
Lecture Notes in
Computer Science
Edited by G. Goos and J. Hartmanis

364

J. Demetrovics B. Thalheim (Eds.)

MFDBS 89
2nd Symposium on
Mathematical Fundamentals of Database Systems
Visegräd, Hungary, June 26-30 , 1989
Proceedings

Springer-Verlag
Berlin Heidelberg New York London Paris Tokyo HongKong

Table of Contents

Selective refutation of integrity constraints in deductive databases 1
P.Asirelli, C.Billi, P.lnverardi

Approaches to Updates over weak instances 12
P.Atzeni, R.Torlone

Index selection in relational databases 24
E. Barcucci, A.Chiuderi, R.Pinzani, M.C.Verri

Towards a Schema design methodology for deductive databases 37
J.Biskup, B.Convent

Shared abstract data types: An algebraic methodology for their specification 53
ABondavalli, N.De Francesco, D.Latella, G.Vaglini

Specifying closed world assumptions for logic databases 68
S.Brass, U.W.Lipeck

Interaction of authorities and acquaintances in the DORIS privacy model of data 85
H.H.Brüggemann

Logical rewritings for improving the evaluation of quantified queries 100
F. Bry

Mathematical foundations of semantic networks theory 117
M. Burgin, V.GIadun

Functional dependencies and the semilattice of closed classes 136
J.Demetrovics, LO.Libkin, I.B.Muchnik

An extended view on data base conceptual design 148
M.D.Dräghici

Modeling planning problems 172
A.E.Eiben

On the interaction between transitive closure and functional dependencies 187
G. Gottlob, M.Schrefl, M.Stumptner

A strategy for executing complex queries 207
E.Grazzini, F.Pippolini

Multiple task selection protocol in a distributed problem solving network 222
T.Gyires

VI

Equivalent schemes in semantic, nested relational, and relational database
models 237
A.Heuer

Covers for functional independencies 254
J.M.Janas

Restructuring and dependencies in databases 269
E.A. Komissartschik

RTL - A relation and table language for Statistical databases 285
LLakhai, R.Cicchetti, S.Miranda

Integration of functions in the fixpoint semantics of rule-based Systems 301
E.Lambrichts, P.Nees, J.Paredaens, P.Peel man, LTanca

Locking policies and predeclared transactions 317
G.Lausen, E.Soisalon-Soininen

Means for management of relational fuzzy data bases - way to merging of
Systems of data bases and knowledge bases 337
T.A.Malyuta, V.V.Pasichnik, A.A. Stögmiy

A specification language for static, dynamic and deontic integrity constraints 347
J. -J. Meyer, H. Weigand, R. Wieringa

Blocks and projections' synthesis in relational databases 367
LA.Tenenbaum

The higher-order entity-relationship model and (DB) 2 382
ß . Thalheim

Goal-oriented concurrency control 398
V. Vianu, G. Vossen

Transitive closure and the LOGA+-strategy for its efficient evaluation 415
W.Yan, N.Mattos

Logical Rewritings for Improving
the Evaluation of Quantified Queries

Fran^ois Bry

ECRC, Arabellastr. 17, D- 8000 München 81, West Germany
uucp: ...Ipyramidlecrcvaxlfb

A B S T R A C T We describe a new approach for improving the evaluation of queries with quantifiers.
We first introduce the concept 0/constructive evaluation as a formalization of a principle common to the
methods that have been proposedfor answering quantified queries. Relying on this concept, we define the
class of constructively domain independent (cdi) formulas. We show that cdi queries can be construc-
tively evaluated by searching onty the relations they refer to. Therefore, cdi queries admit domain inde
pendent evaluations as soon as they do not explicitly refer to the database domain. Then, we define
rewritings that translate general quantified queries into expressions amenable to efficient constructive
evaluations. These rewritings preserve logical equivalence, hence do not compromise the semantics of
queries. They are based on the generation from a query of the ranges and co-ranges of its variables. We
show that the rewritings we propose permit to optimize the evaluation of cdi queries. They also reduce
queries from several solvable subclasses of domain independent formulas to cdi queries, hence permit-
ting their domain independent evaluation.

1. Introduction

Evaluating queries that are more general than simple conjunctions is often needed for database applica-
tions. Queries with quantified variables are useful for investigating refined relationship between data, in
particular for expressing integrity constraints. If queries with quantifiers are not frequent in business or
management databases, they are common in the emerging areas of scientific and statistic databases.
Quantified queries and constraints are also investigated in the framework of research on knowledge bases.

In this article, we first introduce the concept of constructive evaluation for formalizing into logic the
principles of database methods that were proposed for answering quantified queries. Intuitively, an
answering procedure is constructive if it process quantifications by instantiating the variables over the
database domain or over a relevant part of it, defined, e.g., by types or ränge expressions associated with
the variables. Methods that reduce the evaluation of quantified queries to the generation of extensional
answers to quantifier-free expressions are constructive. We show that the methods based on relational
algebra [COD 72, PAL 72, JS 82, BRY 89a] as well as the non-algebraic processing of quantifiers
proposed in [DAY 83, DAY 87] are constructive. We indicate directions for research that could lead to
non-constructive methods for evaluating queries with quantifiers.

Relying on the concept of constructive evaluation, we introduce the class of constructively domain
independent formulas (short, cdi formulas). Cdi queries can be constructively evaluated against a

101

database conforming to the Domain Closure Axiom by searching only the relations they mention. There
fore, cdi queries admit domain independent evaluations as soon as they do not explicitly refer to the
database domain.

We then describe a method for translating quantified queries of any kind into expressions amenable to
constructive evaluation. This transformation preserves logical equivalence and therefore does not com-
promise the semantics of queries. It is applicable either for processing non-cdi queries with a constructive
evaluation method, or for improving the evaluation of cdi queries. It is based on a technique for generat-
ing from a query, the candidate ranges for its quantified variables. Conventional cost estimation tech-
niques, e.g., based on relation sizes and on physical data structures, can then be used for chosing ranges
permitting efficient evaluations.

