered distribution, c (~), of energy imparted for 
a sphere radius x. The explicit distribution c (e) will not be required in the following. The 
symbols T(x) and t(x) are used in order to simplify the notation. 
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Fig. 1. Schematic example ofa microscopie pattern ofenergy deposition and the funetion T(x) 
which results if all dots are assumed to represent unit energy transfer. T(x) is the expected 
number of transfers within a cirele of radius x centered at a randomly se]eeted transfer. The 
funetion can also be considered as the sum distribution of distances between pairs of transfer 

points multiplied by the total number of transfer points 

t r ibutions from independent  particle fracks. These lat ter  eontributions are no t  
spatially correlated to  the  referenee point  and are therefore s imply proport ional  to 
absorbed dose: 

T (x) = T 1 (x) + 4 ~ q x3 D (2) 
3 

An analogous equat ion applies to  the  derivat ive:  

t(x) = t l (x  ) -F 4 z e z  2 D ,  (3) 

where @ is the  densi ty  of  the  medium. 
Since the  contr ibut ion to T (x) f rom independent  particle fracks is a trivial 

te rm which is independent  o f  radiat ion qual i ty  and simply propoI~ional to 
absorbed dose, it will in the  following no t  be considered. The diseussion will 
therefore be concerned solely with the  funetions T 1 (x) and t 1 (x) whieh refer to 
individual particle fracks. For  convenience the  index I will be dropped. 

F rom the  definition of  the  funct ion one obtains the following expression which 
permits  the  derivat ion of  T (x) f rom an inehoate dis tr ibut ion:  

(i, k) < ~: i 
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The first sum extends over all pairs of transfer points, T, and T~, whose distance, 
(i, k), does not exeeed x. The sum in the denominator extends över all transfer 
points. 

Although this is somewhat arbitrary it is assumed that  the contribution of eaeh 
transfer point itself is included in the sum, i.e. the combinations i =/¢ are included 
in Eq. (4). For i ~ k each pair of points appears twiee in the sum, namely in the 
combinations ~, k and ~, ~. 

The numerical evaluation of Eq. (4) is rauch simpler than the proeedure which 
leads to the explicit distribution of y because it involves the evaluation of only a 
finite number of terms and does not require random sampling. Although for ]arge 
simulated particle tracks and for large values of x the number of terms can be 
considerable, it is usually not prohibitive. 

T (x) can be considered as the sum distribution of distances between all energy 
transfers in a particle track. I t  is an interesting, although apparently unsolved, 
problem whether this fnnction determines the random frack, i.e. whether one can 
reconstruct a partiele track if the functions T (x) o r t  (x) are precisely known [13]. 
The problem is however not directly relevant to the present discussion. 

As a simple illustration Fig. t represents the funetion T(x) for the same 
schematie example invoked in the earlier articles [14, 15]. l~umerical examples for 
protons and for fast electrons are given in Appendix A which contains a brief 
discussion of the direet radiobiologieal applieability of the function T (x). 

The Formula for ~D 

Assume that  a transfer point, T~, is randomly seleeted on a charged partic]e 
track. Then consider all possible spheres, S, of radius r which eontain T,. Aceording 
to the proeedure which in the preceding article [15] has been termed sampling over 
indiviäual trans]ers the expected energy imparted in a sphere S is equal to ~D» The 
latter quanti ty is equal to ~ ryD. 

The expected energy in a spherieal shell of radius x and thickness dx centered 
at T, is t (x) dx. One taust ask for the expected fraction of this energy which will 
appear in a sphere S, i.e. one needs to know the probability tha t  a point at a 
distanee x from Ti lies in S. This probability is equal to the probability, U (x), tha t  
starting in a random direetion from a random point in a sphere of radius r o n e  will 
cover a distanee larger than x till leaving the sphere. This is the sum distribution 
of ehord lengths for so-called internal source randomness (see [i2]) and from a 
general formula given for this distribution (see Eq. (7) of [12]) one obtains in the 
special case of a sphere: 

U(x) = i -  3~ ~ 0_< x_< 2 r (5) 
4r  ~ 1 6 r  8 ; 

That  part  of the expected energy at  a distance between x and x-I- dx from T~ 
which is also inside the sphere S is U (x)t (x)dx. Accordingly orte has: 

2r 

~»1 = f u (x) t (x) dx.  (6) 
o 
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The dose average of lineal energy is therefore: 
2r 

~D = ~ l -- ~ + ~ t(x) dx .  (7) 
o 

The equation for ~D1 is analogous. 
I t  taust  be kept  in mind tha t  the proof of these relations requires a uniform 

radiation field. In  the case of a non-uniform field the relations will still hold if the 
site is randomly positioned throughout the medium. 

