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Logic Programming as Constructivism: 

A Formalization and its Application to Databases 

Francis Bry 

ECRC, Arabellas*. 17,8000 München 81, West Germany 

uucp: ...fpyramid/ecrcvaxffb 

ABSTRACT The features of logic programming that 
seem unconventional from the viewpoint of classical logic 
can be explained in terms of constructivistic logic. We 
motivate and propose a constructivistic proof theory of 
non-Horn logic programming. Then, we apply this for
malization for establishing results of practical interest. 
First, we show that 'stratification can be motivated in a 
simple and intuitive way. Relying on similar motivations, 
we introduce the larger classes of 'loosely stratified' and 
'constructively consistent' programs. Second, we give a 

formal basis for introducing quantifiers into queries and 
logic programs by defining 'constructively domain 
independent* formulas. Third, we extend the Generalized 
Magic Sets procedure to loosely stratified and construc
tively consistent programs, by relying on a 'conditional 
fixpoini procedure. 

1. Introduction 

Though close to conventional reasoning, logic program

ming departs from classical logic in two respects. First, it 

confines reasoning to limited kinds of deductions. In par

ticular, indefinite statements like disjunctive or existential 

formulas cannot be derived from logic programs. Second, 

logic programming draws unconventional inferences by in

terpreting negation as failure. However, despite of non-

classical features, logic programming appears rather 

natural. Moreover, its unconventional reasoning features 

seem intuitively founded. 
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In this paper, we propose a constructivistic rationalization 

of logic programming. Constructivism is a school in logic 

that tries to reestablish certain parts of mathematics in more 

intuitive ways. There are many constructivistic theories. 

Some retain classical reasoning and confine it to certain 

types of deduction. Others rely on unconventional in

ference principles. Logic programming does both. We 

show that constructivism is surprisingly close to logic pro

gramming. The features of logic programming that are un

conventional from the classical viewpoint find immediate 

constructivistic explanations. 

A number of formalizations of logic programming have 

already been proposed. Chandra and Harel [CH 85], Apt, 

Blair, and Walker [A* 88], and Van Gelder [VGE 88] ex

press the semantics of Horn and non-Horn programs in 

terms of conventional logic models and fixpoint operators, 

following van Emden and Kowalski [vEK 76]. In [GR 

84, GAB 85], Gabbay and Reyle propose to extend Prolog 

with non-classical, hypothetical implications. In [GS 86], 

Gabbay and Sergot advocate for replacing negation as 

failure by the classical logic treatment 'negation as 

inconsistency*. Fitting [FIT 85] relies on a three-valued 

logic for formalizing the behaviour of logic programs that 

either fail, or succeed, or fall into infinite backtracking. A 

modal logic interpretation of negation as failure is 

described by Gabbay in [GAB 86], etc. The different read

ings contribute to enlighten various aspects of logic pro

gramming. 

The resemblance between logic programming and con-



structivistic logic has already been noticed by Bojadziev. In 

a short article [BOJ 86], he gives a constructivistic inter

pretation of Horn programs and negative goals. Remarks 

with constructivistic flavour can be found in most studies 

devoted to negation in logic programming. However, we do 

not know any previous proposal to interpret non-Horn logic 

programs in constructivistic terms and to exploit this inter

pretation. We show that a constructivistic reading of logic 

programming answers the question of the declarative 

semantics of non-Horn programs in a simple and natural 

manner. In addition, we apply this reading to solving prac

tical problems of various kinds. 

In this paper, because of space limitations, we do not give 

proofs and we consider function-free logic programs. 

However, the constructivistic rationalization of logic pro

gramming we introduce here applies also to logic programs 

with functions. In particular, i t gives very intuitive explana

tions of necessary requirements such as well-foundedness 

or local stratification [PRZ 88a, PRZ 88b]. The proofs, a 

treatment of logic programs with functions, and connected 

results can be found in the full version [BRY 88a] of this 

paper. 

The first part of this paper proposes a constructivistic 

axiomatic system, which we call Causal Predicate Calculus 

(CPC), as a proof-theoretic formalization of non-Horn logic 

programs. In order to establish the factual decidability of 

CPC, we extend the fixpoint procedure for Horn 

programs [vEK 76] into a proof procedure for CPC, which 

we call 'conditional fixpoint\ by introducing some con

ditional reasoning. We prove the equivalence between the 

proof-theoretic reading of non-Horn programs with CPC 

and the model-theoretic one by Apt, Blair, Walker [A* 88] 

and Van Gelder [VGE 88]. 

The second part of this paper is devoted to applying the 

constructivistic axiomatization of logic programming. We 

prove results of practical consequence in three concerns: 

For motivating the syntactical restrictions imposed on logic 

programs in simple and intuitive manners; for extending 

logic programs with new features; and for proving results 

on certain database query evaluation methods. 

More precisely, we show that stratification [A* 88, VGE 

88] and local stratification [PRZ 88a, PRZ 88b] are suf

ficient conditions of 'constructive consistency', i.e., consis

tency in CPC. We introduce the class of 'loosely stratified' 

programs. This property, which is less stringent than 

stratification and local stratification, appears to be more 

convenient for practical use. Like stratification but unlike 

local stratification, loose stratification can be checked with

out rule instantiation. We establish, for stratified programs, 

the equivalence between the proof-theoretic formalization 

with CPC and the model-theoretic one proposed in [A* 

88, VGE 88]. 

We then consider queries with quantifiers. We introduce 

the concept of 'constructive domain independence* (cdi) as 

a proof-theoretic counterpart to the model-theoretic notion 

of 'domain independence' studied by Fagin [FAG 80] and 

proposed by Kuhns [KUH 67] under the name of 

'definiteness'. The new concept 'constructive domain 

independence' refines and formally motivates syntactical 

properties previously considered, such as 'safety' intro

duced by Ullman [ULL 80], 'range-restriction' due to 

Nicolas [NIC 81], or 'allowedness' investigated by 

Clark [CLA 78], Lloyd and Topor[LT 86], and 

Shepherdson [SHE 88]. It gives a logical, constructivistic 

explanation of the need to keep ordered certain conjunc

tions in logic programs, a feature traditionally considered 

non-logical and procedural. As opposed to the classical 

domain independence, the constructive domain indepen

dence is a decidable and syntactically recognizable 

property. It therefore constitutes a practical basis for intro

ducing quantifiers into logic programs and queries. 

