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Summary. This is the last part of an investigation of microdosimetric concepts relevant to
numerical calculations. A formula is derived which permits the computation of the dose average
lineal energy, #jn, or the corresponding average of the specific energy without the need to
determine the probability distributions, f(y) or f,(2). A detailed treatment is given for two
cases of practical importance. The first case corresponds to spherical sites with diameters of the
order of 1 um and to neutrons up to 15 MeV. The second case corresponds to microscopic sites
which are small enough that the change of the stopping power of charged particles traversing
the site can be neglected.

Introduction

Two earlier articles [14, 15] have dealt with established microdosimetric
quantities [10, 18, 27, 28] and with sampling procedures which lead from simulated
particle tracks [24 to 26] to the probability distributions of these quantities and to
their mean values. Such sampling, like all Monte Carlo procedures, may require
extensive computations for sufficient statistical accuracy. In this last part of the
study a formula is derived which permits the direct calculation of ¥p without the
necessity to compute the explicit probability distribution f(y). This possibility is
important because the quantity 7p is particularly relevant to theoretical radiation
biology [19]. We refer mainly to the quantity §p which is the microdosimetric

analogon to the dose average, Lp, of linear energy transfer. However it will be
understood that all considerations apply equally to the closely related quantity
ZD1.

The formula will permit the numerical determination of 7p from simulated
random tracks without the need to apply sampling procedures. This is the case of
principal interest in the present context; it will therefore be discussed in detail. In
certain cases the formula can also yield direct analytical expressions for §p so that
no simulated particle tracks are needed. The condition for this possibility is that
one deals with sites which are large enough that energy-loss straggling and the
finite range of d-rays in the particle tracks can be neglected. The most important
practical case where this condition is met is that of intermediate energy neutrons
and of sites not much smaller than 1pm [3, 4]. Equations which apply to this
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situation will be given. Except for some illustrative examples no numerical
evaluations will be presented. Some numerical results have been given in a
preliminary report [17].

Apart from the dose average 7p one deals in microdosimetry with the frequency
average ¥r and with the corresponding average of specific energy or with its
inverse the mean event frequency per unit absorbed dose [18]. The quantity §r is

the microdosimetric analogon of the track average, Ly, of LET. Accordingly it
would be desirable to obtain formulae which permit direct numerical derivation
of the quantity ¢r from simulated particle tracks. However we have not found
such formulae; it appears that 7 has to be derived from simulated particle tracks
by such sampling procedures as described in the previous article [15]. The
frequency average §r will therefore not be considered in the following. One may
however note that simple relations for §r exist in the case of sites large enough that
energy-loss straggling and the range of §-rays can be neglected. These relations and
some numerical results have been reported earlier [20].

The Funetion 7' (x)

In order to derive the formula for §p one needs an auxiliary function. This
function will be introduced in the following.

Consider a pattern of energy deposition in a uniform medium exposed to a
uniform radiation field. As in the earlier articles this will be called the inchoate
distribution; it consists of the transfer points, T, with the corresponding energy
transfers, &;.

Let a transfer point be randomly chosen. Here and in the following the notion
of random choice of a transfer point, 7%, is to be understood in the way that the
selection probability is proportional to &, é.e. it is assumed that the chance of a
transfer point to be selected is proportional to the energy transfer, ¢;, belonging to
the point. One can then ask for the expected energy imparted within a distance z
from the selected transfer point; in the present context this quantity will be
called 7'(»). One can also ask for the expected energy, t(x)dz, imparted in a
spherical shell of radius « and thickness dx centered at the transfer point, ¢.e. one
can ask for the distribution of imparted energy in distance from a randomly chosen
increment, &;. :

With these definitions one has:

_dT@)

Ha) =t (1)

The two functions have the characteristics of a sum distribution and a differential
distribution; however they are not normalized?.

The function 7'(x) can be split into two separate components. The first
component which one might call 7', (z) includes the contributions from the same
particle track as the reference point. The second component includes the con-

1 Since the symbol for the function is always accompanied by its argument there will be no
possibility of confusion between 7 (x) and the symbol, T';, for transfer points.

