
Lecture Notes in
Computer Science
Edited by G. Goos and J. Hartmanis

474

D. Karagiannis (Ed.)

Information Systems and
Artificial Intelligence:
Integration Aspects
First Workshop
Ulm, FRG, March 19-21, 1990
Proceedings

Springer-Verlag
Berlin Heidelberg New York London
Paris Tokyo Hong Kong Barcelona

Contents

Preface III

S. Böttcher
A Semantics for the Integration of Database Modifications
and Transaction Brackets into a Logic Programming Language 1

G. B r e w k a
Handling Incomplete Knowledge in Artif icial Intelligence 11

F . B r y
Negation in Logic Programming:
A Formalization in Constructive Logic 30

G. G a r z
Database Support for Knowledge Representation ? 47

D . H o v e k a m p , M . Sand fuchs
A K B M S for B A B Y L O N 62

T. L u d w i g , B . W a l t e r
Database Concepts for the Support of Knowledge-Based Systems 87

R. M a n t h e y
'Integrity and Recursion:
Two Key Issues for Deductive Databases 104

JV. M a t t o s
A n Approach to DBS-Based Knowledge Management 127

J . M y l o p o u l o s , M . B r o d i e
Knowledge Bases and Databases:
Current Trends and Future Directions 153

B . Nebel, C. P e l t a s o n
Terminological Reasoning and Information Management 181

G. Saake
Conceptual Modeling of Database Applications 213

H . T h o m a
Information Analysis:
A Step-by-Step Clarification of Knowledge and Requirements 233

A . Voß
Model-Based Knowledge Acquisition 256

X

H . T h o m a (P a n e l C h a i r)
Practical Experiences — A Panel Session 273

ff.-P. H o i d n
Practical Experiences in Coupling Knowledge Base
and Database in a Productive Environment 274

JV. M a t t o s
Performance Measurements and Analyses of
Coupling Approaches of Database and Expert Systems and
Consequences to Their Integration 283

) / V . Sager
Integration of A I Systems in Conventional Environments 289

Negation in Logic Programming:
A Formalization in Constructive Logic

Frangois Bry

E C R C , Arabellastraße 17, D - 8 0 0 0 München 8 1 , Germany
ß@ecrc.de

A B S T R A C T The c o n v e n t i o n a l f o r m a l i z a t i o n of l o g i c p r o g r a m m i n g i n
c l a s s i c a l l o g i c e x p l a i n s v e r y c o n v i n c i n g l y t h e b a s i c p r i n c i p l e s of t h i s p r o
g r a m m i n g s t y l e . H o w e v e r , i t gives no easy o r i n t u i t i v e e x p l a n a t i o n s f o r
t h e t r e a t m e n t of n e g a t i o n . L o g i c P r o g r a m m i n g h a n d l e s n e g a t i o n t h r o u g h
t h e s o - c a l l e d ^ N e g a t i o n as F a i l u r e " i n f e r e n c e p r i n c i p l e w h i c h i s r a t h e r
u n c o n v e n t i o n a l f r o m t h e v i e w p o i n t of c l a s s i c a l l o g i c . D e s p i t e i t s n o n c l a s -
s i c a l n a t u r e , t h i s i n f e r e n c e p r i n c i p l e c a n n o t be a v o i d e d i n p r a c t i c e . The
a p p r o p r i a t e a p p l i c a t i o n of N e g a t i o n as F a i l u r e r e q u i r e s e i t h e r s y n t a c t i c a l
r e s t r i c t i o n s , o r s i g n i f i c a n t changes i n t h e semantics of l o g i c p r o g r a m s .
I n t h i s a r t i c l e , we defend t h e thesis t h a t these s y n t a c t i c a l r e s t r i c t i o n s o r
s e m a n t i c a l changes a r e n a t u r a l l y a n d s i m p l y e x p l a i n e d by o b s e r v i n g t h a t
l o g i c p r o g r a m m i n g i n f a c t i m p l e m e n t s no m o r e t h a n a c o n s t r u c t i v e f r a g -
ment of c l a s s i c a l l o g i c . R e l y i n g o n a " C o n d i t i o n a l F i x p o i n t P r o c e d u r e " ,
we first define a m o n o t o n i c i n f e r e n c e p r o c e d u r e f o r l o g i c p r o g r a m s w i t h
n e g a t i o n t h a t a r e c o n s i s t e n t i n t h i s c o n s t r u c t i v e f r a g m e n t . Then we show
how t h i s p r o c e d u r e c a n be extended i n t o a " T e m a r y F i x p o i n t P r o c e d u r e "
f o r g e n e r a l p r o g r a m s . T h i s fixpoint p r o c e d u r e defines a t e m a r y l o g i c se
m a n t i c s f o r s y n t a c t i c a l l y u n r e s t r i c t e d l o g i c p r o g r a m s . F i n a l l y , we a r g u e
t h a t t h e c o n s t r u c t i v e i n t e r p r e t a t i o n of l o g i c p r o g r a m m i n g a l s o gives a s i m
p l e a n d n a t u r a l e x p l a n a t i o n of m e t a - p r o g r a m m i n g . R e l y i n g o n t h i s v i e w
of m e t a - p r o g r a m m i n g , we specify different f o r m s of r e f l e c t i v e r e a s o n i n g ,
i n p a r t i c u l a r default r e a s o n i n g .