This concludes the derivation of the essential result. The remainder of the 
article consists of a more detailed analysis in special situations. 

In  Appendix B Eq. (6) is put  into a more general context. 

Consideration of Special Cases 

The formula for ~D is of general applicability since t (x) can be calculated for any 
inchoate distribution. However undcr certain conditions the theoretical t rea tment  
can be carried further. Two such cases will be considered. The first case is tha t  of 
regions large enough tha t  the internal structnre of particle fracks can be neglected, 
and the fracks can be considered as straight line segments without radial ex- 
tension. The second case is tha t  of regions small enough tha t  the change of energy 
of the charged particles traversing these regions can be neglected. This second 
situation will be t reated in more detail because it  includes those cases to which 
microdosimetrie teehniques are not yet  applicable. 

Large Sltes 
Under terrain conditions orte can neglect both energy-loss straggling and the 

radial extension of particle fracks. The range of applieability of this simplification 
has been assessed earlier [t 6]. In  the present context it is sufficient to point out 
tha t  energy-loss straggling and radial extension of the fracks can be disregarded if 
one deals with sites not rauch smaller than  t ~m and with moderately fast  heavy 
charged particles such as the recoils of neutrons of energy up to about  t5 MeV. 
Caswell and Coyne have ntilized this fact in extensive computations of micro- 
dosimctric distributions [3, 4]. Formulae for t (x) and ~D in this particular oase will 
be derived. 

Orte m a y  first consider an oversimplification, namely tha t  of straight particle 
tracks without radial extension and with a continuous and constant rate of energy 
transfer, L. In  this case one has: 

t (x)  = 2 L .  (S) 

The value ~D which results in this ease is well known. Nevertheless it is instructive 
to consider its derivation from the distance distribution. According to Eq. (7) 
one has: 

2r 

~D = ~ l -- ~rr + l-g-~ 2 L dx 8 " (9) 
0 

Natural ly this is an undue silnplification. For a more realistic t rea tment  one may  
consider a particle of specified energy, E. As before, the particle frack will be 
approximated by  continuous energy transfer along straight lines. However the 
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finite range, R, of the partiele and the ehange of linear energy transfer along the 
traek will be taken into aeeount. To indieate the dëpendenee on the initial energy, 
E, of the partiele the notation tE (x) and ~D,E will be used. 

Ler Es and L8 be the energy and the stopping power of the partiele as funetions 
of its remaining fange, s. Then aeeording to the definition of t (x) one obtains: 

R 

t 2 C ~(x) = Ë | Ls-x Ls ds. (tO) 

As pointed out R is the initial range of the particle and E is its initiM energy. I f  one 
were to assume constant stopping power, L, along the partiele frack orte would 
obtain: 

tE(x)= 2 L ( I -  ~ ) .  (1t) 

In  reality one must perform the integration for the aetual variation of LET 
along the partiele traek. 

The dose mean lineal energy, ~D,E, for a proton of energy E is, according to 
Eq. (7): 

2r 

~D,~ = -~r I -- ~r + ~ @(x) dx. (12) 
o 

The corresponding quantity for the recoil partieles produced by neutrons can 
be obtained by  averaging the quanti ty #D,E over all initial energies and all types 
of recoil particles. For simplicity we will confine the discussion to one type of 
particles, namely the recoil protons. I t  will be obvious how the formulae are to be 
modified in the general case. 

Assume that  p (E) dE is the fraction of protons with initial energy between E 
and E + dE. Then the fraction of absorbed dose contributed by these particles is 
proportional to E p (E) dE, and one obtains therefore: 

Emax 
~D = ~ fID,E E p(E) d E / E ,  (t3) 

0 
~m~x 

where Ë = ~ E p (E) dE is the mean initial proton energy. 
0 

Therefore, if proton recoils from monoenergetic neutrons are eqni-distributed 
in energy, i.e. if p (E) = I/E~ up to the energy, En, of the neutrons : 

a a  

qJD ----- ~ yD,E E d E  (14) 
E n  

0 

The same result ean be obtained by a second method which is somewhat more 
convenient beeause it does not require three suceessive integrations. This method 
is to derive the function t (x) directly for the mixed field of recoil protons, and then 
to derive the quanti ty yD. ;For t (x) orte has: 

t(x) = S tE(x) E p(E) dE / Ë .  (15) 
0 
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10 

