
Proceedings of the

Eighth

ACM SIGACT-SIGMOD-SIGART

Symposium on

Principles of Database Systems

March 29-31, 1989

Philadelphia, Pennsylvania
416 132 931 800 14

Special Interest Group for Automata and Computability Theory
(S I G A C T)

Special Interest Group for the Management of Data
(SIGMOD)

Special Interest Group for Artificial Intelligence
(S I G A R T)

Table of Contents

Tutorial: Non-monotonic Reasoning
Teodor C Przymusinski

SESSION 1: Chaired by Tomasz Imielinski
The Alternating Fixpoint of Logic Programs with Negation 1

Allen Van Gelder
Every Logic Program has a Natural Stratification and an Iterated Least Fixed Point Model 11

Teodor C. Przymusinski
A Procedural Semantics for Well Founded Negation in Logic Programs 22

Kenneth A. Ross

SESSION 2: Chaired by Teodor C. Przymusinski
Logic Programming as Constructivism: A Formalization and its Application to Databases 34

Francois Bry
Complexity of Query Processing in Databases with OR-Objects 51

T. Imielinski and K. Vadaparty
A Sound and Complete Query Evaluation Algorithm for Relational Databases with
Disjunctive Information 66

Li Yan Yuan and Ding-An Chiang
Horn Tables - A n Efficient Tool for Handling Incomplete Information in Databases 75

Gosta Grahne

SESSION 3: Chaired by Carlo Zaniolo
Invited Talk: Automata Theory for Database Theoreticians 83

Moshe Y. Vardi
Declarative Expression of Deductive Database Updates 93

Sanjay Manchanda
Updating Databases in the Weak Instance Model 101

Paolo Atzeni and Riccardo Tor lone

SESSION 4: Chaired by Daniel J. Rosenkrantz
Attribute Agreement 110

Y C. Tay
Can Constant-time-maintainability be More Practical? 120

Ke Wang
Practical Algorithms for Finding Prime Attributes and Testing Normal Forms 128

Heikki Mannila and Kari-Jouko Raiha
A Decision Procedure for Conjunctive Query Disjointness 134

Charles Elkan

i i i

Tutorial: Recursive Query Processing
Catriel Beeri

SESSION 5: Chaired by Catriel Beeri

Bottom-up Beats Top-down for Datalog 140
Jeffrey D. Ullman

On the Power of Alexander Templates 150
Hirohisa Seki

Safety of Dataiog Queries over Infinite Databases 160
Yehoshua Sagiv and Moshe Y. Vardi

SESSION 6: Chaired by Michael Kifer

Proof-tree Transformation Theorems and Their Applications 172
Raghu Ramakrishnan, Yehoshua Sagiv, Jeffrey D. Oilman, and Moshe Y. Vardi

Linearising Nonlinear Recursions in Polynomial Time 182
Yatin P. Saraiya

Inference of Monotonicity Constraints in Datalog Programs 190
Alexander Brodsky and Yehoshua Sagiv

Why a Single Parallelization Strategy is Not Enough in Knowledge Bases 200
Simona Cohen and Ouri Wolfson

SESSION 7: Chaired by William E. Weihl

Invited Talk: Modular Architectures for Distributed and Database Systems 217

Alfred Z. Spector
Clustered Multiattribute Hash Files 225

Down Rotem
Utilization of B-trees with Inserts, Deletes and Modifies 235

Theodore Johnson and Dennis Shasha

SESSION 8: Chaired by Hector Garcia-Molina

Fractals for Secondary Key Retrieval 247
Christos Faloutsos and Shari Roseman

Declustering Using Error Correcting Codes 253
Christos Faloutsos and Dimitrios Metaxas

The Impact of Recovery on Concurrency Control 259
William E. Weihl

Concurrency Control of Nested Transactions Accessing B-trees 270
Ada Fu and Tiko Kameda

iv

Tutorial: Expressive Power of Query Languages
Victor Vianu

SESSION 9: Chaired by Victor Vianu

Hypothetical Datalog Negation and Linear Recursion 286
Anthony J. Bonner

Inductive Pebble Games and the Expressive Power of Datalog 301
V. S. Lakshmanan and A. O. Mendelzon

On the First-Order Expressibility of Recursive Queries 311
Stavros S. Cosmadakis

S E S S I O N 10: Chaired by Ashok K. Chandra

Expressibility of Bounded-Arity Fixed-Point Query Hierarchies 324
Pratul Dublish and S. N. Maheshwari

Relational Database Behavior: Utilizing Relational Discrete Event Systems and Models 336
Zvi M, Kedem and Alexander Tuzhilin

Untyped Sets, Invention, and Computable Queries 347
Richard Hull and Jianwen Su

S E S S I O N 11: Chaired by Oded Shmueli

Modeling Complex Structures in Object-Oriented Databases 360
C. Lacluse and P. Richard

C-Logic of Complex Objects 369
Weidong Chen and David S. Warren

A Logic for Object-Oriented Logic Programming (Maier's O-Logic: Revisited) 379
Michael Kifer and James Wu

Type Systems for Querying Class Hierarchies with Non-Strict Inheritance 394
Alexander Borgida

Author Index 401

ν

Logic Programming as Constructivism:

A Formalization and its Application to Databases

Francis Bry

ECRC, Arabellas*. 17,8000 München 81, West Germany

uucp: ...fpyramid/ecrcvaxffb

ABSTRACT The features of logic programming that
seem unconventional from the viewpoint of classical logic
can be explained in terms of constructivistic logic. We
motivate and propose a constructivistic proof theory of
non-Horn logic programming. Then, we apply this for
malization for establishing results of practical interest.
First, we show that 'stratification can be motivated in a
simple and intuitive way. Relying on similar motivations,
we introduce the larger classes of 'loosely stratified' and
'constructively consistent' programs. Second, we give a

formal basis for introducing quantifiers into queries and
logic programs by defining 'constructively domain
independent* formulas. Third, we extend the Generalized
Magic Sets procedure to loosely stratified and construc
tively consistent programs, by relying on a 'conditional
fixpoini procedure.

1. Introduction

Though close to conventional reasoning, logic program

ming departs from classical logic in two respects. First, it

confines reasoning to limited kinds of deductions. In par

ticular, indefinite statements like disjunctive or existential

formulas cannot be derived from logic programs. Second,

logic programming draws unconventional inferences by in

terpreting negation as failure. However, despite of non-

classical features, logic programming appears rather

natural. Moreover, its unconventional reasoning features

seem intuitively founded.

Permission to copy without fee all or part of this material is granted pro
vided that the copies are not made or distributed for direct commercial
advantage, the A C M copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to
republish, requires a fee and / o r specific permission.

© 1989 ACM 0-89791-308-6/89/0003/0034 $1.50

In this paper, we propose a constructivistic rationalization

of logic programming. Constructivism is a school in logic

that tries to reestablish certain parts of mathematics in more

intuitive ways. There are many constructivistic theories.

Some retain classical reasoning and confine it to certain

types of deduction. Others rely on unconventional in

ference principles. Logic programming does both. We

show that constructivism is surprisingly close to logic pro

gramming. The features of logic programming that are un

conventional from the classical viewpoint find immediate

constructivistic explanations.

A number of formalizations of logic programming have

already been proposed. Chandra and Harel [CH 85], Apt,

Blair, and Walker [A* 88], and Van Gelder [VGE 88] ex

press the semantics of Horn and non-Horn programs in

terms of conventional logic models and fixpoint operators,

following van Emden and Kowalski [vEK 76]. In [GR

84, GAB 85], Gabbay and Reyle propose to extend Prolog

with non-classical, hypothetical implications. In [GS 86],

Gabbay and Sergot advocate for replacing negation as

failure by the classical logic treatment 'negation as

inconsistency*. Fitting [FIT 85] relies on a three-valued

logic for formalizing the behaviour of logic programs that

either fail, or succeed, or fall into infinite backtracking. A

modal logic interpretation of negation as failure is

described by Gabbay in [GAB 86], etc. The different read

ings contribute to enlighten various aspects of logic pro

gramming.