1. Introduction

Since P r o l o g (Programming in L o g i c) has been developed by A . Colmerauer and R.
Kowalski, the concept of "logic programming" refers to a certain type of declara-
tive programming languages. Logic programs are formalized as relationship between

31

terms in a logical theory [vEK76, Kow79]. This view gives a very convincing ex-
planation of the basic principles of declarative programming languages, which is
independent from any inference principle. However, this formalization proves to be
inappropriate as soon as additional features - language constructs or syntactical re
strictions - are considered, that are necessary for practical applications of declarative
languages.

Negation is such a construct. Its processing, which could be considered rather unlog-
ical by mathematicians, has led either to restrict the syntax of logic programs, or to
formalize their semantics in ternary logics. In this paper, we show that these syntac
tical restrictions and nonclassical semantics are naturally and intuitively explained
by referring to a rather simple fragment of classical logic.

This restricted logic is in fact the original form of mathematical logic. It is called
"constructive logic" because it rejects existence proofs that do not explicitly con
struct the mathematical object, the existence of which is proven. Before Cantor,
the restriction to constructive proofs was almost taken for granted. B y applying
its diagonalization principle, Cantor has shown that an additional number can be
defined from any enumerable set of real numbers. Cantor's definition is however
not a construction. Therefore his proof has been first strongly criticized. The ar-
ticle [Cal79] provides an easy introduction to this part of mathematics and to its
history. Although nonconstructive proofs are nowadays no longer criticized, con
structive reasoning has survived in mathematics. Various constructive logics have
been developed aside the main stream of conventional mathematics. We do not need
to ref er to these theories, whose notations and vocabularies are often discouraging.
We shall only make use of the original and quite intuitive notion of constructive
proof.

The formalization of logic programming in constructive logic is not only useful for in-
vestigating negation. It gives also a very natural explanation of meta-programming.
From the constructive viewpoint, it is rather natural to define theories or programs,
whose variables ränge over formulas. Since in constructive logic formulas represent
themselves but no platonistic objects, it is possible to interpret meta-programs as
first-order, constructive theories. This constructive view of meta-programming is
especially useful for axiomatizing non-classical logics such as, for example, autoepis-
temic or default logics. Such axiomatizations can also be used as implementations.