Fig. 2. Dose mean lineal energy, ?)v, for the recoil protons produced by monoenergetie neutrons. 
The diameter, d,, of the spherical site is given as a parameter of the curves. The ranges and 
stopping powers are those given in ICRU Report 16 for water [9]. The broken line corresponds 

to the value 9/8/~D [see Eq. (9)] 

Using Eq. (10) one obtains: 
8max 

X 

P (s) is the fraction of recoils with initial range larger than  s and Smax is the range 
a t  maximum recoil energy. The quanti ty ?~D then results from Eq.. (7). Fig. 2 
represents as an example numerical results for the proton recoils of mono-energetie 
neutrons. Equi-distribution of energy is assumed for the recoils. 

Small Sites 

Assume tha t  a charged particle traverses a microscopic volume or passes the 
volume at  such a distance tha t  it can inject 8-rays into it. I f  the volume is small 
enough and the particle is of sufficient energy then the change of its kinetic energy 
during the process can be neglected, i.e. one deals with t rack segments of constant 
linear energy transfer. In  the following such track segments will be considered. 
The te rm small sites may  be used to refer to the situation. Accordingly, when in 
this section t h e  functions T (x) and t (x) and the lineal energy averages YD are 
referred to, they belong to a specified particle at  a specified energy. This must  be 
distinguished from the convention in the preceding section where the quantities 
belonged to the total  t rack of a particle with specified energy. 

Various quantities, in addition to LET, can be used to characterize a short 
t rack segment. One of the important  factors is the relative frequency of ~-rays of 
various energies generated along the t rack segment. The term ~-ray is here used in 
the general sense of a colHson event of the pr imary particle; in contrast  to the 
more common usage it stands therefore not only for events in which an ionizing 
recoil electron is produced but  it applies also to collisions which result only in a 
single ionization or even excitation. To a first approximation one can assume tha t  
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the spectrum of ~-rays depends only on the veloeity of a heavy charged particle. 
This will be the essential point in the present eontext; it will not be necessary to 
make specifie assumption on the actual form of the ~-ray spectrum. 

Another function relevant to the deseription of a particle frack is the distribu- 
tion of energy in distancel b, from the particle frack. This fuuetion which eharac- 
terizes the average radial profile of the frack has been extensively discussed in the 
literature [2, 5, 6, t l ,  24, 29] and has for protons up to 3 MeV been experimentally 
determined [J, 29]. Let  G(b) be the fraetion of energy whieh is imparted at  a 
distance from the frack core less than b. I t  is assumed that  this function is nor- 
malized to G(c~)= I. In addition one may use the derivative, g(b): 

g(b) ~ dG(b) 
db (~7) 

g (b) db is the expected fraction of energy deposited in a eylindrieal shell of radius b 
and thickness db whose axis is the frack eore. The functions G(b) and g(b) will be 
referred to as radial energy äistributions. They will be used as auxiliary funetions ; 
it is important  to realize tha t  they are only statistical averages and do not deter- 
mine the aetual energy concentrations around the frack. 

One may note that  the quanti ty G(b) is equal to the linear energy transfer, Lb, 
with distance out-oft [9] divided by the total linear energy transfer, L: 

G(b) = Lb/L. (18) 

The absorbed dose at  a distance b from the frack tore is: 

Dõ = L g(b)/2 z~ b. (i9) 

I t  is frequently assumed that  outside the track-eore and up to a certain 
maximum value of b the funetion g (b) is inversely proportional to b. Kowever the 
present considerations apply regardless of the form of the funetion g (b). 

A general property of the fnnetions T (x) and t (x) and the quanti ty ffD c a n  be 
derived from the fact tha t  the spectrum of c$-rays and the radial energy distribution 
depend only on the velocity of the heavy charged particle. The following con- 
siderations will apply to heavy charged particles of specified velocity but  of 
different charge and therefore of different linear energy transfer, L. 