The resemblance between logic programming and con-

structivistic logic has already been noticed by Bojadziev. In

a short article [BOJ 86], he gives a constructivistic inter

pretation of Horn programs and negative goals. Remarks

with constructivistic flavour can be found in most studies

devoted to negation in logic programming. However, we do

not know any previous proposal to interpret non-Horn logic

programs in constructivistic terms and to exploit this inter

pretation. We show that a constructivistic reading of logic

programming answers the question of the declarative

semantics of non-Horn programs in a simple and natural

manner. In addition, we apply this reading to solving prac

tical problems of various kinds.

In this paper, because of space limitations, we do not give

proofs and we consider function-free logic programs.

However, the constructivistic rationalization of logic pro

gramming we introduce here applies also to logic programs

with functions. In particular, i t gives very intuitive explana

tions of necessary requirements such as well-foundedness

or local stratification [PRZ 88a, PRZ 88b]. The proofs, a

treatment of logic programs with functions, and connected

results can be found in the full version [BRY 88a] of this

paper.

The first part of this paper proposes a constructivistic

axiomatic system, which we call Causal Predicate Calculus

(CPC), as a proof-theoretic formalization of non-Horn logic

programs. In order to establish the factual decidability of

CPC, we extend the fixpoint procedure for Horn

programs [vEK 76] into a proof procedure for CPC, which

we call 'conditional fixpoint\ by introducing some con

ditional reasoning. We prove the equivalence between the

proof-theoretic reading of non-Horn programs with CPC

and the model-theoretic one by Apt, Blair, Walker [A* 88]

and Van Gelder [VGE 88].

The second part of this paper is devoted to applying the

constructivistic axiomatization of logic programming. We

prove results of practical consequence in three concerns:

For motivating the syntactical restrictions imposed on logic

programs in simple and intuitive manners; for extending

logic programs with new features; and for proving results

on certain database query evaluation methods.

More precisely, we show that stratification [A* 88, VGE

88] and local stratification [PRZ 88a, PRZ 88b] are suf

ficient conditions of 'constructive consistency', i.e., consis

tency in CPC. We introduce the class of 'loosely stratified'

programs. This property, which is less stringent than

stratification and local stratification, appears to be more

convenient for practical use. Like stratification but unlike

local stratification, loose stratification can be checked with

out rule instantiation. We establish, for stratified programs,

the equivalence between the proof-theoretic formalization

with CPC and the model-theoretic one proposed in [A*

88, VGE 88].

We then consider queries with quantifiers. We introduce

the concept of 'constructive domain independence* (cdi) as

a proof-theoretic counterpart to the model-theoretic notion

of 'domain independence' studied by Fagin [FAG 80] and

proposed by Kuhns [KUH 67] under the name of

'definiteness'. The new concept 'constructive domain

independence' refines and formally motivates syntactical

properties previously considered, such as 'safety' intro

duced by Ullman [ULL 80], 'range-restriction' due to

Nicolas [NIC 81], or 'allowedness' investigated by

Clark [CLA 78], Lloyd and Topor[LT 86], and

Shepherdson [SHE 88]. It gives a logical, constructivistic

explanation of the need to keep ordered certain conjunc

tions in logic programs, a feature traditionally considered

non-logical and procedural. As opposed to the classical

domain independence, the constructive domain indepen

dence is a decidable and syntactically recognizable

property. It therefore constitutes a practical basis for intro

ducing quantifiers into logic programs and queries.

In logic, proofs are declaratively defined, i.e., proofs are

considered independently from any proof procedure. The

definition of CPC induces a declarative definition of con

structive proofs. We make use of this definition and of the

conditional fixpoint procedure for extending in a quite

simple manner the Generalized Magic Sets procedure [BC*

86, BR 87] - a proof procedure for recursive logic programs

also proposed under the name of Alexander procedure [R*

86] - to constructively consistent non-Horn programs. More

precisely, we show that, although the rewritings of the

35

Generalized Magic Sets procedure compromise stratifica

tion, they preserve constructive consistency. This gives rise

to apply the conditional fixpoint procedure to evaluate the

rewritten programs.

The paper is organized as follows. Section 1 is this intro

duction. Following [vEK 76], Section 2 shortly sum

marizes how both model theory and proof theory convey

the declarative semantics of logic programming. Section 3

gives a brief outline of the principles of constructivism. In

Section 4, we develop the Causal Predicate Calculus (CPC)

for formalizing logic programming. We apply this for

malism to practical problems in Section 5 . In Section 6 we

summarize the main results of the paper and indicate direc

tions for further research.

2. Model-theoretic and proof-theoretic semantics

Given certain axioms, mathematical logic distinguishes be

tween two complementary issues: The interpretation of the

axioms by some classes of mathematical structures, and the

construction of proofs from the axioms. The first issue is

called model theory, the second proof theory. Intuitively,

model theory is concerned with the study of the Mworld(s)"

described by the axioms while proof theory is devoted to

the techniques of inferring new properties from those ex

plicitly stated by the axioms.

In logic programming, both the model theoretic and the

proof theoretic readings are useful - i f not necessary - for

conveying the semantics attached to sets of axioms. This

has been observed by van Emden and Kowalski in [vEK

76]. In order to promote the language of Horn clauses as a

programming language, they have investigated on the one

hand the close correspondence between denotational

semantics of programs and model theory, and between

operational semantics and proof theory on the other hand.

Some logicians use the word 'semantics' in place of model

theory and call 'syntax' the proof theory - see, e.g., [CHU

56]. Instead, we give here to the term 'semantics' the same

meaning as in programming language theory.

The denotational semantics of a program describes the ob

jects and structures that are consulted or constructed by the

program. The operational semantics provides with a

description of the operations performed by the program,

without necessarily defining the implemented procedure.

Viewing logic as a programming language raises two ques

tions: "What is a proof?" and "How to generate proofs?",

i.e., the complementary questions of giving declarative and

procedural definitions to the operational semantics.

Despite a fallacious appearance of simplicity, non-Horn

programs raise a severe difficulty: Their operational seman

tics - or underlying proof theory - cannot be defined in

classical logic. As opposed to Horn programs, they perform

inferences that do not always conform to classical logic and

conventional reasoning. For example, the rules ρ <- r Λ - i q

and q * - r Λ - φ are not identically interpreted though

equivalent in classical logic. Conveying the same non-

classical interpretation of implications, constructivism is

appropriate to formalize declaratively the operational

semantics of non-Horn programs.

A procedural, proof-theoretic treatment of non-Horn

programs has been developed by Lloyd in terms of the

SLDNF-resolution proof procedure [LLO 84]. As opposed,

the proof-theory we propose here is independent of any

procedure. I t is declarative and therefore easily applicable

to proof procedures that are not based on SLDNF-

resolution, e.g., the Generalized Magic Sets [BC* 86, BR

87] or Alexandre procedure [R* 86].

3. Constructivism: An outline

A brief outline of the principles of constructivistic logic is

proposed in order to show that it surprisingly resembles

logic programming. Refer to [TRO 77] for a detailed over

view of constructivism in mathematics.

There is no clear-cut definition of constructivism. Accord

ing to Quine [QUI 70], constructivism can be broadly

described as "intolerance of methods that lead to affirming

the existence of things of some sort without showing how

to find one". Constructivism does not allow indefiniteness

in proofs. It rejects proofs affirming the truth of Fj ν F 2

36

without telling which one of Fj and F 2 holds. Similarly,

indefinite existence conveyed by existential quantifications

is not constructively provable: A constructive proof of

3x F[x] does exhibit a term satisfying F.

A classical example of non-constructive reasoning is the

following proof of the existence of irrational numbers ρ and

q such that p q is rational:

is either rational or irrational. I f it is ra

tional, take ρ = q = V5 which is known to be

irrational. Hence, p q is rational. I f

is irrational, take ρ = (V2)̂ and q = V5,

hence p q = 2 is rational.