We define the quantified query transformations by means of rewriting rules. This Artificial Intelligence
technique is particularly well-suited to defining transformations of programs in general, of declarative
queries in particular. Systems of rewriting rules can easily be compiled into deterministic procedures that
are more convenient for practical use. However, the rule formalism is more appropriate to formal inves-
tigations and to simple descriptions. Refer to [HUE 80, SCH 87] for an introduction to the concepts of
rewriting Systems.

To a certain extend, generating ranges can be considered similar to investigating the different ordering of
relations in a conjunctive query. However, though the later is simple, the former surprisingly turns out to
be rather complex. If generating ranges for quantifier-free queries is already known in the literature, as far
as we know the issue has not been investigated for queries with quantifiers. The unexpected complexity
of the later case in fact reflects the inherent complexity of quantified expressions. This complexity in-
creases with the depth of nesting of quantified subexpressions.

The complexity of the problem addressed in this article is reflected by the fact that straightforward ränge
modifications - e.g., those used for quantifier-free queries - in general compromise the semantics of quan
tified queries. In order to define equivalence preserving transformations, it is necessary to consider the
possibilities to satisfy the quantified queries without instantiating all its variables. To this aim, we intro
duce the new notion of co-range. Roughly, a ränge for a variable describes a super-set of the values taken
by the variable during an evaluation of the query. By contrast, a co-range is a formula the satisfaction of
which induces a Solution to the query that does not bind the variable under consideration. A co-range is a
concept complementary to that of a ränge, hence the name we give to this notion.

Since databases are intended to störe huge amount of data, their domains are usually large. It is therefore
rather natural to consider queries that can be evaluated without searching the whole database domain. The
equivalent notions 'definiteness' [KUH 67] and 'domain independence' [FAG 80] were proposed as a
formalization of such queries. These two notions characterize formulas whose valuations remain un-
changed under Updates on relations that do not occur in the formulas. Such formulas can in principle be
answered without imposing to search the whole database domain. In practice, this is possible with a con
structive evaluation method only if the query is constructively domain independent.

The concepts 'definiteness' and 'domain independence* may be considered to be not precise enough, for
they do not refer to any evaluation principle. In contrast, the 'constructive domain independence' is a

102

notion based on a class of proof procedures for quantified queries, namely, the class of constructive
evaluation methods. Constructive domain independence implies definiteness and general domain in
dependence. However, the converse is false. Constructive domain independence is more restrictive than
general domain independence because it relies on evaluation methods of a specific kind, namely, those
that are constructive. Domain independence and definiteness, as opposed, refer to the valuations of
queries without considering the ways these valuations are obtained. Constructive domain independence is
a solvable property [BRY 89b] while general domain independence is unsolvable [DIP 69].

In order to remedy to the unsolvability of the class of domain independent formulas, solvable subclasses
have been proposed, among others the range-restricted formulas [ND 83, NIC 81], the allowed
formulas [VGT 87], and the evaluable formulas [DEM 82]. We show that the rewritings we propose
reduce the queries in these classes to cdi expressions. Thus, they give rise to (constructively) evaluate
range-restricted, allowed, and evaluable queries in a domain independent manner, i.e., without explicitly
searching the whole database domain.

The results presented here are part of a research on integrity constraint and query processing pursued at
ECRC. Other studies were devoted to connected issues. We gave logical foundations to the introduction
of quantifiers and negations in database rules and queries in [BRY 89b]. In [BRY 89a], we described an
evaluation method based on relational algebra for answering efficiently quantified queries. In [BDM 88],
two procedures were defined. The first one improves the evaluation of integrity constraints in updated
databases. The second one - a refined version of the theorem prover SATCHMO [MB 88] - is devoted to
checking the consistency of constraints and deduction rules. Other studies at ECRC investigated the
evaluation of queries involving recursive deduction rules [VIE 86, VIE 88], recursive deduction rules
with negations [BRY 89b], methods for coupling a database System with PROLOG [BOC 86], and the
applicability of the PROLOG abstract machine by Warren to knowledge bases [BOC 87].

The article is organized as follows. Section 1 is this introduction. We recall definitions and we introduce
notations in Section 2. In Section 3, we define constructive evaluation methods and constructively domain
independent (cdi) queries. We describe the ränge generation method in Section 4. The concept of co-
range is introduced in Section 5. There, we define equivalence preserving rewritings of quantified
queries. In Section 6, we show that these rewritings permit to reduce range-restricted, allowed, and evalu
able formulas to cdi expressions. We summarize the main points of the paper in Section 7.

2. Definitions and Notations

We consider queries that are expressed in a relational calculus with domain variables. A selection over an
n-ary relation R is therefore represented in a query by means of an atom R^, . . . ,^) , where the terms tj are
constants or variables. The choice of a formal calculus intends to make the description of the transfor
mations independent from any actual query language. Domain variables are chosen instead of tuple vari
ables for making easier the reference to logic properties that are traditionally expressed in this manner.
The logic notions we rely on in this article are basical ones. Their definitions can be found, e.g., in the
tutorial [MEN 79].

103

The domain of a database is defined as the set of terms rccurring as attributes in its relations. A special
predicate denoted 'dorn* will be used to refer to the database domain. Variables in queries are assumed to
ränge over the database domain. This hypothesis is known under the name of Domain Closure Axiom.

Two queries Fj and F 2 are equivalent if they admit the same answers on all databases. By the Domain
Closure Axiom, a query F [x j , x n] with free variables x l s x n is equivalent to the query dom(xj) A ...
A dom(xn) A F [x j , x n] . Similarly, quantified queries 3x F[x] and Vx F[x] are respectively equivalent to
3x dom(x) A F[x] and to Vx dom(x) => F[x].

In order to precise, when necessary, the order in which conjunctive expressions are evaluated, we shall
use the conjunction symbol '&' . Writing a conjunction Fj & F 2 (where the conjuncts Fj and F 2 may share
variables) means that Fj is intended to be evaluated before F 2 . If the ordering is not relevant, we shall
write indiferently Fj A F 2 or F 2 A Fj .