In logic, proofs are declaratively defined, i.e., proofs are 

considered independently from any proof procedure. The 

definition of CPC induces a declarative definition of con

structive proofs. We make use of this definition and of the 

conditional fixpoint procedure for extending in a quite 

simple manner the Generalized Magic Sets procedure [BC* 

86, BR 87] - a proof procedure for recursive logic programs 

also proposed under the name of Alexander procedure [R* 

86] - to constructively consistent non-Horn programs. More 

precisely, we show that, although the rewritings of the 
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Generalized Magic Sets procedure compromise stratifica

tion, they preserve constructive consistency. This gives rise 

to apply the conditional fixpoint procedure to evaluate the 

rewritten programs. 

The paper is organized as follows. Section 1 is this intro

duction. Following [vEK 76], Section 2 shortly sum

marizes how both model theory and proof theory convey 

the declarative semantics of logic programming. Section 3 

gives a brief outline of the principles of constructivism. In 

Section 4, we develop the Causal Predicate Calculus (CPC) 

for formalizing logic programming. We apply this for

malism to practical problems in Section 5 . In Section 6 we 

summarize the main results of the paper and indicate direc

tions for further research. 

2. Model-theoretic and proof-theoretic semantics 

Given certain axioms, mathematical logic distinguishes be

tween two complementary issues: The interpretation of the 

axioms by some classes of mathematical structures, and the 

construction of proofs from the axioms. The first issue is 

called model theory, the second proof theory. Intuitively, 

model theory is concerned with the study of the Mworld(s)" 

described by the axioms while proof theory is devoted to 

the techniques of inferring new properties from those ex

plicitly stated by the axioms. 

In logic programming, both the model theoretic and the 

proof theoretic readings are useful - i f not necessary - for 

conveying the semantics attached to sets of axioms. This 

has been observed by van Emden and Kowalski in [vEK 

76]. In order to promote the language of Horn clauses as a 

programming language, they have investigated on the one 

hand the close correspondence between denotational 

semantics of programs and model theory, and between 

operational semantics and proof theory on the other hand. 

Some logicians use the word 'semantics' in place of model 

theory and call 'syntax' the proof theory - see, e.g., [CHU 

56]. Instead, we give here to the term 'semantics' the same 

meaning as in programming language theory. 

The denotational semantics of a program describes the ob

jects and structures that are consulted or constructed by the 

program. The operational semantics provides with a 

description of the operations performed by the program, 

without necessarily defining the implemented procedure. 

Viewing logic as a programming language raises two ques

tions: "What is a proof?" and "How to generate proofs?", 

i.e., the complementary questions of giving declarative and 

procedural definitions to the operational semantics. 

Despite a fallacious appearance of simplicity, non-Horn 

programs raise a severe difficulty: Their operational seman

tics - or underlying proof theory - cannot be defined in 

classical logic. As opposed to Horn programs, they perform 

inferences that do not always conform to classical logic and 

conventional reasoning. For example, the rules ρ <- r Λ - i q 

and q * - r Λ - φ are not identically interpreted though 

equivalent in classical logic. Conveying the same non-

classical interpretation of implications, constructivism is 

appropriate to formalize declaratively the operational 

semantics of non-Horn programs. 

A procedural, proof-theoretic treatment of non-Horn 

programs has been developed by Lloyd in terms of the 

SLDNF-resolution proof procedure [LLO 84]. As opposed, 

the proof-theory we propose here is independent of any 

procedure. I t is declarative and therefore easily applicable 

to proof procedures that are not based on SLDNF-

resolution, e.g., the Generalized Magic Sets [BC* 86, BR 

87] or Alexandre procedure [R* 86]. 

3. Constructivism: An outline 

A brief outline of the principles of constructivistic logic is 

proposed in order to show that it surprisingly resembles 

logic programming. Refer to [TRO 77] for a detailed over

view of constructivism in mathematics. 

There is no clear-cut definition of constructivism. Accord

ing to Quine [QUI 70], constructivism can be broadly 

described as "intolerance of methods that lead to affirming 

the existence of things of some sort without showing how 

to find one". Constructivism does not allow indefiniteness 

in proofs. It rejects proofs affirming the truth of Fj ν F 2 
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without telling which one of Fj and F 2 holds. Similarly, 

indefinite existence conveyed by existential quantifications 

is not constructively provable: A constructive proof of 

3x F[x] does exhibit a term satisfying F. 

A classical example of non-constructive reasoning is the 

following proof of the existence of irrational numbers ρ and 

q such that p q is rational: 

is either rational or irrational. I f it is ra

tional, take ρ = q = V5 which is known to be 

irrational. Hence, p q is rational. I f 

is irrational, take ρ = (V2)̂  and q = V5, 

hence p q = 2 is rational. 

This proof is not constructive because it draws con

sequences from a disjunctive hypothesis - is either 

rational or irrational - which is not based on established 

facts - the proof does not show whether is rational or 

not. In other words, constructivism rejects excluded mid

dle. 

Examples of constructive proofs are easily found in math

ematics and computer science: It is a general inclination to 

prefer constructive proofs to non-constructive ones. The 

results given in this paper are all constructively established 

(for not debating on the legitimacy of non-constructed 

foundations for a constructivistic theory). 

It is interesting to recall that the introduction of non-

constructive proofs into mathematics led to controversies. 

In fact, until the end of the 19 t h century and Cantor's set 

theory, mathematics was constructivistic. "This is not 

mathematics. It is theology", said a mathematician about 

the non-constructive techniques introduced by 

Cantor [CAL 79]. Though these techniques are now con

sidered as providing "a paradise the mathematicians do not 

want be driven from", as Hilbert said, contemporary math

ematicians revive constructivism, with the aim to provide 

"realistic" and intuitive motivations to classical results -

see, e.g., [BIS 67]. 

The constructivistic interpretation of disjunctive and ex

istential statements corresponds to the practice in logic pro

gramming. Logic programming prevents the derivation of 

indefinite information by forbidding disjunction and ex

istential quantification in heads of rules. A constructivistic 

view of logic programming is interesting because it is 

usually more intuitive to people not trained in formal logic, 

like most of the database and expert system users. 

Assuming an intuitive understanding of the proofs of 

ground atomic formulas, constructive proofs can be formal

ized as follows [BRO 54, KRE 65]: 

Definition 3.1 

A. Closed formulas: 

1. A constructive proof of F J A F 2 consists in a 
constructive proof of Fx and a constructive 
proof of F 2 . 

2. A constructive proof of F j v F 2 consists in a 
constructive proof of Fx or in a constructive 
proof of F 2 . 

3. A constructive proof of Fj => F 2 consists in 
specifying a procedure Τ which transforms 
any constructive proof Pj of Fx into a con
structive proof TOPj) of F 2 . 