This proof is not constructive because it draws con

sequences from a disjunctive hypothesis - is either

rational or irrational - which is not based on established

facts - the proof does not show whether is rational or

not. In other words, constructivism rejects excluded mid

dle.

Examples of constructive proofs are easily found in math

ematics and computer science: It is a general inclination to

prefer constructive proofs to non-constructive ones. The

results given in this paper are all constructively established

(for not debating on the legitimacy of non-constructed

foundations for a constructivistic theory).

It is interesting to recall that the introduction of non-

constructive proofs into mathematics led to controversies.

In fact, until the end of the 19 t h century and Cantor's set

theory, mathematics was constructivistic. "This is not

mathematics. It is theology", said a mathematician about

the non-constructive techniques introduced by

Cantor [CAL 79]. Though these techniques are now con

sidered as providing "a paradise the mathematicians do not

want be driven from", as Hilbert said, contemporary math

ematicians revive constructivism, with the aim to provide

"realistic" and intuitive motivations to classical results -

see, e.g., [BIS 67].

The constructivistic interpretation of disjunctive and ex

istential statements corresponds to the practice in logic pro

gramming. Logic programming prevents the derivation of

indefinite information by forbidding disjunction and ex

istential quantification in heads of rules. A constructivistic

view of logic programming is interesting because it is

usually more intuitive to people not trained in formal logic,

like most of the database and expert system users.

Assuming an intuitive understanding of the proofs of

ground atomic formulas, constructive proofs can be formal

ized as follows [BRO 54, KRE 65]:

Definition 3.1

A. Closed formulas:

1. A constructive proof of F J A F 2 consists in a
constructive proof of Fx and a constructive
proof of F 2 .

2. A constructive proof of F j v F 2 consists in a
constructive proof of Fx or in a constructive
proof of F 2 .

3. A constructive proof of Fj => F 2 consists in
specifying a procedure Τ which transforms
any constructive proof Pj of Fx into a con
structive proof TOPj) of F 2 .

4. - iF is defined as F => false.

5. I f the variable χ ranges over the domain D, a
constructive proof of Vx F[x] is a procedure
Τ which, on application to any pair (t,p) of a
term t and a constructive proof ρ that t€D,
yields a constructive proof T(t,p) of F[t].

6. I f the variable χ ranges over the domain D, a
constructive proof of 3x F[x] consists in a
term t, in a constructive proof of teD, and
then in a constructive proof of F[t].

B. Open formulas:
A constructive proof of an open formula
F[xj, . . . ,x n] with free variables χ ρ x n ranging
over the domain D consists in a tuple (tj , . . . ,^) of
terms, in η constructive proofs of t̂ e D, and then
in a constructive proof of Fft j , . . . ,^] .

Though Definition 3.1 seems rather natural, i t modifies

considerably the notion of proof of an implication.

Moreover, it strongly restricts proofs of disjunctions and of

quantified expressions.

From a constructivistic viewpoint implications are not

37

"hidden disjunctions". The formulas ρ => q and - φ ν q are

not constructively equivalent. The same holds for

r A —·ρ => q and r Λ - . q => p. Constructivism is causalistic:

Implications are viewed as inferring new information from

already proved information, like in logic programming. In

constructivistic logic, the formula - φ => ρ is considered

equivalent to false, according to the intuition that it is im

possible to transform a proof of - ip into a proof of p.

From a constructivistic viewpoint, a disjunction ρ ν - φ is

not necessarily true, in case both ρ and - ip are not construc

tively provable. Proofs of quantified formulas are con

siderably constrained. Constructive proofs of quantified

expressions reduce to proofs of ground expressions. This

corresponds to the logic programming practice.

Note finally that Definition 3.1 induces the concept of

'ordered conjunction'. For example, a constructive proof

of an open formula F[x] consists in a constructive proof

that a term t belongs to the domain followed by a construc

tive proof of F[t]. The need to keep ordered certain con

junctions in logic programs for avoiding incorrect evalua

tions and undesirable behaviours is classically viewed as a

non-logical, procedural feature. In fact, it can be explained

in logic by the restriction to constructive proofs.

Restricting the concept of proof requires in turn either to

restrict the axioms, the logical axioms as well as the proper

axioms, or to rely on non-classical inference principles.

Adopting modus ponens - i f formulas Fj and Fj => F 2 hold,

then the formula F 2 is provable - imposes for example to

reject axioms such as:

A j : p = > q v r

A 2 : Vx p(x) => Vy q(x,y)

Indeed, i f ρ is provable, Ax would induce by modus ponens

q v r . Similarly, i f p(t) holds, then modus ponens permits to

derive Vy q(t,y) from A 2 .

Various constructivistic formal systems have been

proposed, e.g., [GOD 58, PRA 65, FIT 69]. Some of them

rely on non-classical rules of inference. Others, e.g., [HEY

66], allow classical inference principles and express the

constructivistic restriction by constraining the syntax of the

axioms. Logic programming does both. It has the classical

inference principle modus ponens and constrains the syntax

of the axioms. It has negation by failure as an unconven

tional inference principle.

The following syntactical constraints on the axioms

guarantee constructivism under modus ponens:

• Definiteness:
No axiom an no conjunct of an axiom is a
disjunction. No axiom and no conjunct of an
axiom is an existential formula.

I f Fx => F 2 is an axiom or a conjunct of an
axiom, then F 2 contains no disjunctions, no
implications, and no quantified formulas.

I f Q J X J . . . Q ^ Fj => F 2 (Qj denotes either V or
3) is an axiom or a conjunct of an axiom, then
Qj = V i f x{ is free in in F 2 , and F 2 contains no
disjunctions, no implications, and no quan
tified formulas.

• Positivitv of consequents:
The consequent F 2 of an implicative conjunct
Fj => F 2 or Qi* i . . .Q n x n F i => F 2 of an axiom
is neither a negated formula, nor a conjunction
containing a negated formula.

These conditions are familiar to logic programmers. Note

that they do not impose that the axioms are safe [ULL 80],

range-restricted [NIC 81], or allowed [LT 86,VGT

87, SHE 88]. They do not preclude axioms that are ground

negative literals, or (mutually) recursive axioms, or im

plicative axioms with negations in their premisses.

Lemma 3 Λ
A formula satisfying the conditions of definite
ness and of positivity of consequents is of one of
the following types:

• Implicative formula

F 1 = > F 2

where Fx is a closed formula and F 2 is a
ground atom or a conjunction of ground
atoms.

• Quantified implicative formula

Q l x l » Q n x n F l = > F 2
where Qt = V i f x{ is a free variable in F 2 ,
and where F 2 is an atom or a conjunction
of atoms.

• Ground literal.

38

• Conjunction of formulas of the above-
mentioned types.

In the rest of the paper, we shall make use of the following,

slightly extended definition of a rule, that allows negations,

quantifiers and disjunctions in bodies of rules.

Definition 3.2
A rule is an expression of the form

A ^ , . . . ^ ^ , . . . ^] < - F ^ , . . . ^ ^ . . . ^]

where the head of the rule

A[xj,...,x n,Zj,...,Zp]

is an atom in which the x ^ and the ZjS are free
and where the body of the rule

is a formula in which the x^ and the yjS are free.

It denotes the implicative formula:

V x 1 . . . V x n V y 1 . . . V y m V z 1 . . . V z p

F [x 1 , . . . , x n f y l f . . M y m] => A ^ , . . . ^ ^

A rule is a Horn rule i f its body does not contain
atoms with negative polarity. A fact is a ground
atom.

Proposition 3.1
A set of axioms satisfying the conditions of
definiteness and of positivity of consequents is
constructively equivalent to a set of rules and
ground literals.

For the sake of simplicity, we shall assume in the sequel

that axioms satisfying the conditions of definiteness and of

positivity of consequents are always rules or ground

literals. By Proposition 3.1 there is no loss of generality.