Conventional query languages usually have typed variables. We recall that typed quantifications 3x in R:
F[x] and Vx in R: F[x] correspond to 3x R[x] A F[X] and Vx R[x] => F[x], respectively, in untyped logic.
(As usual, we denote by R the typing predicate associated with a type R.) In order to treat all parts of a
query uniformly, we adopt the untyped formalism. For the sake of uniformity, we shall assume that the
connectives => and <=> are always expressed in terms of v and according to the classical equiv-
alences (Fx => F 2) <=> (-. F t v F 2) and (Fx <=> F 2) <=> [(-i Fx v F 2) A (FJ V - I F 2).

Moreover, we assume that all queries are rectified, i.e., the variables have been consistently renamed such
that a same variable symbol does not occur in distinct quantifications. Thus, an expression
Vx p(x) => [3x q(x)] A r(x) is rewriten into Vx p(x) => [3y q(y)] A r(x). This assumption is implicit in
most query and prograniming languages. Making it explicit permits to simplify formal definitions.

Given an atom A, A itself and its negation -« A are called literals. A literal has positive sign if it is an
atom, negative sign eise. A formula - i F is a negative formula. A formula which is not of the form - i F is
a positive formula. A subformula G has positive polarity in a formula F if G is embedded in zero or in an
even number of negations in F (the left hand side of an implication being considered as an implicit
negation). Similarly G has negative polarity in F if it is embedded in an odd number of - explicit or
implicit - negations in F.

3. Constructive Evaluations of Quantified Queries

In this section, we introduce the notion of constructive evaluation as an abstract formalization of the
principles of various approaches that have been proposed for evaluating queries with quantifiers [COD
72, PAL 72, JS 82, D A Y 83, CG 85, DAY 87, BRY 89a]. Then, we define constructively domain
independent quantified queries, i.e., queries that admit domain independent constructive evaluations.

A rather intuitive approach to the evaluation of quantified expressions is described by the procedures of
Fig. 1 on the next page. An existential formula 3x F[x] is evaluated by searching the domain Dom of the
database for a constant 4c' such that F[c] holds. Universal expressions are similarly evaluated. The lack
of value 'c' in the domain Dom such that F[c] does not hold implies the truth of a universal expression Vx
F[x].

104

evaluate(3 x F[x], value):
value := false
for each c in Dom while value * true
do

evaluate(V x F[x], value):
value := true
for each c in Dom while value * false
do

evaluate(F[c], v) evaluate(F[c], v)
z/v = true then value := true

end
ifv = false then value := false

end

Fig. 1 Two basic algorithms for evaluating quantified queries

The procedures given in Fig. 1 pipeline all Operations and perform one tuple at a time. F o r the sake of
efficiency, methods performing according to other kinds o f control have been proposed. The methods

based on relational algebra [COD 72, PAL 72, JS 82, CG 85, BRY 89a] as well as the methods [DAY
83, DAY 87] that are based on special procedures and data structures do not instantiate the quantified
variables in a one-tuple-at-a-time manner. They instantiate the quantified variables over the database
domain - or over a part of it defined by the type of the variable - in a set-oriented manner. Though not
conforming to the one-tuple-at-a-time control of the procedures in Fig. 1, they retain the logic of these
procedures - according to Kowalskis paradigm 'Algorithm = Logic + Control' [KOW 79].

The instantiation based approach to proving quantified expressions is very natural. It is widely applied in

mathematics and in formal logic. It refers to the logical concept of constructive proof[TRO 77], because
a Solution value (a counter-example, respectively) is given in order to prove an existential query (a
universal query, respectively). Constructive proofs can be recursively formalized as follows [BRY
89b, TRO 77], considering as constructively proven ground atomic formulas that are axioms.

• A constructive proof of Fj A F 2 consists in a constructive proof of Fj and a constructive
proof of F 2 .

• A constructive proof of Fj v F 2 consists in a constructive proof of Fj , or in a constructive
proof of F 2 .

• A constructive proof of Fj => F 2 consists in specifying a procedure T which transforms any
constructive proof Pj of Fj into a constructive proof T(Pj) of F 2 .

• A constructive proof of - i F consists in a constructive proof of F => false.

• If the variable x ranges over the domain D, a constructive proof of Vx F[x] is a procedure T
which, on application to any pair (t, p) of a term t and a constructive proof p that t e D,
yields a constructive proof T(t, p) of F[t].

• If the variable x ranges over the domain D, a constructive proof of 3x F[x] consists in a term
t, in a constructive proof p that t e D, and in a constructive proof of F[t].

Non-constructive proofs of quantified queries proceed differently, e.g., relying on the excluded middle, or
by showing the impossibility of the formula or of its negation without instantiating it. Query answering
methods based on non-constructive proof techniques, e.g., based on semantic processings [KIN 81], have

105

been investigated. Answering methods that provide intentional answers - instead of extensional ones - to
quantifier-free queries, e.g., [CHO 87], could be used for defining non-constructive evaluation procedures
for quantified queries. For answering methods of these kinds, the rewritings we define in this paper could
very well reveal inefficient. However, they permit to improve the constructive processing of quantifiers.

Relying on the concept of constructive proof given above and on the usual notion of evaluation for
quantifier-free database queries, constructive evaluations of database queries with quantifiers can be for-
mally defined as follows:

Definition 1
A constructive evaluation of 'Vx F[x]' is a procedure that, for each value 'c' returned by the
evaluation of 'dom(x)' performs an evaluation of *F[c]\

A constructive evaluation of '3x F[x]' is an evaluation of 'dom(x) & F[x]\

In other words, constructive evaluation method reduce the processing of quantified queries to the conven-
tional, quantifier-free case. We recall that, according to the Domain Closure Axiom, a constant c is
proven to belong to the database domain - i.e., dom(c) is proven - if a fact p(Cj, cn) is true in the
database and c = c t for some i = 1 , n . In [BRY 89b], we investigate more thoroughly the relationship
between database query evaluation and the constructivistic approach to logic. There, we introduce the
following concepts for characterizing the queries that can be constructively evaluated without explicitly
searching the database domain.