T (x) is the expeeted energy in a sphere of radius x centered at a randomly 
selected transfer point in the frack. This expeeted energy ean be split into two 
separate components. The first eomponent, Tõ (x), includes the contributions from 
the same ~-ray that  has produced the transfer. This eomponent depends only on the 
speetrum of ~-rays and not on the linear energy transfer, L. The seeond component 
ineludes the eontribution from separate Ô-rays. This eontribution is, for particles 
of equal velocity, proportional to L. This follows from the faet tha t  a larger 
charge of the partiele leads not to different Ô-rays but  only to a higher average 
frequeney of &rays per unit frack length. Accordingly one ean write: 

T(x) = ~'~(x) + Te(x) L.  (20) 
The term Ta (x) L is equal to the value T (x) which would result if the association 
of energy in ~-rays eould be negleeted ~. In  other words, Ta (x) L would result if one 

2 The quantity Te(x) refers to unit linear energy transfer, therefore it.s dimension is 
different from that of T(x). Analogous remarks apply to the quantities te(x) and ?)«. 
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were to deal with a track with no internal structure but  with a radial energy 
distribution whieh is cqual to tha t  of the actual track. Such a simplified frack 
results if one averages out the energy concentration in cylindrical shells around the 
partiele track. In  the following the term amorphous traJc will be used to refer to 
this simplification. The index a in the function Ta (x) refers to this expression. 

An analogous equation applies to the derivative t (x): 

t(x) = tô(x)+ te(x)L (21) 

und, by vir~ue of Eq. (7), also to the dose mean lineal energy, yD: 

yD = yô + ya i .  (22) 

This equation establishes a conneetion between the values YD for different 
heavy charged particles of the same velocity; it can thcrefore serve us a check of 
experimental microdosimetrie data. I t  also provides a criterion for the possibility 
to assume an amorphous track, g.e. to disregard the Iocal concentration of energy 
in ~-rays. The criterion is tha t  ~~ is small as compared to ~a L. 

Although no numerical evaluation will be presented in this article, it  is useful 
to consider the derivation of the quantities appearing in Eqs. (20 to 22). Only the 
essential formulae will be givcn. 

The terms Tô(x), t~(x), er pô ean b e  derived by sampling simulated 5-rays 
which correspond to the particle velocity which is being studied. I t  is sufficient to 
derive Tô(x) aecording to Eq. (4). Then tô(x) is obtained as the derivative of 
T~ (x), and pô results from Eq. (7). Alternative]y one may determine Tô (x), tô (x) 
or põ as functions of the energy of (~-rays and then integrate the resulting function 
over the ~-ray spectrum. 

I t  is of interest to note tha t  the angular distribution of the emission of the 
B-rays does not affect the quanti ty p~. The angular distribution enters the calcula- 
tions only insofar us it inituences the radial energy distribution and thereby the 
second terms in Eqs. (20 to 22). Sinee the radial energy distribution may be 
experimentally determined [l, 29] one can arrive at the values of PD or of the 
distanee distribution without kn0wledge o]~ the angular distribution of 6-r~ys. 

For the derivation of Ta (y) one necds a function, Tbb' (X), which is defined in 
the following way. Assume an infinite cylinder of radius b' and a point at a 
distance b from the axis of the cylinder. Then 2 z~ b' Tbb' (x) is the surface of the 
cylinder which lies inside a sphere of radius x centered at the point. One obtains: 

~z 

Tbb'(x) 2 ~ l/ = - -  x 2 -  b ~ -  b'2-b 2 bb' cos ¢ de ;  x >  ]b-  b' I. (23) 
0 

The quanti ty Ta (x) results flora an integration over all pairs of values b 
and b ' : 

Ta(X) = ~ ~ Tbb'(X) g(b) g(b') db db'. (24) 
D 0 

The funetion ~a (x) is obtained as the derivative of the sum distribution~ and Ya is 
calculated according to Eq. (7). 