4. The Causal Predicate Calculus

Though imposing many of the syntactical restrictions of

logic programs, the conditions of definiteness and of

positivity of consequents, or equivalently the restriction to

facts and rules, do not suffice to formalize non-Horn logic

programming. Logic programming conforms in addition to

the following principles:

1. Negation as failure principle: -»F holds i f F is
not provable.

2, Domain closure principle: Variables range
over the terms occurring in the axioms or in
provable facts.

3. Decidability principle: Facts are effectively
decidable, i.e., a procedure that decides
whether a fact is provable or not exists and is
known.

The following axiomatic system expresses these principles

in constructivistic logic. We call it Causal Predicate Cal

culus (CPC). It formalizes the operational semantics of

non-Horn logic programs independently from any proof

procedure.

Upper case characters denote formulas. The symbol *&*

denotes ordered conjunction: F & G means that the proof of

F has to precede that of G. Proofs have to be understood

according to Definition 3 . 1 . Legal inferences are expressed

as usual with the symbol Ί - ' .

• Inference principles:
1 . modus ponens

2. negation as failure

• Axiom schemata:

1 . - « F A F I- false

2. - F = > F I - false

3 . F I - F v G

4. G I - F v G

5 . F A G I - F

6. F A G I- G

7. dom(t)&F[t] I - 3xF[x]

8. - . (3x- ,F[x]) I - VxF[x]

9. V x F [x] I - F[t] (t free for χ in F)

• Conditions on the proper axioms:
The proper axioms are rules or ground literals.

• Domain axioms:
For each n-ary predicate ρ occurring in a proper
axiom, there are η axioms (i = 1 , n) :

d o m i x ^ ^ p i x j , . . . ^ , . . . ^)

• Finiteness Principle:
A l l proofs are finite.

39

The first axiom schema and the finiteness principle are

usually not made explicit. They are implicitly assumed in

all axiomatic systems. Here, we make them explicit for two

reasons. First, we would like to emphasize that false is

provable in constructivistic logic not only with Schema 1

but also with Schema 2, as opposed to classical logic.

Second, the finiteness principle induces severe restrictions

on logic programs with functions [BRY 88a].

We shall call *logic program' a finite set of rules and

ground facts. Given a logic program LP, its domain, noted

*dom(LP)\ is by definition the set of terms occurring in

dom-facts that are constructively provable in CPC with

proper axioms LP. The domain of a logic program is a

subset, possibly strict, of its Herbrand universe. Therefore,

the domains of function-free logic programs are finite. It

follows that universally quantified and negated formulas

can be decided in finite time in any function-free logic

program.

In CPC disjunctive statements like ρ ν - ip are true, thanks

to negation as failure. Logic programs are CPCs, but not

all CPCs are logic programs since CPCs may have negative

literals as axioms. Horn programs are consistent since nei

ther Schema 1 nor Schema 2 can apply. Similarly, Schema

1 is irrelevant to non-Horn logic programs.

Provided one knows that the proper axioms are consistent,

e.g., because of their syntactical structure, then the axiom

schemata 1 and 2 are useless. They are usually omitted by

logicians who always assume consistency of the proper

axioms. They are needed - at least for theoretical reasons -

in logic programming and databases where such assump

tions cannot always be made. In Section 5.1, we show that

the properties Stratification' and 'local stratification' en

sure consistency of logic programs, thus permitting to dis

card Schema 2.

According to the definition of a rule and to the schemata 7

and 8, the rule

p (x)< - - , q (x)Ar (x)

would be evaluated like the rule

p(x) < - dom(x) & [-iq(x) Λ Γ (Χ)]

This is inefficient since 'r(x) ' is a more restricted range for

x. In Section 5.2 and in [BRY 88b], we show how to avoid

the domain predicates.

We conclude this section by introducing a proof procedure,

which we call 'conditional fixpoint', in order to establish

the factual decidability of CPC with function-free axioms.

The procedure relies on a 'conditional immediate

consequence' operator T c which we define first,

In presence of non-Horn rules, the immediate consequence

operator Τ [vEK 76] is non-monotonic [A* 88, VGE 88].

We restore monotonicity with T c by introducing some con

ditional reasoning. Instead of facts, conditional statements

are obtained by delaying the evaluation of negative literals.

Consider for example the rule

p(x) * - q(x) A -nr(x)

I f a fact q(a) holds, delayed evaluation of -Tr(a) yields the

conditional statement

p(a) <—>r(a)

T c is the immediate consequence operator that generates

facts from Horn rules, and conditional statements from

non-Horn rules.

We make use of the following notations in the definition of

T c . Given a conjunction of literals B , we shall denote by

pos(B) ('neg(B)', resp.) the conjunction of all positive

(negative, resp.) literals in B. I f there is no positive

(negative, resp.) literals in B, then pos(B) (neg(B), resp.)

reduces to true. We shall call 'conditional statement' a

ground rule the body of which is a negative literal or a

conjunction of negative literals and of true.

Definition 4.1
The conditional immediate consequence TC(LP)
of a logic program LP is the set of all ground
rules

Η σ < - neg(Ba) A C J A . . . Λ C n

that verify the conditions:
• (Η B) € LP

• σ is a substitution of terms in dom(LP)
for variables in the rule Η < - Β

• pos(Ba) = Ax A ... Λ \ (n > 0) and for
each i = 1, ..., η either there is a con
ditional statement Aj <- Ci in LP, or
C{ = true and Κχ e LP.

40

We recall that an operator Γ is said to be monotonic if:

V S J V S J Syc:S2 => r C S ^ c H S j)

We shall use the notations:

rTO(S) = S

rT(n+l)(S) = r (rTn(S)) u r t n (S) (neN)

rTco(S) = u k e N r t k (S)

In other words, r T l (S) denotes the set S augmented by the

conditional immediate consequences that are computable

from S.

Finally, we recall that a least fixpoint of an operator Γ is by

definition a set r t n (S) (neN*) such that:

rtco(S) = r t n (S)

r i co(S)*rT(n- l) (S)

Lemma 4.1
The operator T c is monotonic. I t has a unique
least fixpoint.

We define the 'conditional fixpoint' procedure for

function-free logic programs. In [BRY 88a], we define it

for logic programs with functions.

Definition 42
Let LP be a function-free logic program. The
conditional fixpoint procedure performs in two
successive phases:

1. The fixpoint TcTco(LP) is computed.

2 . T C TCD(LP) is reduced by recursively
applying the following four rewriting
rules:

(F<r-true) -> F
true Λ F —> F
F Λ true —» F

—iA -> true
i f A is neither a fact,
nor the head of a rule

In Section 5 .2 , we give syntactical conditions that permit

not to explicitly refer to dom(LP) for the computation of

T C TCU(LP) during the first phase of the conditional fixpoint

procedure.

The rewriting system which defines the reduction phase is

bounded and confluent [HUE 80]. Therefore, one verifies

easily that the reduction phase always terminates.

Note that the reduction phase yields a set of ground atoms.

It is inspired of a proof procedure for propositional calculus

due to Davis and Putnam [DP 60] - see also [CL 73, pp.

63-66]. Indeed, conditional statements are ground, by

definition of T C . The last rewriting rule of Definition 4 .2

expresses the negation by failure principle.

I f a logic program L P contains function symbols, then its

domain and the least fixpoint T c Tco(LP) might be infinite.

In such a case, i t is not possible to perform the reducing

rewritings after the computation of the fixpoint T C TCD(LP)

is completed. Instead, the generation of conditional state

ments and their reduction have to be intertwined by level of

term nesting. This is possible provided that the program is

Nötherian, a property defined in [BRY 88a] that ensures

that logic programs with functions obey the finiteness prin

ciple. The conditional fixpoint procedure for Nötherian

programs is defined in [BRY 88a].

The proof of the completeness of the conditional fixpoint

procedure makes use of the following property.

Lemma 4.2
The formulas F Λ G => Η and F constructively
imply G => H.

Proposition 4.1
The conditional fixpoint procedure decides facts
in non-Horn, function-free logic programs.

Note that false e TcTco(LP) i f and only i f LP is construc

tively inconsistent. Properties ensuring constructive consis

tency are investigated in the next section.