Definition 2
Let F be a formula and A be an atom in F. Let S(F, A) denote the formula obtained from F by
replacing A in F by true.

An atom A is redundant in F if F and S(F, A) are equivalent.

A formula F is said to be constructively domain independent (cdi) if the domain atoms occur-
ring in F are redundant.

For example, the domain atom 'dom(c)' is redundant in 'dom(c) A p(c)\ The atom 'dom(c)' is redundant
in a query F each evaluation of F contains a positive fact in which 'c' occurs. Indeed, if V occurs in a
relation, then V belongs by definition to the database domain. For example, the domain facts are redun
dant in constructive evaluations of 'dom(x) & p(x,y)'. More generally, constructively domain independ
ent formulas are syntactically characterized as follows:

Proposinon 1 [BRY 89b]
Positive constructively domain independent (cdi) formulas are recursively characterized as fol
lows:
1. An atom is a cdi formula.
2. The conjunction of two cdi formulas is a cdi formula.
3. The disjunction of two cdi formulas with same free variables is a cdi formula.

106

4. If Fj is a cdi formula and if F 2 is any formula whose free variables are all free in Fj, then
Fj & F 2 is a cdi formula.

5. 3x F is a closed cdi formula if F is an open cdi formula.
6. If Fj is a cdi formula with free variable x and if F 2 is any formula with no free variable

other than x, then Vx -.[Fj & -iF 2] is a cdi formula.

A negative formula - i F is cdi if and only if F is a closed cdi formula.

Constructively domain independent formulas are domain independent. By Proposition 1, the class of
constructive domain independent formulas is solvable, as opposed to the class of domain independent
formulas [DIP 69]. Other solvable subclasses of domain independent formulas have been proposed:
Range-restricted formulas [ND 83, NIC 81], allowed formulas [LT 86, VGT 87], and evaluable
formulas [DEM 82, VGT 87]. A formula in one of these classes is not necessarily cdi. We show in Sec
tion 6 that the rewritings we propose permit to construct equivalent cdi formulas to formulas in one of
these classes.

We conclude this section by showing that the methods proposed in [COD 72, PAL 72, DAY 83, JS
82, DAY 87, BRY 89a] evaluate quantifiers in a constructive manner. To this aim, we shall distinguish
between two classes of methods. The methods of the first class, namely [COD 72, PAL 72, JS 82, BRY
89a], are improvements of the processing of quantifiers in relational algebra described by Codd in [COD
72]. It is therefore sufficient to show that the processing of quantifiers of this later method is constructive.
This is an immediate consequence of Proposition 2. The methods of the second class [DAY 83, DAY 87]
process quantified queries differently. Proposition 3 below establishes their constructive character.

Proposition 2
Let R and S be two unary relations. Consider the quantified queries:

The evaluation of Fj (F 2, resp.) by Computing R tx̂ S (R - S, resp.) and checking its non-
emptiness is constructive. The evaluation of G t (G 2, resp.) by Computing S -r- R (R jxî S,
resp.) and checking its emptiness is constructive.

[Proof: Proposition 2 follows from Definition 1, from the equivalence [Vx R(x) => S(x)] <=> [-3x
-.(R(x) A - i S(x))], and from the definitions of the join and division Operators.]

The procedures described in [DAY 83, DAY 87] process in two phases. Düring the first phase, special
data structures are created. Düring the second phase, these structures are searched. This search cor-
responds - up to the ordering of the tuple comparisons - to the algorithms given in Fig. 1. Therefore, the
following result permits to conclude that the methods [DAY 83, DAY 87] are constructive.

Provosition 3

The algorithms in Fig. 1 perform constructive evaluations of quantified queries.

[Proof: immediate from Definition 1.]

F ^ 3x R(x) A S(X)

F 2 :3x R(x) A -. S(x)
Gx: Vx (R(x) =>S(x))
G 2 : Vx (R(x) =>nS(x))

107

4. Generating Ranges

If queries are arbitrary logical formulas, they are not necessarily cdi. The database domain could in
theory be used for constraining the variables without explicit ranges. If variables are typed in the con
sidered language, types can be use instead of the domain. Although this permits to evaluate all formulas,
it is often extremely inefficient. Consider for example the query

Qj: 3x [Vy lecture(y) => attends(x,y)]
asking if someone is attending all lectures. Al l individuals and all objects referenced in the database, in
particular the lectures, belong by definition to the database domain. Considering the variable x ranging
over the whole domain therefore permits to instantiate it with lectures. This could lead to asking if some
lectures are attending all lectures! Typing variables does not really solve the problem, but reduces slightly
the set of values to consider. Intuitively, the projection of the relation 'attends' on its first attribute -
defined by the formula [3z attends(x,z)] - is an appropriate ränge for x. However, Q1 is not logically
equivalent to the following formula:

3x [3z attends(x,z)] A [Vy lecture(y) => attends(x,y)]

Elaborating on this idea, we describe a technique for recognizing variable ranges that are implicit in quan
tified queries. Similar techniques have been investigated in [LT 86, DEC 89]. In the next section, relying
on the concept of co-range, we show how variable ranges can be used for generating rewritings of queries
that preserve logical equivalence.

This technique can also be applied to cdi queries in order to obtain more constraining ranges. This can be
a significant optimization. Consider for example the following query

Q 2 : 3x employee(x) A Vy [(employee(y) A member(y,cs)) => subordinate(y,x)]

asking if there is an employee to w h o m all members of the Computer science department are subordinate.

If the number of employees that are superordinate to others is much smaller than the number of all
employees then it is beneficial to assign to the variable x the more constraining ränge:

3z subordinate(z,x)
Combined with appropriate cost estimations, the ränge generation technique permits interesting optimiza-
tions of cdi queries. In this article, we describe the ränge and co-range generation techniques. However,
we do not discuss how to chose convenient ranges out of the many choices generated. Looking for more
constraining ranges is in general useful for variables with universal quantifications in their scope, as the
variable x in previous example queries Qj and Q 2 .