Some authors have already observed the link between logic programming and con
structive reasoning. G. Huet suggests in [Hue86] to view Prolog Interpreters as proof
synthetisers of a sequent calculus - a kind of constructive logic. D. Bojadziev notices
similarities between Prolog and constructive reasoning in the short article [Boj86].
Constructive aspects of Prolog are investigated by C. Beckstein in relationship with
T r u t h M a i n t e n a n c e Systems in [Bec88]. J . -Y . Girard, Y . Lafont, and P. Taylor sug-
gest in [GLT89] a possible relationship between logic programming and linear logic
[Gir87] - a constructive logic recently proposed by J . -Y . Girard. In [Bry89a] the
view of logic programming as a constructive fragment of classical logic was used,
for the first time as far as we know, to intuitively motivating syntactical restrictions

32

like stratiflcation or ternary semantics. We do not know about any work relying on
constructive logic for investigating meta-programming.

This article consists of seven sections, the first of which is this introduction. In
Section 2, we recall the usual formalization of logic programming without negation.
Then, we consider in Section 3 the processing of negation and the difKculties resulting
from it. We define a "Conditional Fixpoint Operator" in Section 4. We show how
to use this Operator for monotonically generating consequences from programs with
negation that are constructively consistent. We show how syntactical properties like
stratiflcation [ABW88, Van88] or local stratiflcation [Prz88] are easily motivated in
constructive logic: They are necessary conditions for constructive consistency. In
Section 5, we propose a ternary valued semantics for syntactically unrestricted logic
programs. We define a "Ternary Fixpoint Procedure" for this semantics. Finally,
we propose an interpretation of meta-programming in constructive logic in Section
6. As examples of this interpretation, we show how reflective inference principles
like modal and default logics can be specified as meta-programs. Section 7 is a
conclusion.

This article is translated and adapted from the text of a talk given at the l s t Work
shop Information Systems and Artificial Intelligence [Bry90].

2. Logic Programming without Negation

The inference principles of logic programming are modus ponens and the special-
ization rule. B y modus ponens, a formula G is derived from two formulas F and
F =$> G. If c is a constant in the universe under consideration, specialization gives
rise to deriving F[c] from a universal formula Vx F[x]. These two inference rules
are combined in the resolution principle [Rob65a], the knowledge of which is not
necessary for our purposes.

The two inference principles modus ponens and specialization can be more or less
directly implemented. The simplest approach consists in applying first the special
ization rule for eliminating the universal quantifiers. A formula Vxyz p(x, y) A q(y, z)

r(x, z) - usually written as r(x, z) «— p(x, y) A q(y, z) in logic programming -
is for example specialized by instantiating its variables in all possible ways over the
universe under consideration. This approach which applies the two inference rules
specialization and modus ponens separately and successively is usually retained in
T r u t h M a i n t e n a n c e Systems [Doy79, dK86]. A major drawback is the number of
useless instantiated formulas that are, in most cases, generated.

A significant improvement consists in relying on the premise of the clauses - i.e.,
on p(x, y) A q(y, z) in the above-mentioned example - for restricting specialization:
Only those instances of the clause r(x, z) <— p(x, y) A q(y, z) are needecl that make
the conjunction p(x, y) A q(y, z) true. Note that no subsequent instanciations
are necessary if all variables appear in the premises, i.e., if the clause is ränge-
r e s t r i c t e d . It is common to describe this improvement for range-restricted clauses as

33

a special type of resolution, u n i t h y p e r r e s o l u t i o n [Rob65b, vEK76]. This approach
is called f o r w a r d or b o t t o m - u p reasoning, for it somehow follows the direction of the
implication sign in the formulas or in the clauses. A remarkable efficiency can be
achieved in this way, which applies specialization no more than necessary.

Foliowing van Emdem and Kowalski [vEK76], the denotational semantics of a logic
program is traditionally defined in terms of bottom-up reasoning. The semantics of
a logic program without negation P is defined in terms of the facts that are derivable
from P by iterated applications of bottom-up reasoning. A facts which is derivable
from a specialization of a clause in P by one application of modus ponens is called
a d i r e c t consequence of P. The set of the direct consequences of P is noted T(P).

T | n (P) denotes the set of facts that are derivable from instances of clauses in P by
at most n applications of the modus ponens rule. This set is inductively defined as
follows:

TT° (P) = P

T | n + 1 (P) = T(TTn(P)) U Tt n (P)

The sets of all facts that are derivable from P is:

Un€N TP (P) = TT 0 (P) u TT 1 (P) U ... U T f n (P) u ...