4. - iF is defined as F => false. 

5. I f the variable χ ranges over the domain D, a 
constructive proof of Vx F[x] is a procedure 
Τ which, on application to any pair (t,p) of a 
term t and a constructive proof ρ that t€D, 
yields a constructive proof T(t,p) of F[t]. 

6. I f the variable χ ranges over the domain D, a 
constructive proof of 3x F[x] consists in a 
term t, in a constructive proof of teD, and 
then in a constructive proof of F[t]. 

B. Open formulas: 
A constructive proof of an open formula 
F[xj, . . . ,x n ] with free variables χ ρ x n ranging 
over the domain D consists in a tuple (tj , . . . ,^) of 
terms, in η constructive proofs of t̂ e D, and then 
in a constructive proof of Fft j , . . . ,^] . 

Though Definition 3.1 seems rather natural, i t modifies 

considerably the notion of proof of an implication. 

Moreover, it strongly restricts proofs of disjunctions and of 

quantified expressions. 

From a constructivistic viewpoint implications are not 
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"hidden disjunctions". The formulas ρ => q and - φ ν q are 

not constructively equivalent. The same holds for 

r A —·ρ => q and r Λ - . q => p. Constructivism is causalistic: 

Implications are viewed as inferring new information from 

already proved information, like in logic programming. In 

constructivistic logic, the formula - φ => ρ is considered 

equivalent to false, according to the intuition that it is im

possible to transform a proof of - ip into a proof of p. 

From a constructivistic viewpoint, a disjunction ρ ν - φ is 

not necessarily true, in case both ρ and - ip are not construc

tively provable. Proofs of quantified formulas are con

siderably constrained. Constructive proofs of quantified 

expressions reduce to proofs of ground expressions. This 

corresponds to the logic programming practice. 

Note finally that Definition 3.1 induces the concept of 

'ordered conjunction'. For example, a constructive proof 

of an open formula F[x] consists in a constructive proof 

that a term t belongs to the domain followed by a construc

tive proof of F[t]. The need to keep ordered certain con

junctions in logic programs for avoiding incorrect evalua

tions and undesirable behaviours is classically viewed as a 

non-logical, procedural feature. In fact, it can be explained 

in logic by the restriction to constructive proofs. 

Restricting the concept of proof requires in turn either to 

restrict the axioms, the logical axioms as well as the proper 

axioms, or to rely on non-classical inference principles. 

Adopting modus ponens - i f formulas Fj and Fj => F 2 hold, 

then the formula F 2 is provable - imposes for example to 

reject axioms such as: 

A j : p = > q v r 

A 2 : Vx p(x) => Vy q(x,y) 

Indeed, i f ρ is provable, Ax would induce by modus ponens 

q v r . Similarly, i f p(t) holds, then modus ponens permits to 

derive Vy q(t,y) from A 2 . 

Various constructivistic formal systems have been 

proposed, e.g., [GOD 58, PRA 65, FIT 69]. Some of them 

rely on non-classical rules of inference. Others, e.g., [HEY 

66], allow classical inference principles and express the 

constructivistic restriction by constraining the syntax of the 

axioms. Logic programming does both. It has the classical 

inference principle modus ponens and constrains the syntax 

of the axioms. It has negation by failure as an unconven

tional inference principle. 

The following syntactical constraints on the axioms 

guarantee constructivism under modus ponens: 

• Definiteness: 
No axiom an no conjunct of an axiom is a 
disjunction. No axiom and no conjunct of an 
axiom is an existential formula. 

I f Fx => F 2 is an axiom or a conjunct of an 
axiom, then F 2 contains no disjunctions, no 
implications, and no quantified formulas. 

I f Q J X J . . . Q ^ Fj => F 2 (Qj denotes either V or 
3) is an axiom or a conjunct of an axiom, then 
Qj = V i f x{ is free in in F 2 , and F 2 contains no 
disjunctions, no implications, and no quan
tified formulas. 

• Positivitv of consequents: 
The consequent F 2 of an implicative conjunct 
Fj => F 2 or Qi* i . . .Q n x n F i => F 2 of an axiom 
is neither a negated formula, nor a conjunction 
containing a negated formula. 

These conditions are familiar to logic programmers. Note 

that they do not impose that the axioms are safe [ULL 80], 

range-restricted [NIC 81], or allowed [LT 86,VGT 

87, SHE 88]. They do not preclude axioms that are ground 

negative literals, or (mutually) recursive axioms, or im

plicative axioms with negations in their premisses. 

Lemma 3 Λ 
A formula satisfying the conditions of definite
ness and of positivity of consequents is of one of 
the following types: 

• Implicative formula 

F 1 = > F 2 

where Fx is a closed formula and F 2 is a 
ground atom or a conjunction of ground 
atoms. 

• Quantified implicative formula 

Q l x l » Q n x n F l = > F 2 
where Qt = V i f x{ is a free variable in F 2 , 
and where F 2 is an atom or a conjunction 
of atoms. 

• Ground literal. 
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• Conjunction of formulas of the above-
mentioned types. 

In the rest of the paper, we shall make use of the following, 

slightly extended definition of a rule, that allows negations, 

quantifiers and disjunctions in bodies of rules. 

Definition 3.2 
A rule is an expression of the form 

A ^ , . . . ^ ^ , . . . ^ ] < - F ^ , . . . ^ ^ . . . ^ ] 

where the head of the rule 

A[xj,...,x n,Zj,...,Zp] 

is an atom in which the x ^ and the ZjS are free 
and where the body of the rule 

is a formula in which the x^ and the yjS are free. 

It denotes the implicative formula: 

V x 1 . . . V x n V y 1 . . . V y m V z 1 . . . V z p 

F [ x 1 , . . . , x n f y l f . . M y m ] => A ^ , . . . ^ ^ 

A rule is a Horn rule i f its body does not contain 
atoms with negative polarity. A fact is a ground 
atom. 

Proposition 3.1 
A set of axioms satisfying the conditions of 
definiteness and of positivity of consequents is 
constructively equivalent to a set of rules and 
ground literals. 

For the sake of simplicity, we shall assume in the sequel 

that axioms satisfying the conditions of definiteness and of 

positivity of consequents are always rules or ground 

literals. By Proposition 3.1 there is no loss of generality. 