Well-formed formulas may contain 'useless' quantifications, i.e. quantifications applying to variables
that do not occur in the rest of the formula. This is for example the case of the first quantification in the
formula F: 3x [Vy p(y) => q(y)]. There are no chances to find ranges for variables with such quantifica
tions! We therefore introduce two rewriting rules for avoiding these cases:

Rulel: 3xF -» F if x does not occur in F
Rule2: V x F -> F if x does not occur in F

Rules 1 and 2 preserve logical equivalence.

108

4.1. Motivating Examples

Before formally describing the range generation technique, we illustrate its principles on a few examples.

Example 1

Consider first Fj : 3xjX 2 [p(x1,x2) A G]. FJ clearly imposes on Xj and x 2 to ränge over the first and second
attribute of p, respectively. If G is q(xj,x2), the most constraining range that can be associated to Xj and
x 2 is [p(xj,x2) A q(xj,x2)]. More generally, if R([xj,x2],G) denotes the most constraining range induced
by G on Xj and x 2 , the range for Xj and x 2 in Fj is p(xj,x2) A R([XJ,X 2] ,G).

Example 2
Consider now F 2 : 3x Hp(x) A G]. Since negative Information is not stored in databases, the subformula
-ip(x) cannot contribute to the definition of a range for x. In such a case, we State R([x],-ip(x)) = dom(x).
We therefore have R([x],[-.p(x) A G]) = dom(x) A R([X],G). Since by definition all values are in the
database domain, dom(x) A R([X],G) is equivalent to R([x],G). In the general case, the polarities of atoms
instead of their signs have to be taken into account.

Example 3
Consider F 3 : 3x [Gj v G 2] . When F3 is satisfied, at least one of R([x],Gj) and R([x],G2) is necessarily
satisfied. Therefore, R([x],Gj v G 2) = R([x],Gj) v R([x],G2).

Example 4
Consider F 4 : 3xVy G, where G is a formula in which x and y are free. If x satisfies the formula Vy G,
then it satisfies the formula 3y G as well. This second expression is convenient as a range, according to
Definition 1. If for example G: g(x,y), it is indeed sufficient to make x ranging over the first attribute of
the relation g, i.e., to assign the range 3y g(x,y) to x. More generally, we shall define R([x],Vy G) =
3yR([x],G).

4.2. Rewriting Rules for Generating Ranges

While looking for expressions constraining some variable x one may encounter subformulas in which x
does not occur. This is for example the case with the formula:

F 5 : 3xVy -,p(y) v [q(y) A r(x,y)]
Note that no equivalence preserving rewritings of F 5 permit to move p(y) out of the scope of x. For
expressing that the subformulas -ip(y) and q(y) do not impose conditions on x, we define R([x],-p(y))
and R([x],q(y)) as 'empty'. This auxiliary symbol is used as a place-holder during the range generation.
We assume that 'empty' is not available in the user language.

In the following definition, we consider only formulas with existential quantifications. This is not a
restriction, since the universal quantifications can be rewritten in terms of (negated) existential ones ac
cording to the following equivalence preserving rule:

Rute 3: V x F -> - . 3x - . F

For the sake of simplicity, we consider in the rest of the paper that universal quantifications have been

109

rewritten according to Rule 3. In the following proposition, we define a rewriting System. We show that
applying its rules to any formula always terminates in finite time - the rewriting System is noetherian -
and we prove that the final result of the translation does not depend on the order of application of the
rules - the rewriting System is confluent or has the Church-Rosser property.

Proposition 4
Let x be a variable. Let Rules 4 to 12 be defined with respect to x as follows.

Rule 4: A —> empty if A is an atom not containing x

Rule 5: A —> dom(x) if A is an atom with negative polarity

containing x

Rule 6: - i 3 y G —> 3y-nG

Rule 7: dom(x) A G —» G if x occurs in G

Rule 8: G A dom(x) —> G if x occurs in G

Rule 9: empty 9 G —> G where 9 Stands for A or v

Rule 10: G 9 empty —> G where 9 Stands for A or v

Rule 11: - i - i G —> G

Rule 12: - i empty —» empty

The rewriting System consisting of Rules 1 to 12 is noetherian and confluent.

[Proof: In order to prove the noetherian character of the System, it suffices to remark that the number of
times a given rule might be applied during a rewriting process is bounded by a parameter that depends
only on the considered rule and on the formula to translate. Rule 7 and 8 for example, are applicable at
most as many times the considered formula contains domain atoms.
Before completing the proof of Proposition 4, we recall some concepts in an informal manner. Refer
to [HUE 80, SCH 87] for formal definitions.
Two subformulas SFj and SF 2 form a 'critical pair* if there is a formula F and two distinct rewriting rules
both applicable on F through the subformulas SFj and SF 2, respectively. A 'normal form' of a formula F
is a final translation of F. Since the System consisting of rules 1 to 12 is noetherian, as shown in [HUE 80]
it suffices to prove that for all critical pairs (SFj, SF 2) and for the corresponding normal forms NF 1 ? NF 2

of a formula F, we have NFj = NF 2 , in order to prove that Rules 1 to 12 form a confluent rewriting
System. Since this System is finite, there are finitely many critical pairs: The critical pairs can be succes-
sively checked for the required property.
Consider for example, the critical pair (-dy (G A dom(y)), (G A dom(y))) where y is assumed to occur in
G. By Rule 6, -n3y (G A dom(y)) yields 3 y - i (G A dom(y)). Applying Rule 9 on that formula yields
3y - i G. If rule 9 is applied first on - i 3 y (G A dom(y)), the expression - i 3 y G is generated. The same
expression 3 y - i G is obtained with Rule 6. The other critical pairs are similarly treated.]

By Proposition 4 the following definition is correct.

110

Definition 3
Given a formula 3x F, the most constraining range R for the variable x induced by F is obtained
from F by applying the rewriting rules 1 to 12 with respect to x.