These are the essential formulae which determine the quanti ty ~D for small 
sites. In conclusion we will consider a special situation which corresponds to 
recent microdosimetric measurements [7, 8, 22, 23]. These measurements have 
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Fig. 3. The dose mean lineal energy, ?~v. b, for a spherical site of ~10 nm radius and a collimated 
beam of heavy partieles. The parameter b is the distanee between the particle beam and the 
center of the sphere. The solid eurves refer to protons, alpha partieles, and lithium ions with 
energy of 20 MeV per nueleon. The values are interrelated aecording to Eq. (25). The term 
?)ö, b is indicated as a broken line. The data have been computed from simulated proton fracks 

ereated by I-I. G. Paretzke. The stopping powers are those for watet 

been per formed  wi th  a co l l imated  beam of  charged  par t ic les  passing a t  a dis tance,  
b, from the  center  of  a spher ical  [8, 22, 23] or  cyl indr ica l  [7] wall-less p ropor t iona l  
counter .  This  s i tua t ion  is more  compl ica ted  t h a n  the  cases t r e a t e d  earlier.  The  
reason is t h a t  one deals  no t  wi th  a un i form rad i a t i on  field, and  t h a t  one can 
consequent ly  no t  a p p l y  the  re la t ion  be tween  t (x) and  ~D. Never theless  one ob ta ins  
an  equa t ion  which is analogous to  Eq.  (22). This  can be seen in t he  following way.  

The  core of  the  par t ic le  f r ack  is a t  a d is tance  b f rom the  center  of  the  sphere.  I n  
t he  compu ta t iona l  app roach  one t aus t  therefore  sample  the  va lue  of  y on ly  on the  
surface of  a cyl inder  of  rad ius  b a round  the  f rack.  Tak ing  th is  condi t ion  into  
account  one can a p p l y  a procedure  which  corresponds to  t he  sampl ing  over  
ind iv idua l  t ransfers  descr ibed in the  preceding ar t ic le  [~5]. As in earl ier  der iva t ions  
one can spl i t  t he  va lue  of  y a t  a sampl ing  po in t  in to  two contr ibut ions .  The  first  
con t r ibu t ion  is f rom the  same ~-ray to  which the  selected t ransfer  bclongs;  
th is  t e rm  depends  only  on the  spec t rum of  ~-rays, i.e. on the  ve]oc i ty  of  the  
p r i m a r y  par t ic le .  The  second con t r ibu t ion  belongs to  independen t  5-rays and  is 
therefore  p ropor t iona l  to  t he  l inear  energy  t ransfer .  One obta ins  therefore  a 
re la t ion  which corresponds to  Eq.  (22) : 

~D,b = ~a,b + ~a,b L .  (25) 
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The index b is used to indicate tha t  the quantities relate to a fixed impact  
parameter,  b, of the charged particles. 

The term Pa,b L is equal to 3 (eh>/4 r, where (eh> is the expected energy 
imparted to the spherical site per particle passing it at  distanee b: 

b+r 
(ca> = L ~ Tbb, (r) g(b') db', (26) 

c 

where the lower limit, v, of the integration is 0 for b ~ r and b - r for b > r. One 
taust note tha t  the average (Eõ} ineludes these cases where ~--- 0. 

(~b> deereases sharply whcn b becomes largcr than  r, and when a,ceordingly 
the particle passes outside the sphere. In  contrast Pô,b increases sharply as b 
becomes larger than  r. The reason is tha t  for b < r collisions of the charged 
particle whieh result in small energy transfers such as single ionizations er excita- 
tions influenee Yö,b, while for b > r only higher energy Ô-rays which enter the 
sphere are involved. This can b a d  to the somewhat surprising result tha t  P»,b 
has its smallest value when the partiele passes at  very close distanee from the site, 
while its value is larger both for direet traversals and for passages a t  larger 
distanee from the site. Fig. 3 illustrates this by  an example from unpublished 
calculations. The example refers to small sites of 20 nm diameter;  measurements 
for sites of i ~zm diameter have shown the same charaeteristics [7, 8, 22, 23]. 

Ac~nowledgement. The eoneepts developed by  Dr. I t .  H. Rossi have  been the  basis of this  
s tudy;  his advice and  his eritieism were equally essential. 

We are grateful to Dr. H. G. Paretzke for providing us with simulatod particle traeks. The 
examples used to i l lustrate this artiele refleet only a rainer par t  of his extensive data.  We are 
also indebted to Dr. A. ¥ .  Kuehner  for bis help with the  numerical evaluations. 

Appendix A: 
Applications o/the Functions T(x) and t(x) 

T(x) and its derivative, t(x), have  been introduced as auxiliary funetions in the  formula 
for 9». However the  functions have also direet radiobiologieal implications. This may  be 
demonstra ted by  an  example. 