4. The Causal Predicate Calculus 

Though imposing many of the syntactical restrictions of 

logic programs, the conditions of definiteness and of 

positivity of consequents, or equivalently the restriction to 

facts and rules, do not suffice to formalize non-Horn logic 

programming. Logic programming conforms in addition to 

the following principles: 

1. Negation as failure principle: -»F holds i f F is 
not provable. 

2, Domain closure principle: Variables range 
over the terms occurring in the axioms or in 
provable facts. 

3. Decidability principle: Facts are effectively 
decidable, i.e., a procedure that decides 
whether a fact is provable or not exists and is 
known. 

The following axiomatic system expresses these principles 

in constructivistic logic. We call it Causal Predicate Cal

culus (CPC). It formalizes the operational semantics of 

non-Horn logic programs independently from any proof 

procedure. 

Upper case characters denote formulas. The symbol *&* 

denotes ordered conjunction: F & G means that the proof of 

F has to precede that of G. Proofs have to be understood 

according to Definition 3 . 1 . Legal inferences are expressed 

as usual with the symbol Ί - ' . 

• Inference principles: 
1 . modus ponens 

2. negation as failure 

• Axiom schemata: 

1 . - « F A F I- false 

2. - F = > F I - false 

3 . F I - F v G 

4. G I - F v G 

5 . F A G I - F 

6. F A G I- G 

7. dom(t )&F[t ] I - 3xF[x] 

8. - . (3x- ,F[x]) I - VxF[x] 

9. V x F [ x ] I - F[t] (t free for χ in F) 

• Conditions on the proper axioms: 
The proper axioms are rules or ground literals. 

• Domain axioms: 
For each n-ary predicate ρ occurring in a proper 
axiom, there are η axioms ( i = 1 , n ) : 

d o m i x ^ ^ p i x j , . . . ^ , . . . ^ ) 

• Finiteness Principle: 
A l l proofs are finite. 
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The first axiom schema and the finiteness principle are 

usually not made explicit. They are implicitly assumed in 

all axiomatic systems. Here, we make them explicit for two 

reasons. First, we would like to emphasize that false is 

provable in constructivistic logic not only with Schema 1 

but also with Schema 2, as opposed to classical logic. 

Second, the finiteness principle induces severe restrictions 

on logic programs with functions [BRY 88a]. 

We shall call *logic program' a finite set of rules and 

ground facts. Given a logic program LP, its domain, noted 

*dom(LP)\ is by definition the set of terms occurring in 

dom-facts that are constructively provable in CPC with 

proper axioms LP. The domain of a logic program is a 

subset, possibly strict, of its Herbrand universe. Therefore, 

the domains of function-free logic programs are finite. It 

follows that universally quantified and negated formulas 

can be decided in finite time in any function-free logic 

program. 

In CPC disjunctive statements like ρ ν - ip are true, thanks 

to negation as failure. Logic programs are CPCs, but not 

all CPCs are logic programs since CPCs may have negative 

literals as axioms. Horn programs are consistent since nei

ther Schema 1 nor Schema 2 can apply. Similarly, Schema 

1 is irrelevant to non-Horn logic programs. 

Provided one knows that the proper axioms are consistent, 

e.g., because of their syntactical structure, then the axiom 

schemata 1 and 2 are useless. They are usually omitted by 

logicians who always assume consistency of the proper 

axioms. They are needed - at least for theoretical reasons -

in logic programming and databases where such assump

tions cannot always be made. In Section 5.1, we show that 

the properties Stratification' and 'local stratification' en

sure consistency of logic programs, thus permitting to dis

card Schema 2. 

According to the definition of a rule and to the schemata 7 

and 8, the rule 

p (x )< - - , q (x )Ar (x ) 

would be evaluated like the rule 

p(x) < - dom(x) & [-iq(x) Λ Γ (Χ) ] 

This is inefficient since 'r(x) ' is a more restricted range for 

x. In Section 5.2 and in [BRY 88b], we show how to avoid 

the domain predicates. 

We conclude this section by introducing a proof procedure, 

which we call 'conditional fixpoint', in order to establish 

the factual decidability of CPC with function-free axioms. 

The procedure relies on a 'conditional immediate 

consequence' operator T c which we define first, 

In presence of non-Horn rules, the immediate consequence 

operator Τ [vEK 76] is non-monotonic [A* 88, VGE 88]. 

We restore monotonicity with T c by introducing some con

ditional reasoning. Instead of facts, conditional statements 

are obtained by delaying the evaluation of negative literals. 

Consider for example the rule 

p(x) * - q(x) A -nr(x) 

I f a fact q(a) holds, delayed evaluation of -Tr(a) yields the 

conditional statement 

p(a) <—>r(a) 

T c is the immediate consequence operator that generates 

facts from Horn rules, and conditional statements from 

non-Horn rules. 

We make use of the following notations in the definition of 

T c . Given a conjunction of literals B , we shall denote by 

*pos(B)* ('neg(B)', resp.) the conjunction of all positive 

(negative, resp.) literals in B. I f there is no positive 

(negative, resp.) literals in B, then pos(B) (neg(B), resp.) 

reduces to true. We shall call 'conditional statement' a 

ground rule the body of which is a negative literal or a 

conjunction of negative literals and of true. 

Definition 4.1 
The conditional immediate consequence TC(LP) 
of a logic program LP is the set of all ground 
rules 

Η σ < - neg(Ba) A C J A . . . Λ C n 

that verify the conditions: 
• (Η B) € LP 

• σ is a substitution of terms in dom(LP) 
for variables in the rule Η < - Β 

• pos(Ba) = Ax A ... Λ \ (n > 0) and for 
each i = 1, ..., η either there is a con
ditional statement Aj <- Ci in LP, or 
C{ = true and Κχ e LP. 
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We recall that an operator Γ is said to be monotonic if: 

V S J V S J Syc:S2 => r C S ^ c H S j ) 

We shall use the notations: 

rTO(S) = S 

rT(n+l)(S) = r ( rTn(S) ) u r t n ( S ) (neN) 

rTco(S) = u k e N r t k ( S ) 

In other words, r T l ( S ) denotes the set S augmented by the 

conditional immediate consequences that are computable 

from S. 

Finally, we recall that a least fixpoint of an operator Γ is by 

definition a set r t n ( S ) (neN*) such that: 

rtco(S) = r t n (S ) 

r i co(S)*rT(n- l ) (S) 

Lemma 4.1 
The operator T c is monotonic. I t has a unique 
least fixpoint. 