5. Applications

This section is devoted to applications of the constructivis-

tic view of logic programming. We apply it first for

motivating the restrictions imposed on function-free logic

programs in an intuitive manner, then for giving a construc-

tivistic basis to domain independent evaluations. Finally,

we apply constructivism for extending the Generalized

4 1

Magic Sets procedure to constructively consistent non-

Horn programs.

5.1. Constructive consistency and stratification

In this section, we first show that the properties

'stratification' [A* 88, VGE 88] and 'local stratification'

are sufficient conditions of constructive consistency. Then,

we introduce the class of 'loosely stratified' logic

programs. This property, which is less stringent than

stratification and local stratification, seems to be more con

venient for practical applications. Finally, we show that the

proof-theoretic formalization of logic programs and the

model-theoretic treatment proposed in [A* 88] and [VGE

88] are equivalent

We consider in this section rules whose bodies are conjunc

tions of literals or single literals, as in [A* 88, VGE

88, PRZ 88b].

We shall use the word 'proof with the meaning of 'proof

in CPC*. Given a logic program LP, we shall call 'proof in

LP* a proof in CPC with set of proper axioms LP. We first

give a characterization of proofs.

Proposition 5.1
Let LP be a logic program. Let F be a fact

A proof of F in LP is F itself i f F eLP or a
ground tree structure F 4 - Ρ such that:

• There exist a rule Η < - Β in LP and a
substitution σ such that Η σ = F.

• Ρ is a proof of Β σ in LP.

Assume that F £ LP. A proof of ->F in LP is true
i f no head of a rule in LP unifies with F. Else it is
a ground tree structure - i F <- Ρ such that:

• The rules in LP whose heads unify with F
are Hj <- Β £ with substitutions σ λ

(i = l , . . . , n)

• Ρ is a proof of A ? I ^ in LP.

Definition 5.1

Let L < - Ρ be a proof of a ground literal L in a
logic program LP. Let F be a fact occurring posi
tively (negatively, resp.) in P. L is said to depend
positively (negatively, resp.) on F in LP.

Proposition 5.2
A logic program LP is constructively consistent i f
and only i f no fact depends negatively on itself in
LP.

Proposition 5.2 gives a very intuitive, equivalent condition

of constructive consistency of a logic program. This con

dition has been proposed and intuitively motivated by

Deransart and Ferrand in [DF 87]. A similar intuition

motivates the property 'sup-stratification' proposed by

Bidoit and Froidevaux in [BF 88].

The following result shows that 'stratification* and 'local

stratification' are sufficient conditions of constructive con

sistency. We do not recall here the definition of these

properties and refer to [A* 88, VGE 88] and to [PRZ

88a, PRZ 88b], respectively.

Corollary 5.1
Stratified and locally stratified logic programs are
constructively consistent

Logic Program:

P0O«-q (x ,y)A- ip (y)

q(a,D

Herbrand Saturation:

P(a)<-q(a,a)A-^p(a)

p(a)<-q(a , l)A-np(l)

p (l) < - q (U) A - ^ p (a)

ρ (1) < - ς (1 , 1) Α - φ (1)

q(a,D

Fig.l

The converse of Lemma 5.1 does not hold. For example,

the logic program of Figure 1 is constructively consistent

but neither stratified, nor locally stratified. I t is not

stratified because the rule defining ρ contains a negated

p-atom in its body. It is not locally stratified since its

Herbrand saturation contains instances of a rule in the body

of which the head atom appears negatively.

42

The condition of constructive consistency is difficult to

apply in practice, because it relies on all possible proofs.

Since there are often fewer rules than facts, it is desirable to

dispose of sufficient conditions of constructive consistency

that depend on the rules only.

The property 'stratification' is such a condition, since it

implies the constructive consistency. The property 'local

stratification' is fact independent too. However, i t relies on

the Herbrand saturation of the program under considera

tion. Therefore, i t is in practice as difficult to check as

constructive consistency.

We propose another sufficient condition of constructive

consistency, which we call 'loose stratification'. Loose

stratification is similar to, but less stringent than stratifica

tion. Like stratification and local stratification, it does not

depend on the facts occurring in the logic program under

consideration. As opposed to local stratification, its defini

tion does not depend on the Herbrand saturation.

According to Lemma 1 in [A* 88, p. 97], a logic program

LP is stratified i f and only i f the dependency graph [A* 88]

of the rules in LP contains no cycles with negative arcs. For

example, the rule

p(x) <r- q(x,y) Λ -ΗΓ(Ζ,Χ)

induces two arcs in the dependency graph: A positive arc

P - > + q
and a negative arc

p - > - r

Relying on the very intuition of the dependency graph, we

define the 'adorned dependency graph' of a logic program

as follows. Instead of predicates, we consider atoms with

variable arguments as vertices of the adorned dependency

graph. We define an arc between two atoms only i f they are

unifiable. In addition, we adorn an arc joining an atom Αχ

to an atom A 2 with a most general unifier of Αχ and A 2 .

An arc is assigned a V or a ' - ' sign like in the conven

tional dependency graph.

Thus, the rule

p(x,a) <- q(x,y) Λ -^(Ζ ,Χ) Λ -ip(z,b)

yields a positive and a negative arc:

P(x!,a) - > + ^ q(x 2 ,x 3)

P i x ^ a) ^ ^ ^ ^)

Note that there is no arc from p(x l f a) to p(x 3,b). Indeed,

these atoms do not unify because of the constants a and b.

Formally, the adorned dependency graph is defined as fol

lows:

Definition 5.2
Let LP be a logic program. Let V be the set of
atoms occurring in rules in LP. Assume that V
has been rectified such that distinct elements of V
do not share variables.

The adorned dependency graph of LP is the
directed graph with set of vertices V and with set
of arcs A defined as follows.

Given Ax e V and A 2 e V, (Ax ->ö A{) e A i f
there is a rule Η f - Β e LP and a most general
unifier τ such that:

• Αχτ = Ητ

• s = V i f Α 2 τ occurs positively in Βτ.
s = '-* i f Α 2 τ occurs negatively in Βτ.

• σ is the restriction of τ to the variables
occurring in Αχ and A^

We recall that η unifiers ..., σ η are said to be compatible

i f there exists a unifier τ which is more general than each

Gj. The definition of 'loose stratification' makes use of this

notion and relies on the adorned dependency graph.

Definition 53
A logic program LP is said to be loosely stratified
i f the adorned dependency graph of the rules in
LP contains no finite chain

C: A 2 ^ A 3 . . . A n ^ A n + 1)
1 2 η

such that:
• C contains a negative arc, i.e., at least one

^ is ' - ' .

• the unifiers αχ, ..., σ η adorning the arcs
along C are compatible. There is a unifier
τ which is more general than each such
that Α η + 1 τ = AjT.

Intuitively, stratification forbids that a fact depends nega-

4 3

lively on another fact with the same predicate letter. Loose

stratification forbids such a dependence only i f the unifiers

collected along the rules are compatible. It allows i t other

wise. Like stratification, loose stratification depends only

on the rules and can be checked without rule instantiation.

Corollary 52
Loosely stratified logic programs are construc
tively consistent

Stratified programs are loosely stratified, but the converse

is false. For example, the program consisting of the rule

p(x,a) <r- q(x,y) Λ -»r(z,x) Λ -.p(z,b)

is loosely stratified since constants 'a' and 'b* do not unify,

but i t is not stratified. The program of Figure 1 is not

loosely stratified. The concepts of 'adorned dependency

graph* and of 'loose stratification* are inspired of [LEW

85].

For function-free logic programs, loose stratification and

local stratification coincide [VIE 88, BRY 88a]. However,

this is not the case for logic programs with functions. The

relationship between loose stratification and local stratifica

tion is investigated more thoroughly in [BRY 88a].

With the following proposition, we establish, for stratified

programs, the equivalence between the proof-theoretic for

malization with CPC and the model-theoretic one proposed

in [A* 88] and [VGE 88].