Assume t h a t  DNA single-strand breaks result  in an irradiated medium with probabil i ty  ae~ 
a t  any point  where an  energy trans£er, e~, occurs. Assume fur ther  t h a t  pairs of these breaks 
have a probabil i ty  p(x) to eause a double-strand break which depends on their  spatial separa- 
t ion x. One then  obtains the  following equation for the yield, E (D), per un i t  volume of double- 
s t rand breaks a t  the  absorbed dose D: 

E ( D ) = T D  p(x) t (x )dx+4~~olx2p(x)dxD = / c ( ~ D + D  2) (A.I) 
0 

with: 
co co 

== ~p(x) t(x) dx/4~@~ p(x) x 2 dx. (A.2) 
0 0 

One could make the  simple assumption t h a t  two single-strand breaks have a fixed prob- 
abil i ty to cause a double-strand break if  separated by  a distanee less than  r :  

p ( x ) =  (~~::X<rx>r (A.3) 

with  this  assumption one obtains:  
= T(r)/m, (A.4) 

where m is the  mass of a spherical region of radius r. 
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Fig. 4. a) The functions T(x) for proton frack segments at  various energies, and for fast 
electrons. The data are derived ffom simulated particle tracks created by H. G. Paretzke. The 
stopping powers are those for water. The broken lines indicate those values, T(x), which result 
if at  an absorbcd dose of 100 rad the contribution from other particle fracks is included. 
b) The funetions T(x) for protons track segments at  various energies und for fast electrons 
which rcsult if the LET concept is applied, i.e. if  the formation of ~-rays and the radial exten- 

sion of the fracks are neg]ccted 

I f  one assumes a more realistic, gradually decreasing function p(x) such us ic e-~2/r2 che 
obtains an expression which is similar to the one in Eqs. (6) and (7) : 

c o  

= e z~-.5 [ e-~V,' t(z) dx. Z 3 
o 

(A.5) 

Fig. 4a reprcsents the quantity T(x) for protons and for values of x up to 200 nm. These 
results have been obtained from simulated random fracks created by H. G. Paretzke (see 
[24, 25]). In  the present context they merely serve as illustrations; a preliminary report of 
numerical data has been given ear]ier [17]. 

As pointcd out T(x) is assumed to refer only to individual particle fracks; i.e. T(x) is the 
expected energy from the sctme particle frack in a spherical region of radius z centered at  a 
randomly chosen encrgy transfer. The functions T (x) which result il, at  an absorbed dose of 
100 rad, the contribution from other particle fracks is included are inserted as broken lines. 
I t  is apparent that  the contribution from other particle tracks is insignificant for these small 
radii. Accordingly the linear term in Eq. (AA) will be predominant except for large doses or 
large interaction distances. 
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)'ig. 4b represents the values whieh result for T(x) if  the LET-eoneept is applied. The 
comparison of both figures shows that  the LET-eoncept leads to greatly distorted results for 
low and intermediate stopping powers. Microdosimetric calculations are therefore essential. 

Append ix  B 

General F o r m  o / t h e  Equat ion  ]or ~D 

The formula for Y» has been derived for spherical regions, t towever it is apparent that  the 
proof of Eq. (6) applies to any convex region provided the radiation field is isotropic or the 
orientation of the region is random. U(x) is the sum distribution of chord lengths for internal 
source randomnesv [12] for the volume which is being considered. 

One may go one step further and generalize Eq. (6) to rcgions which are not  couvex or 
which may eren have diffuse boundaries. This generalization will here be mentioned without 
proof. As pointed out the function t(x) is the product of the total energy transfer in a particle 
track multiplied by the probability density of distances between two randomly selected energy 
transfers in the frack. One may define an analogous function for the site. Ler t'(x) be the 
product of the volume of the site and the probability density of distanees x between two 
randomly selected points in the site. One ean also say that  t'(x) dx is the expected volume of 
the site which lies inside a spherical shell of radius x and thickness dx centered around a point 
randomly chosen in the site. One finds that  Eq. (6) can then be written in the form: 

~m = [. t(x) V(x)/4 ~ x ~ dx (BA) 
0 

This more symmetrieal form of the equation makes it clear that  it refers to the general mathe- 
matical problem of the random interseetion of two geometrical objects, namely the partiele 
frack and the site. 

The funetion t '  (x) for a sphere can be obtained from the formula for hyper-spheres given by 
Kendall and Moran [21]. Comparison of Eqs. (6) and (BA) shows that  t'(x) = 4 ~: x 2 U(x). 