According to the terminology used in the Appendix of the preceding article 7' (x) could be
written E¢, 7.e. 7' (x) is the mean value of the centered distribution, ¢(¢), of energy imparted for
a sphere radius z. The explicit distribution ¢(€) will not be required in the following. The
symbols 7' (z) and #(x) are used in order to simplify the notation.
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Fig. 1. Schematic example of a microscopic pattern of energy deposition and the function 7 (x)

which results if all dots are assumed to represent unit energy transfer. 7'(z) is the expected

number of transfers within a circle of radius x centered at a randomly selected transfer. The

function can also be considered as the sum distribution of distances between pairs of transfer
points multiplied by the total number of transfer points

tributions from independent particle tracks. These latter contributions are not
spatially correlated to the reference point and are therefore simply proportional to
absorbed dose:

T(0)=Ty(x)+ “32aD. @)

An analogous equation applies to the derivative:
tx) =t () + 4mpa? D, (3)

where g is the density of the medium.

Since the contribution to T'(») from independent particle tracks is a trivial
term which is independent of radiation quality and simply proportional to
absorbed dose, it will in the following not be considered. The discussion will
therefore be concerned solely with the functions 7';(x) and ¢, () which refer to
individual particle tracks. For convenience the index 1 will be dropped.

From the definition of the function one obtains the following expression which
permits the derivation of 7 (x) from an inchoate distribution:

T(@)= 3 eiexl2 &i- (4)

@GR <z t
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The first sum extends over all pairs of transfer points, T; and T'y, whose distance,
(¢, k), does not exceed z. The sum in the denominator extends over all transfer
points.

Although this is somewhat arbitrary it is assumed that the contribution of each
transfer point itself is included in the sum, ¢.e. the combinations ¢ = k are included
in Eq. (4). For s k each pair of points appears twice in the sum, namely in the
combinations ¢, k and &, ¢. k

The numerical evaluation of Eq. (4) is much simpler than the procedure which
leads to the explicit distribution of ¥ because it involves the evaluation of only a
finite number of terms and does not require random sampling. Although for large
simulated particle tracks and for large values of & the number of terms can be
considerable, it is usually not prohibitive.

T () can be considered as the sum distribution of distances between all energy
transfers in a particle track. It is an interesting, although apparently unsolved,
problem whether this function determines the random track, ¢.e. whether one can
reconstruct a particle track if the functions 7' (x) or ¢(x) are precisely known [13].
The problem is however not directly relevant to the present discussion.

Ag a simple illustration Fig. 1 represents the function 7'(x) for the same
schematic example invoked in the earlier articles [14, 15]. Numerical examples for
protons and for fast electrons are given in Appendix A which contains a brief
discussion of the direct radiobiological applicability of the function 7' (z).

The Formula for 7p

Assume that a transfer point, 7', is randomly selected on a charged particle
track. Then consider all possible spheres, S, of radius r which contain 7';. According
to the procedure which in the preceding article [15] has been termed sampling over
individual transfers the expected energy imparted in a sphere S is equal to Ep;. The
latter quantity is equal to §77p.

The expected energy in a spherical shell of radius x and thickness dz centered
at T is t(z)dz. One must ask for the expected fraction of this energy which will
appear in a sphere S, i.e. one needs to know the probability that a point at a
distance x from 7'; lies in 8. This probability is equal to the probability, U (x), that
starting in a random direction from a random point in a sphere of radius r one will
cover a distance larger than z till leaving the sphere. This is the sum distribution
of chord lengths for so-called internal source randomness (see [12]) and from a
general formula given for this distribution (see Eq. (7) of [12]) one obtains in the
special case of a sphere:

Ux)= 1_-+16r3’ O<z<2r, (5)

That part of the expected energy at a distance between x and x+ dx from T
which is also inside the sphere 8 is U (z)#(x)dx. Accordingly one has:

Ep1= ETU(x)t(x)dx. (6)
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The dose average of lineal energy is therefore:

2r
PR ( B ﬁ) (z)de. (1)
0
The equation for Zp, is analogous.