It is denoted T f " (P). This set is the fixpoint of the function T f on the program P.

The function T | and the computation of its fixpoints are traditionally used for
formalizing the semantics of logic programs without negation. Despite of an ele
gant analogy between model theory in logic and denotational semantics of programs
[vEK76], it is worth to notice that the computation of a fixpoint T|U'(P) is in prin
ciple a forward reasoning procedure.

This procedure has two forms, often called n a i v e and s e m i - n a i ' v e methods. The
na'ive method computes the sets T | n (P) for increasing values of n. The semi-naive
methods improves the na'ive methods by only Computing thoses facts of T j n + 1 (P)
that have at least one premise in

T | n (P) \ TT 1 1" 1!?)

This aims at restricting the computation of T f n + 1 (P) as much as possible to that of

T | n + 1 (P) \ T | n (P)

The Operators T and T | are monotonic on programs without negation: If Pi C P 2 ,
then T(P a) C T(P 2) and T | (Pi) C TT(P 2).

In order to avoid the generation of useless facts and to restrict as much as possible the
generation to relevant facts, so-called backward or t o p - d o w n reasoning methods are

34

applied. It is a quite intuitive fact, that forward reasoning cannot take into account
the constants occurring in queries. This inference technique indeed considers the
queries at the very end. As opposed backward reasoning methods start from the
queries. They can therefore propagate the constants occurring in queries.

Backward reasoning is close to the so-called problem reduction reasoning paradigm.
For example, in order to prove a fact p(a), a backward reasoning methods searches
for all clauses whose conclusions can be unified with p(a). For example, the clause

p(x) <- q(x) A r(x)

would be selected. In contrast, the following clauses would not be retained:

s(x) *- t(x) A u(x)
p(b) - v(x)

The premises of the selected clauses - also called "bodies" - are in turn similarly
processed.

A particular form of backward reasoning, based on linear resolution (see, e.g.,
[Sti86]), gives the principle - or the so-called operational semantics - of the P r o l o g
programming language [Llo87]. Logic programming is however neither restricted to
linear resolution, nor to backward reasoning. In order to correctly handle recursive
programs, a few new procedures have been defined in the last few years, among
others the m a g i c sets m e t h o d [BMSU86, BR87] and SLDAL-resolution [Vie89]. It
has been recently observed that these methods all implement the same nonlinear
backward reasoning principle [Bry89b, Man89]. 1 Forward reasoning is for example
applied in abstract interpretation [GCS88, BD88].

It is worth noting that logic programming (without negation) cannot prove all the-
orems of (negation-free) logical theories. From the clauses

p(a)
p(f(x)) <- p(x)

it is possible to derive the following property:

VneN* p(f n(x))

This universal formulas is however not derived from a logic program, because the
induction principle is missing in logic programming.

1Some methods i m p l e m e n t back ward reasoning in a language of clauses that are processed
forward. This property of the p r o g r a m m i n g language used does however not characterize the
I m p l e m e n t a t i o n .

35

Disjunctive formulas like a V b cannot be expressed in logic programs. (The logical
dependency of a fact a from b or from c can however be expressed by means of two
clauses a <— b and a <— c.) In logic programming, a disjunctive statement

a V b

can only be proven by proving a or by proving b. Classical logic gives rise to other
proofs, for example based on the t e r t i o n o n d a t u r or excluded middle principle.

The above-mentioned restrictions are all constructive. The formalization of logic
programming in füll classical logic is already questionable for programs without
negation. A n interpretation in constructive logic would be more natural.

3. A Non-Classical Inference Principle: Negation as Failure

In logic programming, a negated formula - i F is considered proven when F is not
provable. This inference principle is called n e g a t i o n as f a i l u r e [Cla78]. This manner
to derive negative Information can be called a reflective inference principle, for the
reasoning System reflects on its own knowledge. It departs from classical logic which
treats negative and positive expressions similarly.