One may nse the generalized formula to obtain the mean values ~m whieh apply to a 
blurred site. This is of partieular interest because, as found in the earlier artiele [t4:], the values 
of z for a blurred site are equal to the values of z which occur in iufmitesimally small sites if  a 
diffusion proeess corresponding to the radial profile of the blurred site is applied to the im- 
parted energy. 

Assume that  the site is of spherieal symmetry but  has a density which decreases as 
e-~2/r 2, where x is the distance from the eenter. One finds, and the proof is omitted here, that  
the funetion t'(x) for such a body is: 

t" (x) = 4 g x 2 e-:~/2r~. (B.2) 

With Eq. (BA) and with Eq. (5) of the earlier artiele [14] one obtains: 

~m = e ~15ra ~ "  t(x) e-»~] 2r~ dx. (B.3) 

This corresponds to the equation: 

3 3, / 3 x  x a \ 

which applies to a sphere of radius r. That  the two equations mus~ result in values ~m of the 
same order of magnitude ean be seen from the eomparison of the two functions 

l 
el = ~ e-'~~/~ (B.5) 

and 
3 [ 3 x  x3\ 

I 

which are plotted in l~ig. 5. 
One concludes that  similar values ~m are obtained for the mean speeific energy in a spherieal 

si~e of radius r, for the mean specifie energy in a blurred site of effeetive radius r, and for the 
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.2 

2 3 X 

Fig. 5. Comparison of the quantities 
c I and c 2 in Eqs. (B.5) and (B.6) 

mean specific energy in infinitesimal sites after diffusion of the imparted energy erer the 
effective distance r. The quantity ~»1 is therefore a very general parameter of radiation quality. 

Reterences 

t. Baum, J. W. : Comparison of distance- and energy-restricted linear energy transfer for 
heavy particles with 0.25 to 1000 MeV/AMU. In: Proceedings of 9nd Symposium on 
Microdosimetry (Ebert, H. G. Ed.) pp. 653--666. Euratom, 4452 d-f-e (1970) 

2. Berger, M. J. : Some new transport calculations of the deposition of energy in biological 
materials by low-energy electrons. In:  Proeeedings of 4th Symposium on Microdosimetry 
(Ebert, H. G., Ed.) pp. 695--715. Euratom 5122 d-e-f (1974) 

3. CaswelI, R. S. : Deposition of energy by neutrons in spherical cavities. Radiat. Res. 27, 
92--107 (1966) 

4. Caswell, R. S., Coyne, J. J. : Secondary particle spectra produced by neutron interactions 
with tissue. In: Proceedings of is t  Symposium on Neutron Dosimetry in Biology and 
Medicine (Burger, G., Schraube, H., Ebert, I-I. G., Eds.). pp. 25--41. Euratom, 4896 d-f-e 
(1972) 

5. Chatterjee, A., Maccabee, I-I., Tobias, C. : Radial cut-off LET and radial cut-off dose 
calculations for heavy charged particles in water. Radiat. Res. 54, 479---494 (1973) 

6. Fain, J., Monnin, M., Montret, M. : Energy density deposited by a heavy len around its 
path. In: Proceedings 4th Symposium on iKierodosimetry (Ebert, H. G., Ed.). pp. 169--t88. 
Euratom d-e-f (1974) 

7. Glass, W. A., Roesch, W. C. : 5Ieasurement oB ionization distributions in tissue-equivalent 
gas. Radiat. Res. 49, 477---494 (1972) 

8. Gross, W., Rodgers, R. C. : tteavy ion event spectra. In: Proceedings of 3rd Symposium on 
Microdosimetry (Ebert, H. G., Ed.). pp. 873--887. Euratom 4810 d-f-e (t972) 

9. ICRU: Linear Energy Transfer, Report 16. Washington, D.C. : International Commission 
of Radiation Units and ~easurements t970 

10. ICRU: Radiation Quantities and Units, Report 19. Washington, D.C.: International 
Commission of Radiation Units and 1Keasurements 1971 

t l .  Katz, R., Kobetich, E. J.: Particle fracks in eondensed marter. In:  Charged Partiele 
Tracks in Solids and Liquids (Adams, G. E., Bewley, D. K., Boag, J. W., Eds.). pp. t09--  
119. The Institute of Physics and the Physieal Society Conference Series No. 8, London 
(1970) 