We define the 'conditional fixpoint' procedure for 

function-free logic programs. In [BRY 88a], we define it 

for logic programs with functions. 

Definition 42 
Let LP be a function-free logic program. The 
conditional fixpoint procedure performs in two 
successive phases: 

1. The fixpoint TcTco(LP) is computed. 

2 . T C TCD(LP) is reduced by recursively 
applying the following four rewriting 
rules: 

(F<r-true) -> F 
true Λ F —> F 
F Λ true —» F 

—iA -> true 
i f A is neither a fact, 
nor the head of a rule 

In Section 5 .2 , we give syntactical conditions that permit 

not to explicitly refer to dom(LP) for the computation of 

T C TCU(LP) during the first phase of the conditional fixpoint 

procedure. 

The rewriting system which defines the reduction phase is 

bounded and confluent [HUE 80]. Therefore, one verifies 

easily that the reduction phase always terminates. 

Note that the reduction phase yields a set of ground atoms. 

It is inspired of a proof procedure for propositional calculus 

due to Davis and Putnam [DP 60] - see also [CL 73, pp. 

63-66]. Indeed, conditional statements are ground, by 

definition of T C . The last rewriting rule of Definition 4 .2 

expresses the negation by failure principle. 

I f a logic program L P contains function symbols, then its 

domain and the least fixpoint T c Tco(LP) might be infinite. 

In such a case, i t is not possible to perform the reducing 

rewritings after the computation of the fixpoint T C TCD(LP) 

is completed. Instead, the generation of conditional state

ments and their reduction have to be intertwined by level of 

term nesting. This is possible provided that the program is 

Nötherian, a property defined in [BRY 88a] that ensures 

that logic programs with functions obey the finiteness prin

ciple. The conditional fixpoint procedure for Nötherian 

programs is defined in [BRY 88a]. 

The proof of the completeness of the conditional fixpoint 

procedure makes use of the following property. 

Lemma 4.2 
The formulas F Λ G => Η and F constructively 
imply G => H. 

Proposition 4.1 
The conditional fixpoint procedure decides facts 
in non-Horn, function-free logic programs. 

Note that false e TcTco(LP) i f and only i f LP is construc

tively inconsistent. Properties ensuring constructive consis

tency are investigated in the next section. 

5. Applications 

This section is devoted to applications of the constructivis-

tic view of logic programming. We apply it first for 

motivating the restrictions imposed on function-free logic 

programs in an intuitive manner, then for giving a construc-

tivistic basis to domain independent evaluations. Finally, 

we apply constructivism for extending the Generalized 
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Magic Sets procedure to constructively consistent non-

Horn programs. 

5.1. Constructive consistency and stratification 

In this section, we first show that the properties 

'stratification' [A* 88, VGE 88] and 'local stratification' 

are sufficient conditions of constructive consistency. Then, 

we introduce the class of 'loosely stratified' logic 

programs. This property, which is less stringent than 

stratification and local stratification, seems to be more con

venient for practical applications. Finally, we show that the 

proof-theoretic formalization of logic programs and the 

model-theoretic treatment proposed in [A* 88] and [VGE 

88] are equivalent 

We consider in this section rules whose bodies are conjunc

tions of literals or single literals, as in [A* 88, VGE 

88, PRZ 88b]. 

We shall use the word 'proof with the meaning of 'proof 

in CPC*. Given a logic program LP, we shall call 'proof in 

LP* a proof in CPC with set of proper axioms LP. We first 

give a characterization of proofs. 

Proposition 5.1 
Let LP be a logic program. Let F be a fact 

A proof of F in LP is F itself i f F eLP or a 
ground tree structure F 4 - Ρ such that: 

• There exist a rule Η < - Β in LP and a 
substitution σ such that Η σ = F. 

• Ρ is a proof of Β σ in LP. 

Assume that F £ LP. A proof of ->F in LP is true 
i f no head of a rule in LP unifies with F. Else it is 
a ground tree structure - i F <- Ρ such that: 

• The rules in LP whose heads unify with F 
are Hj <- Β £ with substitutions σ λ 

( i = l , . . . , n ) 

• Ρ is a proof of A ? I ^ in LP. 

Definition 5.1 

Let L < - Ρ be a proof of a ground literal L in a 
logic program LP. Let F be a fact occurring posi
tively (negatively, resp.) in P. L is said to depend 
positively (negatively, resp.) on F in LP. 

Proposition 5.2 
A logic program LP is constructively consistent i f 
and only i f no fact depends negatively on itself in 
LP. 

Proposition 5.2 gives a very intuitive, equivalent condition 

of constructive consistency of a logic program. This con

dition has been proposed and intuitively motivated by 

Deransart and Ferrand in [DF 87]. A similar intuition 

motivates the property 'sup-stratification' proposed by 

Bidoit and Froidevaux in [BF 88]. 

The following result shows that 'stratification* and 'local 

stratification' are sufficient conditions of constructive con

sistency. We do not recall here the definition of these 

properties and refer to [A* 88, VGE 88] and to [PRZ 

88a, PRZ 88b], respectively. 

Corollary 5.1 
Stratified and locally stratified logic programs are 
constructively consistent 

Logic Program: 

P0O«-q (x ,y )A- ip (y ) 

q(a,D 

Herbrand Saturation: 

P(a)<-q(a,a)A-^p(a) 

p(a)<-q(a , l )A-np( l ) 

p ( l ) < - q ( U ) A - ^ p ( a ) 

ρ ( 1 ) < - ς ( 1 , 1 ) Α - φ ( 1 ) 

q(a,D 

Fig.l 

The converse of Lemma 5.1 does not hold. For example, 

the logic program of Figure 1 is constructively consistent 

but neither stratified, nor locally stratified. I t is not 

stratified because the rule defining ρ contains a negated 

p-atom in its body. It is not locally stratified since its 

Herbrand saturation contains instances of a rule in the body 

of which the head atom appears negatively. 
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The condition of constructive consistency is difficult to 

apply in practice, because it relies on all possible proofs. 

Since there are often fewer rules than facts, it is desirable to 

dispose of sufficient conditions of constructive consistency 

that depend on the rules only. 

The property 'stratification' is such a condition, since it 

implies the constructive consistency. The property 'local 

stratification' is fact independent too. However, i t relies on 

the Herbrand saturation of the program under considera

tion. Therefore, i t is in practice as difficult to check as 

constructive consistency. 