Proposition 5.3
Let F be a set of facts and R a stratified set of
rules. A formula is a theorem of CPC with
proper axioms FuR i f and only i f it is satisfied in
the natural model of FuR.

5.2. Constructive domain independence

A constructive proof of an open formula F[x] or of a closed

formula 3x F[x] consists in a proof of 'dom(t)' for some

term Y followed by a proof of F[t]. In this section, we

show how to avoid explicit references to the domain predi

cates in constructive proofs.

By the domain axioms, a proof of 'dom(t)' consists in a

proof of a ground fact in which Y occurs. We shall say that

a proof of *dom(t)' occurs redundantly in a proof Ρ if Ρ

consists of a proof of 4dom(t)' and of a proof which implies

'dom(t)\ For example, the proof of 'dom(a)' is redundant

in the following proof

[dom(a) <- q(a,b)] & [p(a)«- r(a,b) Λ s(a)]

since p(a) => dom(a) by definition of the predicate 'dorn'

(Section 4).

Redundant occurences of 'dorn' atoms in proofs are charac

terized by means of the concept of range.

Definition 5.4
Ranges for terms t l f ^ are recursively defined
as follows:

• P(t 0 (1) , . . . , 1 σ (η)) is a range for t , , ^ i f Ρ
is a predicate and σ a permutation of
{1 n) .

• Rj & R 2 is a range for t t , t^ i f Rx is a
ranges for u 1 # u k (k > 0), R 2 is a ranges
f o r v j , . . . , v h (h > 0) , and

{ t 1 . . . t n } = { u 1 . . . u k } u { v 1 , . . . , v h }

• Rj ν R 2 an R 1 Λ R 2 are ranges for t j ,
t n i f both R^ are ranges for t j , t^

• A term (Η <- B) is a range for t j , t n i f
Β is a range for t t , t ^ .

Definition 55
Let D be an atom with predicate 'dorn' and let
D & P b e a p r o o f .

D is redundant in the proof D & Ρ i f Ρ is a range
for all terms occurring in D.

The following concept gives rise to avoid the dom-

predicates in queries.

Definition 5.6
A formula F is constructively domain independ
ent (cdi) i f for all constructive proofs Ρ of F, the
proofs of domain facts contained in Ρ are redun
dant in P.

The following proposition gives a syntactical characteriza

tion of constructively domain independent formulas. Note

the occurrences of the ordered conjunction '&*.

4 4

Proposition 5.4
Constructively domain independent (cdi) for
mulas are recursively characterized as follows:

• An atom A [x l v . . , x n] is a cdi formula.

• The conjunction (Λ or &) of two cdi for
mulas is a cdi formula.

• The disjunction of two cdi formulas with
same free variables is a cdi formula.

• I f Fj is a cdi formula and i f F 2 is any
formula whose free variables are all free
in F j , then Fj & F 2 is a cdi formula.

• 5x F is a closed cdi formula i f F is an
open cdi formula.

• I f Fj is a cdi formula with free variable χ
and i f F 2 is any formula with no free vari
able other than x, then Vx - . [F j & -nF2]
is a cdi formula.

According to Proposition 5.4 the rule

p (x) < - q (x) & - , r (x)

is cdi, while the rule

p(x) <- -tf(x) & q(x)

is not. Prolog programmers are used to make variables in

negative goals occunring in a preceding positive literal as

well, in order to ensure correct runs of programs. Proposi

tion 5.4 gives a logical motivation to this practice.

Given a CPC theory C, let C c d i denote the calculus ob

tained by removing the domain axioms from C.

Lemma 5.1
Let F[x] be an open formula with free variable x.

I f F[x] is a range for χ then Vx F[x] => dom(x)
holds.

Proposition 5.5
Let S be a finite set of cdi formulas satisfying the
conditions imposed on proper axioms of a CPC.
Let C denote the CPC with proper axioms S.

Ccd[and C are constructively equivalent.

In [FAG 80], Fagin has studied the model-theoretic notion

'domain independent' proposed by Kuhns [KUH 67] under

the name 'definiteness*. Roughly, a formula F is domain

independent i f its valuation in a model depends only on the

extensions of the relations mentioned in F. The class

domain independent formulas is not solvable [DIP 69].

However, the constructivistic restrictions imposed on proof

implies the solvability of the class of constructively domain

independent formulas.

Corollary 5.3
The class of constructively domain independent
formulas is a solvable subclass of the domain in
dependent formulas.

Other solvable classes of domain independent formulas

have been proposed: Range-restricted formulas [NIC 81],

evaluable formulas [DEM 82,VGT 87], and allowed

formulas [LT 86, VGT 87, SHE 88]. For each formula in

one of these classes it is possible to construct an equivalent

cdi formula [BRY 88b].

5.3. The Generalized Magic Sets procedure
extends to non-Horn programs

The Generalized Magic Sets procedure [BR 87] - also

proposed under the name of Alexander procedure [R* 86] -

is a proof procedure for Horn logic programs with recursive

axioms. It is not based on SLDNF-resolution [LLO 84]. In

order to achieve a good efficiency in presence of huge

amounts of facts, i t is * set-oriented'. We show in this sec

tion how the concept of constructive proof and the con

ditional fixpoint procedure permit to extend the General

ized Magic Sets procedure to constructively consistent non-

Horn programs. By Corollaries 5.1 and 5.2 the Generalized

Magic Sets procedure therefore extends to stratified, locally

stratified, and loosely stratified programs.

In order to conform with the definition of the Generalized

Magic Sets procedure, we consider in this section - like in

Section 5.1 - rules whose bodies are literals or conjunc

tions. In addition, we assume that they are constructively

domain independent (cdi), i.e., rule's bodies are conjunc

tions, some of them being ordered such that a negative

literal with a variable χ follows a positive literal

containing x.

45

The Generalized Magic Sets procedure answers a query on

a program with rule set R and fact set F by performing

three successive steps. First, the rules are specialized into a

set R a d of adorned rules. Second, the set of adorned rules

R a d is rewritten into a set R m g of rules intended for bottom-

up evaluation. Third, the fixpoint of the immediate con

sequence operator on R m g u F is computed.

The rule specialization R -» R a d of the first step and the

rule rewriting R a d -» R m g of the second step are formally

defined in [BR 87]. Here, we recall them on examples.

Adorned rules are obtained by ordering the body literals.

The (partial) ordering is chosen for optimally propagating

the bindings of variables from the head of the rule back

wards. Consider for example the rule:

p(x,y)<-q(x,z)Ar(z,y)

The ordering q(x,z) & r(z,y) is appropriate in presence of a

goal such as ' p i a ^ y since the binding x/a is transmitted to

the first body literal. As opposed, the ordering r(z,y) &

q(x,z) is preferable for the goal 'pix^a) ' .

In order to permit different orderings depending on the in

stantiation pattern of the head, adorned predicates are intro

duced. A binary predicate 'p ' for example induces adorned

predicates like *p b f \ where 'b* (T , resp.) denotes a bound

(free, resp.) argument. For example, the rule

p(x,y) < - r(z,y) Λ q(x,z)

induces - among others - the adorned rule

Ρ ^ (χ , γ) ^ ς Β ί (χ , ζ) & ^ (ζ , γ)

The adorned rules are specialized forms of the original

rules.

According to Proposition 5.4, non-Horn cdi rules contain

ordered conjunctions. In order to preserve cdi, the reor

dering of body literals has to respect the ordered conjunc

tions. Under this condition, we have:

Proposition 5.6
I f R is a set of cdi rules, then the rules in R a d are
cdi.

The second step of the Generalized Magic Sets procedure

generates from R a d a set R m g of rules of two kinds. First,

R m g contains magic rules representing the encountered sub-

goals in a backward - or top-down - evaluation of the

adorned rules. For example, the rule

p b f (x ,y) < - q b f (x,z) & ι**(ζ,γ)

yields three magic predicates 'magic-p b f \ 'magic-q b f \ and

'magic-r**'.