The negation as failure principle is rather intuitive. It is often used in every-day life.
For example, one concludes that there is no direct flight from Nürnberg to Stuttgart
if one finds none in the time table. This reasoning is nonmonotonic: If new flights
are created, negative conclusions might be no longer valid.

The negation as failure principle has been introduced for relational databases under
the name of c l o s e d w o r l d a s s u m p t i o n in the seventies [Rei78]. Because it is natural
and also because it gives rise to an efficient backward evaluation of negated expres
sions, this principle has been retained. It is quite interesting to notice that inference
principles that are, like negation as failure, unconventional for mathematicians, but
rather intuitive for nonmathematicians, have been proposed within constructive log
ics.

Negation as failure is very close to default reasoning [Rei80]. One can for example
see the condition r(x) in the clause p(x) <— q(x) A - i r (x) as an exception for the
negation-free clause p(x) <— q(x). Since negation as failure is a reflective inference
principle, it is also related to modal nonmonotonic logics - e.g., autoepistemic logic
[Moo85].

Negation as failure poses problems for several reasons. In classical logic, expressions
such as a <= b and a V ->b are equivalent. As a consequence, implications like

p <= r A -iq

and

36

q r A ~»p

are also equivalent. Are however the following clauses also equivalent?

p <— r A ->q
q <— r A -ip

Obviously not: From a program consisting of the fact r and first clause, p and -»q
are derived. In contrast ->p and q follow from r and the second clause.

In constructive logic, the formulas a <= b and a V -«b are not equivalent. The im-
plication a b means only that a can be proven as soon as b is provable. If impli-
cations are only interpreted in this constructive manner, an implication a <= -^a is
always false: a and -»a cannot be both provable. The constructive interpretation of
implications gives a natural explanation, why the two clauses considered above do
not have the same effect: They are not constructively equivalent.

Another difficulty caused by the negation as failure principle is the nonmonotonicity
of the Operator T. Consider the program P = {p <— ->q, q <— r, r}. Since q $ P and
r £ P, we have T(P) = {p, q}. The derivation of p is however questionable because
it relies on - iq. The later derivation of q contradicts this assumption. The Operator
T therefore is not suited to defining the denotational semantics of programs with
negation. In the next section, we propose a monotonic fixpoint procedure for such
logic programs.

4. Monotonie Reasoning on Programs with Negation

In order to restore monotonic reasoning on programs with negation, one has to
delay the evaluation of negated expressions. Instead of generating facts, as does the
Operator T, we propose to collect the negative premises for later evaluations.

The facts a and b and the clause c <— a A b A -*c give for example rise to deriving
the clause c «— ->c. From the two following clauses

a <— b A ->c
b <- d

one can derive the clause a <— - ic A ->d. Nonground clauses are appropriately in-
stanciated and similarly processed.

We first illustrate on an example the Operator based on this principle. Then, we recall
the formal deflnition from the article [Bry89a]. Since the new Operator generates a
kind of conditional facts, we call it "Conditional Fixpoint Operator" and denote it
T c .

Let P be the following logic program:

37

p(x) <— q(x) A -•t(x) A - T (X)
q(x) <— s(x) A -"t(x)
r(x) <— s(x) A _ i u(x)

s(a)
s(b) u(b)

u(c)

Düring a first phase, the following clauses - or conditional facts - are generated,
until a fixpoint is reached.

Then, in a second phase, these clauses are simplified. The literals -«t(a) and -•t(b)
are eliminated, since there are neither facts nor clauses defining t. Similarly, -<u(a)
is eliminated. The r(a) and the clause p(a) <— -«r(a) result from these first elimina-
tions. Since r(a) has been already obtained, this clause is useless: We eliminate it
as well. Pursuing this elimination process results in the following set of facts:

The definition of the T c Operator given below makes use of a few notations. Given a
literal or a conjunction of literals B , 'pos(B)' will denote the conjunction of positive
literals in B or, if this is the case, the only positive literal in B . Similarly, 'neg(B)'
will denote the conjunction of negative literals or the single negative literal in B . If
B does not contain any positive literal (negative literal, resp.) 'pos(B)' ('neg(B)',
resp.) is defined as 'true\ A clause, the body of which is 'true' or a conjunction of
negative literals, will be called a "conditional fact".