Intuitively, Rule 4 expresses that the variables distinct from x are "eliminated by projections" in a range
for x. For example, the ränge for x induced by the expression Vy [-iP(x,y) v Q(x,y)] is 3 y Q(x,y), i.e., in
algebraic terms rc^Q). Fig. 2 below shows how this range for x is generated from the considered query.

Vy HP(x,y) v Q(x,y)] -> (Rule 3)

-n3y -.HP(x,y) v Q(x,y)] -» (Rule 6)

3 y -^([-^(xoO v Q(x,y)])] (Rule 11)

3y t-JP(x,y) v Q(x,y)] -> (Rule 5)

3 y [dom(x) v Q(x,y)] -> (Rule 4)

3y [empty v Q(x,y)] -» (Rule 9)

3 y [Q(x,y)]

Fig. 2 Example of Range Generation

Rules 9 to 12 remove all occurrences of 'empty*, provided there were no 'useless' quantifications in the
formula, i.e., Rules 1 and 2 had been applied. Some 'dorn* atoms may occur in a ränge generated accord
ing to Definition 3, reflecting that the considered formula does not constrain the corresponding variable.
This happens in particular if the considered formula is not domain independent. Proposition 6 in the next
section shows how to use the ranges generated by the rewriting System of Rules 1 to 12.

5. Co-Ranges and Equivalence Preserving Rewritings

A formula *3x F' is not always equivalent to *3x R A F \ where R is the most constraining range for x
obtained from F with the rewriting System of Proposition 3. Consider again the request Qj of Section 4

(in which the universal quantifier has been rewritten with a negated existential one):
Qj: 3x - i [3y lecture(y) A - I attends(x,y)]

By Definition 3, the ränge for x is 3z attends(x,z). The formula

Q 2 : 3x3z attends(x,z) A - i 3y (lecture(y) A - I attends(x,y))
is not equivalent to Qj. As opposed to Qj, Q 2 evaluates to false when there are no lectures and no regis-
tered attendees. However, if there are some lectures, Qj and G have the same valuations. The problem

111

here is that Qj can be satisfied in certain cases without conditions being imposed on x.

An equivalence rewriting of a formula 'Q: 3x F' therefore requires to consider the possibilities to satisfy
Q without constraining the variable x. These possibilities can be detected in a manner similar to how
conditions on the variable x were recognized, but now replacing by a 'cond' symbol the subformulas
containing x. We assume that, like 'empty', the symbol 'cond' is not available in the user language. Ap
plied to Qj, this leads to:

Cj: - i [3y lecture(y) A cond]
after removal of a useless quantification. This expression can be rewritten as

-. [3y lecture(y)] v cond
The presence of a disjunction - with positive polarity - one member of which does not contain 'cond'
shows that Cj , and in turn Qj, can be satisfied without imposing any condition on x. We call

[3y lecture(y)] the co-range for x.

Definition 4
The co-range C for x induced by 3x F is obtained from F by first applying the following rewrit
ing rules:
Rulel: 3xF —» F if x does not occur in F
Rule 3: V x F —> - i3x -VF
Rule 13: G cond if G is an atom containing x
Rule 14: G v cond —> G if G v cond has positive polarity in F
Rule 15: cond v G —> G if cond v G has positive polarity in F
Rule 16: G A cond G if G A cond has negative polarity in F
Rule 17: cond A G —» G if cond A G has negative polarity in F
Rule 18: - i G —> G
Rule 19: - i cond —> cond

and finally applying the rule:
Rule 20: G -» false if 'cond' occurs in G

The following proposition establishes the correctness of Definition 4.

Proposition 5
The rewriting System of Definition 4 (Rules 1,3 and 13 to 19) is noetherian and confluent.

[Proof: The System is noetherain because each rule can only be applied a finite number of times on a
given formula. This number depends only of the considered rule and of the given formula. The rewriting
System is confluent because, for each normal pair (SFj, SF2) and for the associated normal forms
(NFj, NF 2) of a formula F, we have NFj = NF 2 . Consider for example the critical pair
(-i —i (G A cond), (G A Cond)). Applying first Rule 16, then Rule 18 on - i - i (G A cond) yields first
- i - i G, then G. The reverse order for applying the two rules yields first (G A cond), then G.]

Co-ranges express the possibilities to satisfy the query without constraining the considered variables. A

112

co-range equal to false reflects the impossibility of satisfying the query without constraining the con
sidered variables.

Proposition 6
Consider a formula F: 3x G . Let R and C respectively denote the most constraining range and
the co-range of x induced by G , respectively. Let T(F) = C v (3x R A G) .

T(F) is equivalent to F.

[Sketch of Proof: By Definition 4 3x R A G implies F. If C * false then C implies F. It therefore suffices to
prove that F implies T(F). Definition 4 induces that C = false if and only if all disjuncts of the prenex
disjunctive normal form of F contain some Xj's. If C * false then G implies R and therefore F implies
T(F). If C = false then a model satisfying F either satisfy C or satisfy 3x R.]

Corollary
Consider a formula F. Let T(F) denote the formula constructed from F by successively perform-
ing the rewritings defined in Proposition 3 and in Definition 4.

Constructive evaluations of T(F) are domain independent if and only if 'dorn' does not occur in
T(F).

[Proof: Immediate from Definition 1.]

According to Proposition 6, the above-mentioned query
Qj: 3x [Vy lecture(y) => attends(x,y)]

is logically equivalent to
->[3y lecture(y)] v 3x (3z attends(x,z)) A [Vy lecture(y) => attends(x,y)]

Fig. 3 on the next page shows the generation of the co-range - i 3y lecture(y) of the variable x. This
co-range expresses that, if there is no lecture, the query Qj can be satisfied without binding x. Variables
in more complex queries have often co-ranges that are rather complex. This is in particular the case in
presence of nested quantifications.

For optimizing quantified queries, the most constraining ranges are rarely the desirable ones. Convenient
ranges can be chosen on the basis of Proposition 7.