It must be kept in mind that the proof of these relations requires a uniform
radiation field. In the case of a non-uniform field the relations will still hold if the
site is randomly positioned throughout the medium.

This concludes the derivation of the essential result. The remainder of the
article consists of a more detailed analysis in special situations.

In Appendix B Eq. (6) is put into a more general context.

Consideration of Special Cases

The formula for §p is of general applicability since #(x) can be calculated for any
inchoate distribution. However under certain conditions the theoretical treatment
can be carried further. Two such cases will be considered. The first case is that of
regions large enough that the internal structure of particle tracks can be neglected,
and the tracks can be considered as straight line segments without radial ex-
tension, The second case is that of regions small enough that the change of energy
of the charged particles traversing these regions can be neglected. This second
situation will be treated in more detail because it includes those cases to which
microdosimetric techniques are not yet applicable.

Large Sites

Under certain conditions one can neglect both energy-loss straggling and the
radial extension of particle tracks. The range of applicability of this simplification
has been assessed earlier [16]. In the present context it is sufficient to point out
that energy-loss straggling and radial extension of the tracks can be disregarded if
one deals with sites not much smaller than 1 pm and with moderately fast heavy
charged particles such as the recoils of neutrons of energy up to about 15 MeV.
Caswell and Coyne have utilized this fact in extensive computations of miero-
dosimetric distributions [3, 4]. Formulae for #(x) and #p in this particular case will
be derived.

One may first consider an oversimplification, namely that of straight particle
tracks without radial extension and with a continuous and constant rate of energy
transfer, L. In this case one has:

tx)=2L. (8)

The value §p which results in this case is well known. Nevertheless it is instructive
to comsider its derivation from the distance distribution. According to Eq. (7)
one has:

2r
io=4 [ (1- 55 +55m)2 Lds— g L. (9)
0

Naturally this is an undue simplification. For a more realistic treatment one may
consider a particle of specified energy, £. As before, the particle track will be
approximated by continuous energy transfer along straight lines. However the
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finite range, R, of the particle and the change of linear energy transfer along the
track will be taken into account. To indicate the dependence on the initial energy,
E, of the particle the notation g (x) and §p,z will be used.

Let B and L; be the energy and the stopping power of the particle as functions
of its remaining range, s. Then according to the definition of #(x) one obtains:

R
2
tn(2) =~ f Ls s Ls ds. (10)
x

As pointed out R is the initial range of the particle and ¥ is its initial energy. If one
were to assume constant stopping power, L, along the particle track one would
obtain:

to(z) =2 L (1 - %) . (11)

In reality one must perform the integration for the actual variation of LET
along the particle track.

The dose mean lineal energy, 7p,g, for a proton of energy Z is, according to
Eq. (7):

3 b 3z 23
Inr= g | (1= 22+ 1) tea) d. (12)
0

The corresponding quantity for the recoil particles produced by neutrons can
be obtained by averaging the quantity 7p z over all initial energies and all types
of recoil particles. For simplicity we will confine the discussion to one type of
particles, namely the recoil protons. It will be obvious how the formulae are to be
modified in the general case.

Assume that p(E) dF is the fraction of protons with initial energy between £
and & -+ dX. Then the fraction of absorbed dose contributed by these particles is
proportional to & p(E) d&, and one obtains therefore:

Fmax

gp=[ipe Ep(E)dE [E, (13)
0

Emax

where E = [ E p(E) dE is the mean initial proton energy.
0

Therefore, if proton recoils from monoenergetic neutrons are equi-distributed
in energy, t.e. if p(#)= 1/E, up to the energy, E,, of the neutrons:

En
_ 2 (.
Ip= 3 | Ine BAE. (14)
"9
The same result can be obtained by a second method which is somewhat more
convenient because it does not require three successive integrations. This method
is to derive the function t(z) directly for the mixed field of recoil protons, and then

to derive the quantity §p. For ¢(x) one has:

Emax
tHa)=[tg(x) Ep(B)dE|E. (15)
0
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Fig. 2. Dose mean lineal energy, 4, for the recoil protons produced by monoenergetic neutrons.
The diameter, d; of the spherical site is given as a parameter of the curves. The ranges and
stopping powers are those given in ICRU Report 16 for water [9]. The broken line corresponds

to the value 9/8 Lp [see Eq. (9)]

Using Eq. (10) one obtains:

Lg_g Ls P(s) ds. (16)

P (s) is the fraction of recoils with initial range larger than s and spmax is the range
at maximum recoil energy. The quantity §p then results from Eg. (7). Fig. 2
represents as an example numerical results for the proton recoils of mono-energetic
neutrons. Equi-distribution of energy is assumed for the recoils.

Small Sites

Assume that a charged particle traverses a microscopic volume or passes the
volume at such a distance that it can inject d-rays into it. If the volume is small
enough and the particle is of sufficient energy then the change of its kinetic energy
during the process can be neglected, 7.e. one deals with track segments of constant
linear energy transfer. In the following such track segments will be considered.
The term small sites may be used to refer to the situation. Accordingly, when in
this section the functions 7'(x) and #(x) and the lineal energy averages §p are
referred to, they belong to a specified particle at a specified energy. This must be
distinguished from the convention in the preceding section where the quantities
belonged to the total track of a particle with specified energy.

Various quantities, in addition to LET, can be used to characterize a short
track segment. One of the important factors is the relative frequency of §-rays of
various energies generated along the track segment. The term J-ray is here used in
the general sense of a collison event of the primary particle; in contrast to the
more common usage it stands therefore not only for events in which an ionizing
recoil electron is produced but it applies also to collisions which result only in a
single ionization or even excitation. To a first approximation one can assume that
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the spectrum of §-rays depends only on the velocity of a heavy charged particle.
This will be the essential point in the present context; it will not be necessary to
make specific assumption on the actual form of the d-ray spectrum.

Another function relevant to the description of a particle track is the distribu-
tion of energy in distance, b, from the particle track. This function which charac-
terizes the average radial profile of the track has been extensively discussed in the
literature [2, 5, 6, 11, 24, 29] and has for protons up to 3 MeV been experimentally
determined [4, 29]. Let G(b) be the fraction of energy which is imparted at a
distance from the track core less than b. It is assumed that this funetion is nor-
malized to G(co) = 1. In addition one may use the derivative, g(b):

g(0)="20) (1)
g (b) db is the expected fraction of energy deposited in a cylindrical shell of radius &
and thickness db whose axis is the track core. The functions G (b) and ¢ (b) will be
referred to as radiol energy distributions. They will be used as auxiliary functions;
it is important to realize that they are only statistical averages and do not deter-
mine the actual energy concentrations around the track.
One may note that the quantity G (b) is equal to the linear energy transfer, Ly,
with distance cut-off [9] divided by the total linear energy transfer, L:

G(b)= Ly/L. (18)
The absorbed dose at a distance b from the track core is:
Dy=Lgb)2mb. (19)

It is frequently assumed that outside the track-core and up to a certain
maximum value of b the function g(b) is inversely proportional to . However the
present considerations apply regardless of the form of the function g(b).

A general property of the functions 7'(z) and ¢(x) and the quantity §p can be
derived from the fact that the spectrum of -rays and the radial energy distribution
depend only on the velocity of the heavy charged particle. The following con-
siderations will apply to heavy charged particles of specified velocity but of
different charge and therefore of different linear energy transfer, L.