It induces the two magic rules

magic-q b f(x,z) <— magic-p b f(x,y)

magic-r b f(z,y) < - magic-p b f(x,y) & q b f(x,z)

In fact only 'b ' variables are kept in magic-predicates: For

example, 'magic-p b f(x,y)' should be replaced by

*magic-p b f(x)\ The magic rules of our example are there

fore:

magic-q b f(x) < - magic-p b f(x)

magic-r b f(z) < - magic-p b f(x) & q b f(x,z)

Queries induce ground magic facts, called seeds. The query

'p(a,x)' induces for example the seed 'magic-p b f(a)\

The second type of rules in R m g are modified versions of

the adorned rules. These versions are obtained by inserting

magic atoms in the rules of R a d for constraining the instan

tiations. For example, the rule

p b f (x , y) < - q b W) & i * W
is rewritten into

p b f (x,y) < - magic-p b f(x) & magic-q b f(x) & q(x,z) &

magic-r^iz) & r(z,y)

The rewriting R a d <— R m g can easily be extended to non-

Horn rules by processing negative literals like positive

ones. For example, the rule

ρ * (χ) « - ς * (χ) & - * * (ζ)

induces the same magic atoms and magic rules as does the

Horn rule

It is therefore rewritten into

p b f (x ,y) <r- magic-q b f(x) & q b f(x,z) & magic-r b f(z) &

- ^ f (z)

Assuming this extension of the rewriting R a d - » R m g , we

have:

46

Proposition 5.7
I f R a d is a set of cdi rules, then the rules in R m g

are cdi.

As it has been often noted, only the first of the two rewrit-

ings R - » R a d -> R m g preserves stratification. However,

we show below that both preserve constructive consistency.

By Corollary 5.1 this suffices to conclude to the correctness

of the Magic Sets transformation for non-Horn logic

programs.

The technique we use for proving that both rewritings

preserves constructive consistency, consists in transforming

proofs in R a d and in R m g into proofs in R.

Lemma 5.2
A proof Ρ in R a d induces a proof in R by replac
ing in Ρ the adorned predicates by the cor
responding non-adorned predicates. A proof Ρ in
R m g is reduced into a proof in R a d by pruning Ρ
from proofs of magic atoms.

Proposition 5.8
Let R be a set of rules and F a set of facts. I f
R u F is constructively consistent then R a d u F and
R m g u F are constructively consistent.

The third step of the Generalized Magic Sets procedure,

namely the computation of the fixpoint of R m g u F , can be

performed by applying the conditional fixpoint procedure

of Section 4. I f R and therefore R m g contains function sym

bols, the conditional fixpoint procedure as defined in [BRY

88a] must be applied.

In [BB* 88], Balbin, Meenakshi, Port, and

Ramamohanarao have proposed to modify the Magic Sets

rewriting in order to preserve stratification. They define a

* structured' bottom-up procedure applicable to stratified

programs. Kerisit proposes a similar method in his PhD

thesis [KER 88]. Kerisit's rewriting is simpler than the

other one. It generates programs that are not always

stratified but satisfy a condition called 'weak stratification'.

Kerisit defines a 'layered' bottom-up procedure for weakly

stratified programs. The modified rewritings defined in

these reports do not seem to extend to non-stratified con

structively consistent programs.

It is not clear i f an approach always permits better perfor

mance than another on stratified programs. Because of its

simplicity, the modified rewriting proposed by Kerisit

seems to be preferable to the other one. The modified

rewritings generate significantly more additional predicates

than the Magic Sets rewriting. This certainly increases the

complexity of the bottom-up evaluation. The bottom-up

procedure can however make benefit from the weak

stratification for not delaying the evaluation of negative

premisses as long as the conditional fixpoint procedure

does.

Other recursive query processing procedures extend to

stratified programs as well. Kemp and Topor [KT 88], and

independently Seki and Itoh [SI 88] have recently defined

such extensions for the twin procedures OLD-resolution

with tabulation [TS 86] and QSQR/SLD-resolution [VIE

87]. In [PRZ 89], these procedures have been further ex

tended, relying on a concept of 'dynamic stratification', for

processing all logic programs that have a well-founded

model.

6. Conclusion

The purpose of this article was twofold. It was first to show

that the features of logic programming that seem unconven

tional from the viewpoint of classical logic can be nicely

explained in terms of constructivistic logic. This reading of

logic programming is usually more intuitive to people not

trained in formal logic. I t provides logical foundations for

features often considered purely procedural. The second

purpose of this paper was to apply the constructivistic for

malization of logic programming for establishing new

results of practical interest.

We first recalled the complementary roles of model and

proof theory for conveying the semantics of logic

programs. Then, we showed how constructivism and logic

programming are connected. We proposed a constructivis

tic axiomatic system, the Causal Predicate Calculus (CPC),

as a proof-theoretic formalization of non-Horn programs. A

bottom-up proof procedure, the conditional fixpoint proce

dure, was defined for CPC.

4 7

Next, we used this formalization of logic programming in

order to establish practical results. First, we have given a

simple and intuitive motivation for the concepts

'stratification* and * local stratification': They are sufficient

conditions of constructive consistency. Second, we intro

duced the notion 'constructive domain independence',

which gives a logical explanation of the need to 'keep

ordered' certain conjunctions in logic programs. I t also

constitutes a practical basis for introducing quantifiers into

logic programs and queries. Finally, we showed how the

concept of constructive proof and the conditional fixpoint

procedure permit to extend the Magic Sets procedure to

constructively consistent non-Horn logic programs.

Being independent from any proof procedure, the construc

tivistic formalization of logic programming should help in

investigating various query evaluation techniques. It is

indeed important to also investigate other evaluation

strategies than the one of Prolog and SLDNF-resolution.

The constructivistic reading of logic programming seems

promising for studying 'logical optimization* techniques.

Roughly, we mean methods that translate queries or rules

into equivalent expressions, on the basis of logical rules or

of integrity constraints. The main problem encountered in

defining such rewritings is to control the number of

generated expressions. The constructivistic restriction of

logical equivalence seems to correspond to useful rewrit

ings. Finally, a constructivistic understanding of logic pro

gramming is surely applicable to the generation of intuitive

explanations.

7. Acknowledgement

We would like to thank Hervi Gallaire and Jean-Marie

Nicolas for their support. We are indebted to them and to

Christoph Freytag, Rainer Manthey, and Mark Wallace for

helpful comments on an earlier draft.

8. References

[A* 88] K.R. Apt, H.A. Blair, and A. Walker. Towards

a theory of declarative knowledge. Foundations of Deduc

tive Databases and Logic Programming. Morgan Kauf

mann, Los Altos, CA, 1988, pages 89-148.

[BB* 88] I . Balbin, K. Meenakshi, G. Port, and

K. Ramamohanarao. Efficient Bottom-Up Computation of

Queries on Stratified Databases. Technical Report,

University of Melbourne, Dep. of Computer Science, 1988.

[BC* 86] F. Bancilhon, D. Maier, Y . Sagiv, and

J. Ullman. Magic sets and other strange ways to implement

logic programs. In Proc. 5th ACM SIGMOD-SIGACT Sym

posium on Principles of Database Systems. 1986.

[BF88] N . Bidoit and C. Froidevaux. More on

stratified default theories. In Proc. of the 8th European

Conf. on Artificial Intelligence, pages 492-494. Munich,

West Germany, August, 1988.

[BIS 67] E. Bishop. The Foundations of Constructive

Analysis. McGraw H i l l , New York, 1967.

[BOJ 86] D. Bojadziev. A constructive view of Prolog.

Journal of Logic Programming 3(l):69-74,1986.

[BR 87] C. Beeri and R. Ramakrishnan. On the power

of magic. In Proc. 6th ACM SIGACT-SIGMOD-SIGART

Symposium on Principles of Database Systems, pages

269-283. 1987.

[BRO 54] L.E.J. Brouwer. Points and spaces. Canadian

Journal of Mathematics 6:1-17,1954.