Proposition 7
Consider ä formula F: 3x G . Let R and C be the most constraining range and co-range respec
tively, for x induced by G . Let v | J Dj be a disjunctive form of R. For each i , let Rj be a
subformula of Di such that Dj implies Rj.

F : C v [v | l i 3x (R{ A G)] is equivalent to F.

[Sketch of Proof: F ' is equivalent to T(F): C v (3x R A G) since existential quantifications distribute over
disjunctions and since 3x R implies 3x v |ljf Rj. By Proposition 6, T(F) is equivalent to F. It follows that
F' is equivalent to F.]

113

3x Vy (-»lecture(y) v attends(x,y))] (Rule 3)

3x -i[3y ~i (-• lecture(y) v attends(x,y))] (Rule 13)

3x - i [3y ~i (-i lecture(y) v cond)] —> (Rule 1)

—i 3y —i (—i lecture(y) v cond) (Rule 14)

—13y —i —t lecture(y) (Rule 18)

- i 3y lecture(y)

Fig. 3 Example of Co-Range Generation

F' and T(F) usually contain redundant subformulas, for instance when some variables are already
restricted in F. Consider for example the formula:

F 6 : 3x p(x) A - , (3y [-i q(y) v - , r(x,y)] A s(x))
By Proposition 7, T(F6) is:

false v 3x [p(x) A s(x)] A [p(x) A - I (3y [-. q(y) v - . r(x,y)] A - . s(x))]
The second occurrence of p(x) and the subformula -> s(x) are redundant in T(F6); an expression
'false v G ' can be replaced by G. It is simple to modify the definitions for avoiding such redundancies.

6. Evaluable Formulas Admit Equivalent CDI Forms

In this section, we consider the class of evaluable formulas [DEM 82], a solvable subclass of domain
independent formulas. We show that the rewriting technique of Proposition 7 permits to generate a cdi
formula from any evaluable expression. It follows that combining the rewritings of Proposition 7 with a
constructive evaluation procedure permit domain independent evaluations of evaluable formulas.

We shall rely on a reformulation of the definition of evaluable formulas in the Datalog formalism - as
given in [VGT 87] - instead of the original definition by means of a procedure [DEM 82]. The definition
is based on two relations we first introduce.

Definition 5

The relations 'gen' and 'con' are defined by the following rules:

gen(x,P) <- atom(P), free(x,P) con(xJ>) <- atom(P), free(xJP)

gen(x,-iA) <— pushnot(-iA,B), gen(x,B)

gen(x3y A) <- distinct(x,y), gen(x,A)

con(x,A) <- quantified-in(x,A)

con(x.-iA) <- pushnot(-iA,B), con(x.B)

con(x3y A) <- distinct(x,y), con(x,A)

114

gen(x,AvB) <- gen(x,A), gen(x,B) con(x,AvB) <- con(x,A), con(x.B)

gen(xAAB) <- gen(x,A) COII(X,AAB) <- gen(x,A)

gen(x,AAB) <- gen(x,B) COII(X,AAB) <r- gen(x,B)

con(x^AAB) <- con(x,A), con(x.B)

where atom(P) means that P is an atomic formula

distinct(x,y) the variables x and y are not identical

free(x ,F) the variable x is free in the formula F

quantified-in(x ,F) x is a quantified variable in F

pushnot(-.A,B) B results from - . A by pushing the negation inward

Definition 6
A formula F is evaluable if and only if the following three conditions are satisfied:

1. gen(xJF) holds for all variable x that is free in F
2. con(x,A) holds for all subformula 3x A of F
3. con(x,->A) holds for all subformula Vx A of F

A direct consequence of the following Proposition is that any evaluable formula reduces by the rewritings
of Proposition 7 to a cdi formula in which the predicate 'dorn* does not occur.

Proposition 8
Let Fj : 3XJ G J and F 2 : V x 2 G 2 be two evaluable formulas.

The atom 'doir^Xj)' (*dom(x2)\ respectively) does not occur in the most constraining ränge of
Xj in Fj (of x 2 in F 2 , respectively) defined according to Definition 3.

[Sketch of Proof: By induction on the syntactical complexity of Gj (of G 2 , respectively).]

Since range-restricted formulas and allowed formulas are evaluable [DEM 82, VGT 87], it follows from
Proposition 8 that queries in these classes reduce to cdi expressions by the rewriting considered in
Proposition 7.

7. Conclusion

In this article, we have investigated equivalence preserving rewritings permitting to improve the evalua
tion of quantified queries. These rewritings rely on the generation, from a quantified query, of the ranges
and co-ranges of its variables.

We have first introduced the concept of constructive evaluation, in order to characterize a proof principle
common to several procedures that have been proposed for processing quantified queries [COD 72, PAL
72, DAY 83, JS 82, DAY 87, BRY 89a]. Basically, an answering procedure is constructive if it process
quantifications by instantiating the variables. The rewritings that have been proposed in this article permit

115

to improve the constructive evaluations of quantified queries. However, they can very well reveal in-
efflcient if a non-constructive evaluation method is considered. We have introduced the class of
constructively domain independent formulas for characterizing queries that can be constructively
evaluated without explicitly searching the database domain.

Then, we have described rewritings that translate quantified queries of any kind into expressions amen-
able to constructive evaluations. These rewritings are based on the generation, from a query, of the most
constraining ranges for its variables. When combined with a cost estimation method, they permit to select
variable ranges that achieve efficient constructive evaluations. The rewritings described in this article are
quite complex. This is due to the fact that straightforward range modifications would compromise the
semantics of queries. In order to define equivalence preserving rewritings, we have introduced the con
cept of co-range. A co-range is a formula the satisfaction of which induces a Solution to the query that let
unbound the variable under consideration.

Finally, we have investigated the relationship between domain independent and constructively domain
independent formulas. We have shown that the rewritings described in the article yield constructively
domain independent expressions when applied on formulas in solvable subclasses of the class of domain
independent formulas.

8. Acknowledgement

I would like to thank an anonymous referee for helpful remarks.