T'(x) is the expected energy in a sphere of radius = centered at a randomly
selected transfer point in the track. This expected energy can be split into two
separate components. The first component, 7'5(2), includes the contributions from
the same §-ray that has produced the transfer. This component depends only on the
spectrum of -rays and not on the linear energy transfer, L. The second component
includes the contribution from separate d-rays. This contribution is, for particles
of equal velocity, proportional to L. This follows from the fact that a larger
charge of the particle leads not to different d-rays but only to a higher average
frequency of d-rays per unit track length. Accordingly one can write:

T(x)= Ts(x)+ To(x) L. (20)

The term T (z) L is equal to the value 7' (x) which would result if the association
of energy in §-rays could be neglected 2. In other words, 7' (x) L would result if one

2 The quantity 7'z(x) refers to unit linear energy transfer, therefore its dimension is
different from that of T (x). Analogous remarks apply to the quantities f,(x) and Fa.
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were to deal with a track with no internal structure but with a radial energy

distribution which is equal to that of the actual track. Such a simplified track

results if one averages out the energy concentration in cylindrical shells around the

particle track. In the following the term amorphous track will be used to refer to

this simplification. The index ¢ in the function 7' (x) refers to this expression.
An analogous equation applies to the derivative #(x):

1) = by (@) + fa(2) I (21)
and, by virtue of Eq. (7), also to the dose mean lineal energy, 7p:
gp=Gs+ Ja L. (22)

This equation establishes a connection between the values 7p for different
heavy charged particles of the same velocity; it can therefore serve as a check of
experimental microdosimetric data. It also provides a criterion. for the possibility
to assume an amorphous track, 4.e. to disregard the local concentration of energy
in ¢-rays. The criterion is that 7 is small as compared to §, L.

Although no numerical evaluation will be presented in this article, it is useful
to consider the derivation of the quantities appearing in Hgs. (20 to 22). Only the
essential formulae will be given.

The terms T'5(x), t5(x), or §; can be derived by sampling simulated 8-rays
which correspond to the particle velocity which is being studied. It is sufficient to
derive T's(x) according to Eq. (4). Then #;(x) is obtained as the derivative of
Ts(x), and 7, results from Eq. (7). Alternatively one may determine 7'5(x), £;(x)
or 75 as functions of the energy of §-rays and then integrate the resulting function
over the d-ray spectrum.

It is of interest to note that the angular distribution of the emission of the
o-rays does not affect the quantity #,. The angular distribution enters the calcula-
tions only insofar as it influences the radial energy distribution and thereby the
second terms in Egs. (20 to 22). Since the radial energy distribution may be
experimentally determined [1, 29] one can arrive at the values of 7p or of the
distance distribution without knowledge of the angular distribution of é-rays.

For the derivation of T, (y) one needs a function, Ty (x), which is defined in
the following way. Assume an infinite cylinder of radius 3’ and a point at a
distance b from the axis of the cylinder. Then 2 7 b’ Ty (%) is the surface of the
cylinder which lies inside a sphere of radius = centered at the point. One obtains:

Tbbf(x)=%f]/x2—-b2—b’2+2bb’cos $do; x> |b—1b"|. (23)
[

The quantity T (x) results from an integration over all pairs of values b
and b’:

To(@)={ | T () g(b) g (b') db b . (24)
0

O g

The function &, () is obtained as the derivative of the sum distribution, and #, is
calculated according to Eq. (7).

These are the essential formulae which determine the quantity §p for small
sites. In conclusion we will consider a special situation which corresponds to
recent microdosimetric measurements [7, 8, 22, 23]. These measurements have
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Fig. 3. The dose mean lineal energy, o, », for a spherical site of 10 nm radius and a collimated

beam of heavy particles. The parameter b is the distance between the particle beam and the

center of the sphere. The solid curves refer to protons, alpha particles, and lithium ions with

energy of 20 MeV per nucleon. The values are interrelated according to Eq. (25). The term

93, is indicated as a broken line. The data have been computed from simulated proton tracks
created by H. G. Paretzke. The stopping powers are those for water

been performed with a collimated beam of charged particles passing at a distance,
b, from the center of a spherical [8, 22, 23] or cylindrical [7] wall-less proportional
counter. This situation is more complicated than the cases treated earlier. The
reason is that one deals not with a uniform radiation field, and that one can
consequently not apply the relation between ¢(z) and 7p. Nevertheless one obtains
an equation which is analogous to Eq. (22). This can be seen in the following way.