Definition 1:
Let P be a logic program. A conditional fact

T c T ^ P) : P T c | 2 (P) : T c T^P)
q(a) <- -t(a)
q(b) - -t(b)
r(a) <— ->u(a)
r(b) <- -.u(b)

p(a) <— -it(a) A ~T(a)
p(b) « - -.t(b) A -.r(b)

{q(a), q(b), r(a), p(b)}

C: ka <- neg(B<r) C i A ... A Cj A ... A Q 'n

is a conditional consequence of P - i.e., C € T C (P) - if:
1. There is a clause (A <— B) in P
2. There is a Substitution a instanciating the variables in (A <— B) with
ground terms of the language of P
3. pos(B)cr = true
or pos(B) = A i A ... A A , A . . . A n (n > 1) and for all i £ {1, n} there
is a clause Aj <— Ci in P, or C\ = true and A i is a fact in P.

Since negative literals are not evaluated during the computation of T C (P) , we have:

38

Proposition:

The Operator T C (P) is monotonic. It has a unique fixpoint.

The Conditional Fixpoint Procedure is defined as follows:

Definition 2:

Let P be a logic program (without function Symbols). The Conditional
Fixpoint Procedure consists of two successive phases:
1. The fixpoint T C (P) is first computed.
2. The set T C (P) is reduced to a set of facts by applying the following
rewriting rules:

The reduction phase of the Conditional Fixpoint Procedure always terminates, as
soon as the program under consideration is constructively consistent [Bry89a]. This
condition prevents that a clause, the premise of which is the negation of the conclu-
sion - e.g., p(a) <— -«p(a) - is derivable. In the next section, we show the procedure
of Definition 2 can be adapted to also handle logic programs that are constructively
inconsistent.

The extension of Definition 2 to logic programs with function symbols is possible.
It requires however more complex notations. For the sake of simplicity, we do not
give it here.

The Operator T c does not perform nonmonotonic deductions. However, consequences
of a program P can still become invalid in a program extending P with additional
facts or clauses.

Düring the last few years, various classes of syntactically restricted logic programs
with negation have been proposed, among others hierarchical, stratified [ABW88,
Van88], and locally stratified [Prz88] programs. The constructive formalization of
logic programming gives a rather simple motivation for these syntactical restrictions:
There are necessary conditions for constructive consistency [Bry89a]. Previously,
these syntactical restrictions were only procedurally motivated.

(F +- true) F
F A true -> F
false A F —* false

true A F -> F
F A false —» false
(F <- false) - 4 A

->F —> true
if F js neither a fact, nor the
conclusion of a clause.

39

5. Ternary Logic for Unrestricted Programs

The fixpoint semantics of logic programs with negation described in the previous
section in terms of the Operator T c does not take into account logic programs that
are constructively inconsistent. In practice, it is however often desirable to accept
such programs by somehow "ignoring" their inconsistent parts. In this section, we
propose a semantics for general programs which formalizes this intention of "over-
seing" inconsistencies.

This semantics is defined by slightly modifying the reduction phase of the Condi
tional Fixpoint Procedure. Clauses such as p(a) <— -> p(a) that are false from the
constructive viewpoint are simply eliminated, and the facts that are "defined" by
such clauses - p(a) in case of p(a) <— -» p(a) - are marked as "unknown". They are
thus distinguished from facts without any definition. The negation as failure princi
ple is maintained by interpreting as "false" those facts that have neither consistent,
nor inconsistent definitions. We first illustrate this modification of the Conditional
Fixpoint Procedure on an example.