12. Kellerer, A. lV[. : Considerations on the random traversal of eonvex bodies and solutiõns for 
general cylinders. Radiat. Res. 47, 359--376 (1971) 

13. Kellerer, A. 1K., Bell, W.: Theory of microdosimetry. In:  Annual Report on Research 
Project, USAEC, NY0-2740-7, 73-90 (t970) 

14. Kellerer, A. 1VI., Chmelevsky, D. : Coneepts of mierodosimetry. I. Quantities. Radiat. and 
Environm. Biophysies 12, 6t--69 (1975) 

15. Kellerer, A. M., Chmelevsky, D. : Concepts of mierodosimetry. II. Probability distributions 
of the microdosimetrie variables. Radiat. and Environm. Biophysics 12, 205--2t6 (1975) 

16. Kellerer, A. M., Chmelevsky, D.: Criteria for the applieability of LET. Ra4iat. Res. 63, 
226--234 (t975) 



Concepts of 1Viicrodosimetry III.  335 

t7. Kellerer, A. M., Chmelevsky, D., Teedla, P. : Numerical derivation of microdosimetrie 
quantities, II. Mean values of the dose distributions. In:  Annual Report ERDA No. C00- 
3243-4, pp. 68--79 (1975) 

t8. Kellerer, A. lYi., Rossi, I-I. H. : Summary of quantities and functions employed in micro- 
dosimetry. In:  Proeeedings 2nd Symposium on Mierodosimetry (Ebert, H. G., Ed.). pp. 
843--853. Euratom 4452 d-f-e (1970) 

19. Kellerer, A. M., Rossi, H. H. : The theory of dual radiation action. Current Topies in Radier. 
Res. 8, 85--158 (1972) 

20. Kellerer, A. M., Rossi, I-I. H.: Numerical derivation of mierodosimetrie quantities, I. 
1VIean values of the frequency distributions. In: Annual Report ERDA No. C00-3243-4. 
pp. 61--67 (i975) 

21. Kendall, M. G., Moran, P. A. P.: Geometrieal probability. New York: Hafner 1963 
22. Kliauga, P., Dvorak, R., Rossi, I-I. H., Kellerer, A. M. : Mierodosimetric distributions as a 

funetion of radial dis~ance from heavy ions. In: Annual Report EI~DA No. 3243-4, 
p. 88--i03 (1975) 

23. Kliauga, P., Rossi, H. H. : Mierodosime~ric distributions as a function of radial dist~nee 
from heavy ion trecks. In:  Proeeedings 5th Symposium on 1V[ierodosimetry, Verbania, 1975 
(in press) 

24. Paretzke, I-I. G., Leuthold, G., Burger, G., Jacobi, W.: Approaehes to physical treck 
structure ealeulations. In:  Proceedings 4th Symposium on 1Viicrodosimetry (Ebert, H. G., 
Ed,). pp. 123--i40. Euratom, 5t22 d-e-f (1974) 

25. Paretzke, H. G. : Comparison of treck structure ealeulations with experimental results. In:  
Proeeedings 4th Symposium on Mierodosimetry (Ebert, H. G., Ed.). pp. i41--468. Eura- 
tom, 5122 d-e-f (1974) 

26. Patau, J. P., l~albert, l~I., Terrissol, M., Commanay, L. : ]~tudes dosimétriques dans des 
cavités sphériques situées en milieu semi-infini, irradié par des éleetrons de 2 MeV. In:  
Proceedings 4th Symposium on 1VIierodosimetry (Ebert, H. G., Ed.). pp. 755--777. Eura- 
tom, 5t22 d-e-f (1974) 

27. Rossi, H. H. : Energy distribution in the absorption of radiation. Advanc. biol. med. Phys. 
11, 27--85 (t967) 

28. Rossi, H. H.: Mieroseopic energy distribution in irradiated marter. In:  Radiation Dosi- 
metry (Attix, F. H., Roeseh, W. C., Eds.), Vol. ~l, pp. 43--92. New York: Aeademie Press 
1968 

29. Varma, 1~. N., Baum, J. W., Kuehner, A. V.: Energy deposition by heavy ions in a 
"tissue equivalent" gas. Radier. Res. 62, l - - i l  (1975) 

Dr. Albrecht 1~. Kellerer 
Institut für Med. Strahlenkund e der Universität 
D-8700 Würzburg 
Versbaeher Landstr. 5 
Federal Republie of Germany 