[BRY 88a] F. Bry. Logic Programming as Construc

tivism: A Formalization and its Application to Databases.

Research Report IR-KB-58, ECRC, Dec., 1988. Full ver

sion of this paper.

[BRY 88b] F. Bry. Logical Rewritings for Improving the

Evaluation of Quantified Queries. Research Report IR-

KB-56, ECRC, Nov., 1988. Submitted for publication.

[CAL79] A. Calder. Constructive mathematics.

Scientific American 241(4): 134-143, Oct., 1979.

[CH85] A .K . Chandra and D. Hard. Horn clause

queries and generalizations. Journal of Logic

Programming 1(1):1-15,1985.

48

[CHU56] A. Church. Introduction to Mathematical

Logic, Vol. 1. Princeton University Press, Princeton, NJ,

1956.

[CL 73] C.L. Chang and R.C.T. Lee. Symbolic Logic

and Mechanical Theorem Proving. Academic Press, New

York, 1973.

[CLA 78] K .L . Clark. Negation as failure. Logic and

Databases. Plenum Press, New York, 1978, pages

293-322.

[DEM 82] R. Demolombe. Syntactical Characterization

of a Subset of Domain Independent Formulas. Technical

Report, ONERA-CERT, Toulouse, France, 1982.

[DF 87] P. Dcransart and G. Ferrand. An operational

formal definition of Prolog. In Proc. Symp. on Logic

Programming, pages 162-172. San Francisco, CA, 1987.

[DIP 69] R.A. D i Paola. The recursive unsolvability of

the decision problem for the class of definite formulas.

Journal of the ACM 16(2):324-327, Apr., 1969.

[DP 60] M . Davis and H . Putnam. A computing proce

dure for quantification theory. Journal of the ACM

7:201-215, 1960.

[FAG 80] R. Fagin. Horn clauses and database depen

dencies. In Proc. 12th Ann. ACM Symp. on Theory of

Computing, pages 123-134. 1980.

[FIT 69] M . Fitting. Intuitionistic Logic, Model Theory

and Forcing. North-Holland, Amsterdam, 1969.

[FIT 85] M . Fitting. A Kripke-Kleene semantics for

logic programs. Journal of Logic Programming

4(4):295-312, 1985.

[GOD 58] K. Gödel. Über eine bisher noch nicht

benützte Erweiterung des finiten Standpunktes. Dialectica

12:280-287, 1958.

[GAB 85] D . M . Gabbay. N-Prolog: An extension of

Prolog with hypothetical implication. I I . Logical foun

dations, and negation as failure. Journal of Logic

Programming 4(4):251-283, 1985.

[GAB 86] D . M . Gabbay. Modal provability foundations

for negation by failure, preprint, Dpt of Computing, Im

perial College of Sc. and Tech., 1986. Cited in [SHE 88].

[GR 84] D.M. Gabbay and U . Reyle. N-Prolog: An ex

tension of Prolog with hypothetical reasoning. Journal of

Logic Programming 4(4):318-355,1984.

[GS 86] D .M. Gabbay and M.J. Sergot. Negation as

inconsistency. Journal of Logic Programming 1(1): 1-35,

1986.

[HEY 66] A. Hey ting. Intuitionism: An Introduction.

North-Holland, New York, 1966.

[HUE 80] G. HueL Confluent reduction: Abstract

properties and applications of term rewriting systems.

Journal of the ACM 27(4):797-821, Oct., 1980.

[KER 88] J.-M. Kerisit. La Methode d*Alexandre: une

Technique de Deduction. PhD thesis, Universite de Paris

V I I , June, 1988. See [KP 88] for a presentation in English.

[KP 88] J.-M. Kerisit and J.-M. Pugin. Efficient Query

Processing on Stratified Databases. Technical Report,

Bull research centre, Mai, 1988. Cited in [KER 88].

[KRE 65] G. Kreisel. Mathematical logic. Lectures on

Modern Mathematics - / / / . Wiley, New York, 1965, pages

95-195.

[KT 88] D.B. Kemp and R.W. Topor. Completeness of

a top-down query evaluation procedure for stratified

databases. In Proc. 5th Int. Conf. and Symp. on Logic

Programming, pages 179-194. 1988.

[KUH 67] J.L. Kuhns. Answering Questions by Com

puters - A Logical Study. Rand Memo R M 5428 PR, Rand

Corp., Santa Monica, Calif., 1967.

[LEW 85] H.R. Lewis. Cycles of Unifiability and

Decidability by Resolution. Research Report, Aiken Comp.

Lab., Harvard Univ., Cambridge, Mass., 1985.

[L L 0 84] J.W.Lloyd. Foundations of Logic

Programming. Springer, Berlin, New York, 1984.

[LT 86] J.W. Lloyd and R.W. Topor. A basis for

deductive database systems I I . Journal of Logic

Programming 3(l):55-67, 1986.

[NIC 81] J.-M. Nicolas. Logic for improving integrity

checking in relational databases. Acta Informatica

18(3):227-253, Dec., 1981.

[PRA65] D. Prawitz. Natural Deduction, a Proof

Theoretical Study. Almqvist and Wiksell, Stokholm, 1965.

49

[PRZ 88a] T.C. Przymusinski. On the semantics of

stratified deductive database and logic programs. Journal

of Logic Programming , 1988. invited paper, to appear.

[PRZ 88b] T.C. Przymusinski. On the declarative seman

tics of deductive databases and logic programs.

Foundations of Deductive Databases and Logic

Programming. Morgan Kaufmann, Los Altos, CA, 1988,

pages 193-216.

[PRZ 89] T.C. Przymusinski. Every logic program has a

natural stratification and an iterated least fixed point model.

In Proc. 8th ACM SIGACT-SIGMOD-SIGART Symp. on

Principles of Database Systems. Philadelphia, Pennsyl-

viana, March, 1989. In this book.

[QUI 70] W.V.O. Quine. Philosophy of Logic.

Prentice-Hall, Englewood Cliffs, NJ, 1970. cited in [BOJ

86].

[R* 86] R. Rohmer, R. Lescoeur, and J.-M. Kerisit.

The Alexander method, a technique for the processing of

recursive axioms in deductive databases. New Generation

Computing 4(3):273-285,1986.

[SHE 88] J.C. Shepherdson. Negation in logic program

ming. Foundations of Deductive Databases and Logic

Programming. Morgan Kaufmann, Los Altos, CA, 1988,

pages 19-88.

[SI 88] H . Seki and H . Itoh. A query evaluation

method for stratified programs under the extended CWA.

In Proc. 5th Int. Conf and Symp. on Logic Programming,

pages 195-211. 1988.

[TRO 77] A.S. Troelstra. Aspects of constructive math

ematics. Hanbook of Mathematical Logic. North-Holland,

Amsterdam and New York, 1977, pages 973-1052.

[TS 86] Η. Tamaki and T. Sato. OLD resolution with

tabulation. In Proc. 3rd Int. Conf. on Logic Programming,

pages 84-98. London, UK, 1986.

[ULL80] J. Ullman. Principle of Database Systems.

Computer Sc. Press, Rockville, M D , 1980.

[vEK 76] M . van Emden and R. Kowalski. The seman

tics of predicate logic as a programming language. Journal

of the ACM 23(4):733-742, Oct., 1976.

[VGE 88] A. Van Gelder. Negation as failure using tight

derivations for general logic programs. Foundations of

Deductive Databases and Logic Programming. Morgan

Kaufmann, Los Altos, CA, 1988.

[VGT 87] A. Van Gelder and R.W. Topor. Safety and

correct translation of relational calculus formulas. In Proc.

6th ACM SIGACT-SIGMOD-SIGART Symposium on Prin

ciples of Database Systems, pages 313-327. San Diego,

CA, 1987.

[VIE 87] L . Vieille. A database-complete proof proce

dure based on SLD-resolution. In Proc. 4th Int. Conf on

Logic Programming, pages 74-103. Melbourne, 1987.

[VIE 88] L . Vieille. Unpublished note. Nov., 1988.

5 0