We propose another sufficient condition of constructive 

consistency, which we call 'loose stratification'. Loose 

stratification is similar to, but less stringent than stratifica

tion. Like stratification and local stratification, it does not 

depend on the facts occurring in the logic program under 

consideration. As opposed to local stratification, its defini

tion does not depend on the Herbrand saturation. 

According to Lemma 1 in [A* 88, p. 97], a logic program 

LP is stratified i f and only i f the dependency graph [A* 88] 

of the rules in LP contains no cycles with negative arcs. For 

example, the rule 

p(x) <r- q(x,y) Λ -ΗΓ(Ζ,Χ) 

induces two arcs in the dependency graph: A positive arc 

P - > + q 
and a negative arc 

p - > - r 

Relying on the very intuition of the dependency graph, we 

define the 'adorned dependency graph' of a logic program 

as follows. Instead of predicates, we consider atoms with 

variable arguments as vertices of the adorned dependency 

graph. We define an arc between two atoms only i f they are 

unifiable. In addition, we adorn an arc joining an atom Αχ 

to an atom A 2 with a most general unifier of Αχ and A 2 . 

An arc is assigned a V or a ' - ' sign like in the conven

tional dependency graph. 

Thus, the rule 

p(x,a) <- q(x,y) Λ -^(Ζ ,Χ) Λ -ip(z,b) 

yields a positive and a negative arc: 

P(x!,a) - > + ^ q(x 2 ,x 3 ) 

P i x ^ a ) ^ ^ ^ ^ ) 

Note that there is no arc from p(x l f a) to p(x 3,b). Indeed, 

these atoms do not unify because of the constants a and b. 

Formally, the adorned dependency graph is defined as fol

lows: 

Definition 5.2 
Let LP be a logic program. Let V be the set of 
atoms occurring in rules in LP. Assume that V 
has been rectified such that distinct elements of V 
do not share variables. 

The adorned dependency graph of LP is the 
directed graph with set of vertices V and with set 
of arcs A defined as follows. 

Given Ax e V and A 2 e V, (Ax ->ö A{) e A i f 
there is a rule Η f - Β e LP and a most general 
unifier τ such that: 

• Αχτ = Ητ 

• s = V i f Α 2 τ occurs positively in Βτ. 
s = '-* i f Α 2 τ occurs negatively in Βτ. 

• σ is the restriction of τ to the variables 
occurring in Αχ and A^ 

We recall that η unifiers ..., σ η are said to be compatible 

i f there exists a unifier τ which is more general than each 

Gj. The definition of 'loose stratification' makes use of this 

notion and relies on the adorned dependency graph. 

Definition 53 
A logic program LP is said to be loosely stratified 
i f the adorned dependency graph of the rules in 
LP contains no finite chain 

C: A 2 ^ A 3 . . . A n ^ A n + 1 ) 
1 2 η 

such that: 
• C contains a negative arc, i.e., at least one 

^ is ' - ' . 

• the unifiers αχ, ..., σ η adorning the arcs 
along C are compatible. There is a unifier 
τ which is more general than each such 
that Α η + 1 τ = AjT. 

Intuitively, stratification forbids that a fact depends nega-
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lively on another fact with the same predicate letter. Loose 

stratification forbids such a dependence only i f the unifiers 

collected along the rules are compatible. It allows i t other

wise. Like stratification, loose stratification depends only 

on the rules and can be checked without rule instantiation. 

Corollary 52 
Loosely stratified logic programs are construc
tively consistent 

Stratified programs are loosely stratified, but the converse 

is false. For example, the program consisting of the rule 

p(x,a) <r- q(x,y) Λ -»r(z,x) Λ -.p(z,b) 

is loosely stratified since constants 'a' and 'b* do not unify, 

but i t is not stratified. The program of Figure 1 is not 

loosely stratified. The concepts of 'adorned dependency 

graph* and of 'loose stratification* are inspired of [LEW 

85]. 

For function-free logic programs, loose stratification and 

local stratification coincide [VIE 88, BRY 88a]. However, 

this is not the case for logic programs with functions. The 

relationship between loose stratification and local stratifica

tion is investigated more thoroughly in [BRY 88a]. 

With the following proposition, we establish, for stratified 

programs, the equivalence between the proof-theoretic for

malization with CPC and the model-theoretic one proposed 

in [A* 88] and [VGE 88]. 

Proposition 5.3 
Let F be a set of facts and R a stratified set of 
rules. A formula is a theorem of CPC with 
proper axioms FuR i f and only i f it is satisfied in 
the natural model of FuR. 

5.2. Constructive domain independence 

A constructive proof of an open formula F[x] or of a closed 

formula 3x F[x] consists in a proof of 'dom(t)' for some 

term Y followed by a proof of F[t]. In this section, we 

show how to avoid explicit references to the domain predi

cates in constructive proofs. 

By the domain axioms, a proof of 'dom(t)' consists in a 

proof of a ground fact in which Y occurs. We shall say that 

a proof of *dom(t)' occurs redundantly in a proof Ρ if Ρ 

consists of a proof of 4dom(t)' and of a proof which implies 

'dom(t)\ For example, the proof of 'dom(a)' is redundant 

in the following proof 

[dom(a) <- q(a,b)] & [p(a)«- r(a,b) Λ s(a)] 

since p(a) => dom(a) by definition of the predicate 'dorn' 

(Section 4). 

Redundant occurences of 'dorn' atoms in proofs are charac

terized by means of the concept of range. 

Definition 5.4 
Ranges for terms t l f ^ are recursively defined 
as follows: 

• P( t 0 ( 1 ) , . . . , 1 σ ( η ) ) is a range for t , , ^ i f Ρ 
is a predicate and σ a permutation of 
{1 n) . 

• Rj & R 2 is a range for t t , . . . . t^ i f Rx is a 
ranges for u 1 # u k (k > 0), R 2 is a ranges 
f o r v j , . . . , v h ( h > 0 ) , and 

{ t 1 . . . t n } = { u 1 . . . u k } u { v 1 , . . . , v h } 

• Rj ν R 2 an R 1 Λ R 2 are ranges for t j , 
t n i f both R^ are ranges for t j , . . . . t^ 

• A term (Η <- B) is a range for t j , t n i f 
Β is a range for t t , t ^ . 

Definition 55 
Let D be an atom with predicate 'dorn' and let 
D & P b e a p r o o f . 