9. References

[BDM 88] Bry, F., Decker, H. and Manthey, R. A Uniform Approach to Constraint Satisfaction and
Constraint Satisfiability in Deductive Databases. In Proc. EDBT '88. March, 1988.

[BOC 86] Bocca, J. On the Evaluation Strategy of EDUCE. In Proc. ACM Int. Conf. on the
Management ofData (SIGMOD '86). Washington, D.C., May, 1986.

[BOC 87] Bocca, J. and Bailey, P. On Prolog-DBMS connections: A Step forward from EDUCE. In
Proc. Alvey Symp. on PROLOG and Databases. Coventry, UK, 1987.

[BRY 89a] Bry, F. Towards an Efficient Evaluation of General Queries: Quantifier and Disjunction
Processing Revisisited. In Proc. ACM Int. Conf. on Management of Data (SIGMOD '89). Portland,
Oregon, May 31-June 2,1989. ECRC Report TR-KB-27, Apr. 1988.

[BRY 89b] Bry, F. Logic Programming as Constructivism: A Formalization and its Application to
Databases. In Proc. 8th ACM SIGACT-SIGMOD-SIGART Symp. on Principles of Databases Systems
(PODS '89). Philadelphia, Pennsylvania, March 29-31,1989. ECRC Report IR-KB-54, Sept. 1988.

[CG 85] Ceri, S. and Gottlob, G. Translating SQL in Relational Algebra: Optimization, Semantics
and Equivalence of SQL Queries. IEEE Trans. SE-11(4), April, 1985.

[CH0 87] Cholvy, L. Interrogation d'une Base de Rtgle. Technical Report 2/3274/DERI, ONERA-
CERT, Toulouse, France, Feb., 1987. in French.

[COD 72] Codd, E. Database Systems - Courant Computer Science Symp. Prentice Hall, Englewood
Cliffs, New Jersey, 1972, Chapter Relational Completeness of Database Sublanguages.

116

[DAY 83] Dayal, U. Processing Queries with Quantifiers: A Horticultural Approach. In Proc. ACM
SIGMOD-SIGMACT Symp. Principles of Database SYstems (RODS '83), pages 125-136. Atlanta,
March, 1983.

[DAY 87] Dayal, U. Of Nests and Trees: A Unified Approach to Processing Queries That Contain
Nested Subqueries, Aggregates, and Quantifiers. In Proc. VLDB '87, pages 197-208. August, 1987.

[DEC 89] Decker, H. The Range Form of Database Queries, or: How to Avoid Floundering. In Proc.
Österreichische Artificial Intelligence Tagung. Igls bei Innbruck, March 28-29, 1989.

[DEM 82] Demolombe, R. Syntactical Characterization of a Subset of Domain Independent Formulas.
Technical Report, ONERA-CERT, Toulouse, France, 1982.

[DIP69] Di Paola, R.A. The Recursive Unsolvability of the Decision Problem for the Class of
Definite Formulas. Jour. of the ACM 16(2), 1969.

[FAG 80] Fagin, R. Horn Clauses and Database Dependencies. In 12th Ann. ACM Symp. on Theory of
Computing, pages 123-134. 1980.

[HUE 80] Huet, G. Confluent Reductions: Abstract Properties and Applications to Term Rewriting
Systems. Jour. of the ACM 27(4):797-821, October, 1980.

[JS 82] Jarke, M . and Schmidt, J. Query Processing Strategies in the PASCAL/R Relational
Database Management System. In Proc. ACM Int. Conf. on Management ofData (SIGMOD '82). June,
1982.

[KIN 81] King, JJ . Query Optimization by Semantic Reasoning. Technical Report STAN-CS-81-857,
Stanford Univ., Dpt. of Computer Sc, May, 1981.

[KOW 79] Kowalski, R.A. Algorithm = Logic + Control. Commun. ACM, Aug., 1979.

[KUH 67] Kuhns, J.L. Answering Question by Computer: A Logical Study. Technical Report
RM-5428-PR, Rand Corp., 1967.

[LT 86] Lloyd, J.W. and Topor, R.W. A Basis for Deductive Database Systems II. Jour. of Logic
Programming 3(l):55-67,1986.

[MB 88] Manthey, R. and Bry, F. SATCHMO: A Theorem Prover Implemented in Prolog. In Proc.
Conf. on Automated Deduction (CADE '88). May, 1988.

[MEN 79] Mendelson, E. Introduction to Mathematical Logic. Van Nostrand, New York, 1979.

[ND 83] Nicolas, J.-M. and Demolombe, R. On the Stability of Relational Queries. Technical
Report, ONERA-CERT, Jan., 1983.

[NIC 81] Nicolas, J.-M. Logic for Improving Integrity Checking in Relational Databases. Acta
Informatica 18(3):227-253, Dec, 1981.

[PAL 72] Palermo, F. A Data Base Search Problem. In Proc. 4th Symp. on Computer and Information
Sc. 1972.

[SCH 87] Schmitt, P. H. A Survey of Rewrite Systems. In Proc. Workshop on Computer Science
Logic (CSL '87), pages 235-262. Springer-Verlag (LNCS 329), Oct., 1987.

[TRO 77] Troelstra, A.S. Handbook of Mathematical Logic. North-Holland, Amsterdam and New
York, 1977, pages 973-1052, Chapter Aspects of Constructive Mathematics.

[VGT 87] Van Gelder, A. and Topor, R.W. Safety and Correct Translation of Relational Calculus
Formulas. In Proc. 6th ACM SIGACT-SIGMOD-SIGART Symp. on Principles of Database Systems
(PODS '87), pages 313-327. 1987.

[VIE 86] Vieille, L. Recursive Axioms in Deductive Databases: The Query-Subquery Approach. In
Proc. lst Int. Conf. on Expert Database Systems. Charleston, South Carolina, 1986.

[VTE 88] Vieille, L. From QSQ towards QoSaQ: Global optimization in Recursive Queries. In Proc.
2nd Int. Conf. on Expert Database Systems. Tyson Corner, Virginia, 1988.