The core of the particle track is at a distance b from the center of the sphere. In
the computational approach one must therefore sample the value of y only on the
surface of a cylinder of radius b around the track. Taking this condition into
account one can apply a procedure which corresponds to the sampling over
individual transfers described in the preceding article [15]. As in earlier derivations
one can split the value of ¥ at a sampling point into two contributions. The first
contribution is from the same J-ray to which the selected transfer belongs;
this term depends only on the spectrum of d-rays, ¢.e. on the velocity of the
primary particle. The second contribution belongs to independent d-rays and is
therefore proportional to the linear energy transfer. One obtains therefore a
relation which corresponds to Eq. (22):

Ip,b=Fs,b+ Ja,b L . (25)



Congcepts of Microdosimetry IIL. 331

The index b is used to indicate that the quantities relate to a fixed impact
parameter, b, of the charged particles.

The term 4,5, L is equal to 3 (€p)/4 r, where {€p) is the expected energy
imparted to the spherical site per particle passing it at distance b:

b-+r
(e = L Ty (r) g &) b, (26)

where the lower limit, ¢, of the integration is 0 for < r and b — » for b> r. One
must note that the average (&> includes those cases where = 0.

{€py decreases sharply when b becomes larger than r, and when accordingly
the particle passes outside the sphere. In contrast #;p increases sharply as b
becomes larger than r. The reason is that for b< r collisions of the charged
particle which result in small energy transfers such as single ionizations or excita-
tions influence @5, while for 5>  only higher energy d-rays which enter the
sphere are involved. This can lead to the somewhat surprising result that §ps
has its smallest value when the particle passes at very close distance from the site,
while its value is larger both for direct traversals and for passages at larger
distance from the site. Fig. 3 illustrates this by an example from unpublished
calculations. The example refers to small sites of 20 nm diameter; measurements
for sites of 1 pm diameter have shown the same characteristics [7, 8, 22, 23].
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Appendix A:
Awpplications of the Functions T'(z) and t(x)

T (x) and its derivative, ¢(x), have been introduced as auxiliary functions in the formula
for gp. However the functions have also direct radiobiological implications. This may be
demonstrated by an example.

Assume that DNA single-strand breaks result in an irradiated medium with probability «e:
at any point where an energy transfer, &;, occurs. Assume further that pairs of these breaks
have a probability p(x) to cause a double-strand break which depends on their spatial separa-
tion z. One then obtains the following equation for the yield, E (D), per unit volume of double-
strand breaks at the absorbed dose D:

E(D) - —(;—Z-D(O_Fp(x) i) du+ dmo | 22 p(a) da D) —k(ED+ DY (A1)
with: ’ °
E;gp(x)t(x) dx/4:erZj?p(x) 22 dx. (A.2)

One could make the simple assumption that two single-strand breaks have a fixed prob-
ability to cause a double-strand break if separated by a distance less than r:
_ [pforz<r (A.3)
P(@) = {0fore>r
with this assumption one obtains:
§= T(r)/m, (A4)

where m is the mass of a spherical region of radius r.
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Fig. 4. a) The functions 7'(x) for proton track segments at various energies, and for fast

electrons. The data are derived from simulated particle tracks created by H. G. Paretzke. The

stopping powers are those for water. The broken lines indicate those values, 7' (x), which result

if at an absorbed dose of 100 rad the contribution from other particle tracks is included.

b) The functions T'(z) for protons track segments at various energies and for fast electrons

which result if the LET concept is applied, ¢.e. if the formation of §-rays and the radial exten-
sion of the tracks are neglected

If one assumes a more realistic, gradually decreasing function p(x) such as p e~+2/2 one
obtains an expression which is similar to the one in Egs. (6) and (7):

LI Eais d. A
&= gnl-5r3J [ t(x) dz. (A.5)

Fig. 4a represents the quantity 7' (z) for protons and for values of z up to 200 nm. These
results have been obtained from simulated random tracks created by H. G. Paretzke (see
[24, 25]). In the present context they merely serve as illustrations; a preliminary report of
numerical data has been given earlier [17].