D is redundant in the proof D & Ρ i f Ρ is a range 
for all terms occurring in D. 

The following concept gives rise to avoid the dom-

predicates in queries. 

Definition 5.6 
A formula F is constructively domain independ
ent (cdi) i f for all constructive proofs Ρ of F, the 
proofs of domain facts contained in Ρ are redun
dant in P. 

The following proposition gives a syntactical characteriza

tion of constructively domain independent formulas. Note 

the occurrences of the ordered conjunction '&*. 
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Proposition 5.4 
Constructively domain independent (cdi) for
mulas are recursively characterized as follows: 

• An atom A [ x l v . . , x n ] is a cdi formula. 

• The conjunction (Λ or & ) of two cdi for
mulas is a cdi formula. 

• The disjunction of two cdi formulas with 
same free variables is a cdi formula. 

• I f Fj is a cdi formula and i f F 2 is any 
formula whose free variables are all free 
in F j , then Fj & F 2 is a cdi formula. 

• 5x F is a closed cdi formula i f F is an 
open cdi formula. 

• I f Fj is a cdi formula with free variable χ 
and i f F 2 is any formula with no free vari
able other than x, then Vx - . [F j & -nF2] 
is a cdi formula. 

According to Proposition 5.4 the rule 

p ( x ) < - q ( x ) & - , r ( x ) 

is cdi, while the rule 

p(x) <- -tf(x) & q(x) 

is not. Prolog programmers are used to make variables in 

negative goals occunring in a preceding positive literal as 

well, in order to ensure correct runs of programs. Proposi

tion 5.4 gives a logical motivation to this practice. 

Given a CPC theory C, let C c d i denote the calculus ob

tained by removing the domain axioms from C. 

Lemma 5.1 
Let F[x] be an open formula with free variable x. 

I f F[x] is a range for χ then Vx F[x] => dom(x) 
holds. 

Proposition 5.5 
Let S be a finite set of cdi formulas satisfying the 
conditions imposed on proper axioms of a CPC. 
Let C denote the CPC with proper axioms S. 

Ccd[ and C are constructively equivalent. 

In [FAG 80], Fagin has studied the model-theoretic notion 

'domain independent' proposed by Kuhns [KUH 67] under 

the name 'definiteness*. Roughly, a formula F is domain 

independent i f its valuation in a model depends only on the 

extensions of the relations mentioned in F. The class 

domain independent formulas is not solvable [DIP 69]. 

However, the constructivistic restrictions imposed on proof 

implies the solvability of the class of constructively domain 

independent formulas. 

Corollary 5.3 
The class of constructively domain independent 
formulas is a solvable subclass of the domain in
dependent formulas. 

Other solvable classes of domain independent formulas 

have been proposed: Range-restricted formulas [NIC 81], 

evaluable formulas [DEM 82,VGT 87], and allowed 

formulas [LT 86, VGT 87, SHE 88]. For each formula in 

one of these classes it is possible to construct an equivalent 

cdi formula [BRY 88b]. 

5.3. The Generalized Magic Sets procedure 
extends to non-Horn programs 

The Generalized Magic Sets procedure [BR 87] - also 

proposed under the name of Alexander procedure [R* 86] -

is a proof procedure for Horn logic programs with recursive 

axioms. It is not based on SLDNF-resolution [LLO 84]. In 

order to achieve a good efficiency in presence of huge 

amounts of facts, i t is * set-oriented'. We show in this sec

tion how the concept of constructive proof and the con

ditional fixpoint procedure permit to extend the General

ized Magic Sets procedure to constructively consistent non-

Horn programs. By Corollaries 5.1 and 5.2 the Generalized 

Magic Sets procedure therefore extends to stratified, locally 

stratified, and loosely stratified programs. 

In order to conform with the definition of the Generalized 

Magic Sets procedure, we consider in this section - like in 

Section 5.1 - rules whose bodies are literals or conjunc

tions. In addition, we assume that they are constructively 

domain independent (cdi), i.e., rule's bodies are conjunc

tions, some of them being ordered such that a negative 

literal with a variable χ follows a positive literal 

containing x. 
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The Generalized Magic Sets procedure answers a query on 

a program with rule set R and fact set F by performing 

three successive steps. First, the rules are specialized into a 

set R a d of adorned rules. Second, the set of adorned rules 

R a d is rewritten into a set R m g of rules intended for bottom-

up evaluation. Third, the fixpoint of the immediate con

sequence operator on R m g u F is computed. 

The rule specialization R -» R a d of the first step and the 

rule rewriting R a d -» R m g of the second step are formally 

defined in [BR 87]. Here, we recall them on examples. 

Adorned rules are obtained by ordering the body literals. 

The (partial) ordering is chosen for optimally propagating 

the bindings of variables from the head of the rule back

wards. Consider for example the rule: 

p(x,y)<-q(x,z)Ar(z,y) 

The ordering q(x,z) & r(z,y) is appropriate in presence of a 

goal such as ' p i a ^ y since the binding x/a is transmitted to 

the first body literal. As opposed, the ordering r(z,y) & 

q(x,z) is preferable for the goal 'pix^a) ' . 

In order to permit different orderings depending on the in

stantiation pattern of the head, adorned predicates are intro

duced. A binary predicate 'p ' for example induces adorned 

predicates like *p b f \ where 'b* ( T , resp.) denotes a bound 

(free, resp.) argument. For example, the rule 

p(x,y) < - r(z,y) Λ q(x,z) 

induces - among others - the adorned rule 

Ρ ^ ( χ , γ ) ^ ς Β ί ( χ , ζ ) & ^ ( ζ , γ ) 

The adorned rules are specialized forms of the original 

rules. 

According to Proposition 5.4, non-Horn cdi rules contain 

ordered conjunctions. In order to preserve cdi, the reor

dering of body literals has to respect the ordered conjunc

tions. Under this condition, we have: 

Proposition 5.6 
I f R is a set of cdi rules, then the rules in R a d are 
cdi. 

The second step of the Generalized Magic Sets procedure 

generates from R a d a set R m g of rules of two kinds. First, 

R m g contains magic rules representing the encountered sub-

goals in a backward - or top-down - evaluation of the 

adorned rules. For example, the rule 

p b f (x ,y) < - q b f (x,z) & ι**(ζ,γ) 

yields three magic predicates 'magic-p b f \ 'magic-q b f \ and 

'magic-r**'. 

It induces the two magic rules 

magic-q b f(x,z) <— magic-p b f(x,y) 

magic-r b f(z,y) < - magic-p b f(x,y) & q b f(x,z) 

In fact only 'b ' variables are kept in magic-predicates: For 

example, 'magic-p b f(x,y)' should be replaced by 

*magic-p b f(x)\ The magic rules of our example are there

fore: 

magic-q b f(x) < - magic-p b f(x) 

magic-r b f(z) < - magic-p b f(x) & q b f(x,z) 

Queries induce ground magic facts, called seeds. The query 

'p(a,x)' induces for example the seed 'magic-p b f(a)\ 

The second type of rules in R m g are modified versions of 

the adorned rules. These versions are obtained by inserting 

magic atoms in the rules of R a d for constraining the instan

tiations. For example, the rule 

p b f ( x , y ) < - q b W ) & i * W 
is rewritten into 

p b f (x,y) < - magic-p b f(x) & magic-q b f(x) & q(x,z) & 

magic-r^iz) & r(z,y) 

The rewriting R a d <— R m g can easily be extended to non-

Horn rules by processing negative literals like positive 

ones. For example, the rule 

ρ * ( χ ) « - ς * ( χ ) & - * * ( ζ ) 

induces the same magic atoms and magic rules as does the 

Horn rule 

It is therefore rewritten into 

p b f (x ,y) <r- magic-q b f(x) & q b f(x,z) & magic-r b f(z) & 

- ^ f ( z ) 

Assuming this extension of the rewriting R a d - » R m g , we 

have: 
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Proposition 5.7 
I f R a d is a set of cdi rules, then the rules in R m g 

are cdi. 

As it has been often noted, only the first of the two rewrit-

ings R - » R a d -> R m g preserves stratification. However, 

we show below that both preserve constructive consistency. 

By Corollary 5.1 this suffices to conclude to the correctness 

of the Magic Sets transformation for non-Horn logic 

programs. 

The technique we use for proving that both rewritings 

preserves constructive consistency, consists in transforming 

proofs in R a d and in R m g into proofs in R. 

Lemma 5.2 
A proof Ρ in R a d induces a proof in R by replac
ing in Ρ the adorned predicates by the cor
responding non-adorned predicates. A proof Ρ in 
R m g is reduced into a proof in R a d by pruning Ρ 
from proofs of magic atoms. 

Proposition 5.8 
Let R be a set of rules and F a set of facts. I f 
R u F is constructively consistent then R a d u F and 
R m g u F are constructively consistent. 

The third step of the Generalized Magic Sets procedure, 

namely the computation of the fixpoint of R m g u F , can be 

performed by applying the conditional fixpoint procedure 

of Section 4. I f R and therefore R m g contains function sym

bols, the conditional fixpoint procedure as defined in [BRY 

88a] must be applied. 

In [BB* 88], Balbin, Meenakshi, Port, and 

Ramamohanarao have proposed to modify the Magic Sets 

rewriting in order to preserve stratification. They define a 

* structured' bottom-up procedure applicable to stratified 

programs. Kerisit proposes a similar method in his PhD 

thesis [KER 88]. Kerisit's rewriting is simpler than the 

other one. It generates programs that are not always 

stratified but satisfy a condition called 'weak stratification'. 

Kerisit defines a 'layered' bottom-up procedure for weakly 

stratified programs. The modified rewritings defined in 

these reports do not seem to extend to non-stratified con

structively consistent programs. 

It is not clear i f an approach always permits better perfor

mance than another on stratified programs. Because of its 

simplicity, the modified rewriting proposed by Kerisit 

seems to be preferable to the other one. The modified 

rewritings generate significantly more additional predicates 

than the Magic Sets rewriting. This certainly increases the 

complexity of the bottom-up evaluation. The bottom-up 

procedure can however make benefit from the weak 

stratification for not delaying the evaluation of negative 

premisses as long as the conditional fixpoint procedure 

does. 

Other recursive query processing procedures extend to 

stratified programs as well. Kemp and Topor [KT 88], and 

independently Seki and Itoh [SI 88] have recently defined 

such extensions for the twin procedures OLD-resolution 

with tabulation [TS 86] and QSQR/SLD-resolution [VIE 

87]. In [PRZ 89], these procedures have been further ex

tended, relying on a concept of 'dynamic stratification', for 

processing all logic programs that have a well-founded 

model. 

6. Conclusion 

The purpose of this article was twofold. It was first to show 

that the features of logic programming that seem unconven

tional from the viewpoint of classical logic can be nicely 

explained in terms of constructivistic logic. This reading of 

logic programming is usually more intuitive to people not 

trained in formal logic. I t provides logical foundations for 

features often considered purely procedural. The second 

purpose of this paper was to apply the constructivistic for

malization of logic programming for establishing new 

results of practical interest. 

We first recalled the complementary roles of model and 

proof theory for conveying the semantics of logic 

programs. Then, we showed how constructivism and logic 

programming are connected. We proposed a constructivis

tic axiomatic system, the Causal Predicate Calculus (CPC), 

as a proof-theoretic formalization of non-Horn programs. A 

bottom-up proof procedure, the conditional fixpoint proce

dure, was defined for CPC. 
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Next, we used this formalization of logic programming in 

order to establish practical results. First, we have given a 

simple and intuitive motivation for the concepts 

'stratification* and * local stratification': They are sufficient 

conditions of constructive consistency. Second, we intro

duced the notion 'constructive domain independence', 

which gives a logical explanation of the need to 'keep 

ordered' certain conjunctions in logic programs. I t also 

constitutes a practical basis for introducing quantifiers into 

logic programs and queries. Finally, we showed how the 

concept of constructive proof and the conditional fixpoint 

procedure permit to extend the Magic Sets procedure to 

constructively consistent non-Horn logic programs. 

Being independent from any proof procedure, the construc

tivistic formalization of logic programming should help in 

investigating various query evaluation techniques. It is 

indeed important to also investigate other evaluation 

strategies than the one of Prolog and SLDNF-resolution. 

The constructivistic reading of logic programming seems 

promising for studying 'logical optimization* techniques. 

Roughly, we mean methods that translate queries or rules 

into equivalent expressions, on the basis of logical rules or 

of integrity constraints. The main problem encountered in 

defining such rewritings is to control the number of 

generated expressions. The constructivistic restriction of 

logical equivalence seems to correspond to useful rewrit

ings. Finally, a constructivistic understanding of logic pro

gramming is surely applicable to the generation of intuitive 

explanations. 
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