As pointed out 7'(z) is assumed to refer only to individual particle tracks; i.e. T () is the
expected energy from the sqme particle track in a spherical region of radius x centered at a
randomly chosen energy transfer. The functions 7 (z) which result if, at an absorbed dose of
100 rad, the contribution from other particle tracks is included are inserted as broken lines.
It ig apparent that the contribution from other particle tracks is insignificant for these small
radii. Accordingly the linear term in Eq. (A.1) will be predominant except for large doses or
large interaction distances.
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Fig. 4b represénts the values which result for 7'(2) if the LET-concept is applied. The
comparison of both figures shows that the LET-concept leads to greatly distorted results for
low and intermediate stopping powers. Microdosimetric calculations are therefore essential.

Appendix B
General Form of the Equation for §p

The formula for ¥p has been derived for spherical regions. However it is apparent that the
proof of Eq. (6) applies to any convex region provided the radiation field is isotropic or the
orientation of the region is random. U (z) is the sum distribution of chord lengths for internal
source randomness [12] for the volume which is being considered.

One may go one step further and generalize Eq. (6) to regions which are not convex or
which may even have diffuse boundaries. This generalization will here be mentioned without
proof. As pointed out the function ¢(x) is the product of the total energy transfer in a particle
track multiplied by the probability density of distances between two randomly selected energy
transfers in the track. One may define an analogous function for the site. Let ¢ (x) be the
product of the volume of the site and the probability density of distances z between two
randomly selected points in the site. One can also say that t’(x) dz is the expected volume of
the site which lies inside a spherical shell of radius x and thickness dz centered around a point
randomly chosen in the site. One finds that Eq. (6) can then be written in the form:

&1 =°f|'> t(z) t' (z)/4 w22 da (B.1)
o

This more symmetrical form of the equation makes it clear that it refers to the general mathe-
matical problem of the random intersection of two geometrical objects, namely the particle
track and the site.

The funection ¢’ (x) for a sphere can be obtained from the formula for hyper-spheres given by
Kendall and Moran [21]. Comparison of Eqs. (6) and (B.1) shows that ¢'(z) = 4 7 22 U ().

One may use the generalized formula to obtain the mean values Zp1 which apply to a
blurred site. This is of particular interest because, as found in the earlier article [14], the values
of z for a blurred site are equal to the values of z which occur in infinitesimally small sites if a
diffusion process corresponding to the radial profile of the blurred site is applied to the im-
parted energy. ‘

Assume that the site is of spherical symmetry but has a density which decreases as
e7#2/r2, where  is the distance from the center. One finds, and the proof is omitted here, that
the function ¢’ (z) for such a body is:

t(x) = 4 7 2? e~a%2r, (B.2)
With Eq. (B.1) and with Eq. (5) of the earlier article [14] one obtains:

- 1' o 2 2
Zn1= mé{ t(x) es*/2r* d. (B.3)

This corresponds to the equation:
2r

3 3 Tim(1-3%, 2 )4 B4
21’1_94,.”.30 @) RPTRETY ) A (B.4)
which applies to a sphere of radius r. That the two equations must result in values Zp; of the
same order of magnitude can be seen from the comparison of the two functions
1
¢ = P e~e[2 (B.5)
and
3 1 3z 2t
= \1— 4+—1_6 (B.6)

which are plotted in Fig. 5.
One concludes that similar values Zp1 are obtained for the mean specific energy in a spherical
site of radius , for the mean specific energy in a blurred site of effective radius r, and for the
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Cy &

L L 3 Fig. 5. Comparison of the quantities
X ¢; and ¢, in Egs. (B.5) and (B.6)

mean specific energy in infinitesimal sites after diffusion of the imparted energy over the
effective distance r. The quantity zp1 is therefore a very general parameter of radiation quality.
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