Let p be the following logic program:

p <— a q <— ->p a
p <— q r <— -> r

From P the following marked facts are derived: a: true, p: true, r: unknown, and
q: false. This semantics is called ternary or 3-valued, for it has three truth values.
The following inequalities express, in the usual formalism of ternary logics, the
precedences between the truth values:

true > unknown > false

A fact is not assigned the truth value "false" as soon as it can be proven - i.e.,
marked "true" - or marked "unknown". Similarly, as soon as a fact is proven, it is
removed from the facts marked "unknown".

We call "Ternary Fixpoint Procedure" the reasoning informally described above.
Like the Conditional Fixpoint Procedure, it is based on the T c Operator. It is
formally defined as follows:

Definition 3:
Let P be a logic program (without function Symbols). The Ternary
Fixpoint Procedure consists of three successive phases:
1. The fixpoint T c f(P) is first computed.
2. The set T c f (P) is then reduced to a set of marked facts by applying
the following rewriting rules, where F denotes an atom:

40

F -> (F: true) (F <- true) (F: true)
true A F -> F F A true -> F
F A false —• false false A F —> false
(F <- false) A
(F *- -,F) -> (F: unknown)

->F —» true
if F is neither a fact, nor a fact marked
"true", nor the conclusion of a clause
in P

3. Finally, all facts that are neither marked "true", nor "unknown" are
marked "false"; moreover "unknown" marks are removed from facts also
marked "true".

It is worth noting that ternary logics are constructive logics. Ternary logics for
unrestricted logic programs have been defined in various ways, for example in [Fit85,
GL88, VRS88, BF90, Van89]. They do not significantly differ from the above-
defined semantics. Moreover, the Ternary Fixpoint Procedure can easily be adapted
to reflect these differences. Some authors make use of similar concepts as the T c

Operator, which was introduced in [Bry89a].

Like the Conditional Fixpoint Procedure, and in the same way, the Ternary Fixpoint
Procedure can be extended to logic programs with function symbols.

6. Application: Reflective Reasoning

Constructive logic is not platonistic. Constructive reasoning does not ref er to any
meaning of the formulas, but to the formulas themselves. A frequent example of
this way of thinking is the hypothesis that distinct constants denote distinct objects.
This hypothesis is called U n i q u e Name A x i o m in database theory. In logic program
ming, this hypothesis is conveyed through the restriction to Herbrand models. It is
questionable, whether human thinking is restricted in a similar way. We shall not
try to ans wer this philosophical issue. We just notice that constructive reasoning is
well suited to artificial intelligence: A Computer just constructs.

From the constructive viewpoint, it is rather natural to define logic programs with
variables ranging over formulas. Such programs are called "meta-programs" [SS86b].
They are often seen as second-order theories. The constructive viewpoint, however,
suggests another formalization. Since the variables of meta-programs represent for
mulas, but no mathematical objects defined by these formulas, meta-programs can
be formalized in first-order logic - see in particular [End72], pp. 281-289.

Meta-programming is a mean to overcome restrictions of logic programming, for it
gives rise to specifying within logic programming, reasoning principles different from

41

that of logic programming. We illustrate this point by giving some examples of meta-
programs that implement some forms of reflective and nonmonotonic reasoning.

Logic programming does not give rise to deriving universal formulas. The following
meta-program specify an evaluation of universal formulas in implicative form. The
specification is sound and complete for restricted universal quantification [Bry89c].

forall(x, y =>> z) <— -> (y A -> z)

Let F be the formula Vx p(x) =>• q(x) and P the program {p(a), p(b), q(a), q(b),
q(c)}. When y is instanciated with p(x), and z with q(x), a backward evaluation
of forall(x, y z) binds the variable x successively with all values in p-facts. For
each instantiation of x, q(x) is checked. It is worth noting, that this way to prove
universal formulas is constructive.

We show by means of a simple example how a form of autoepistemic reasoning can
be easily implemented by a logic meta-program.

Let A , B , and C be three agents. assume that A believes all what B believes, provided
that C does not believe it. Assume also that B believes everything provable. Assume
finally that C believes everything simple. We assume that an information is simple
if it is provable without applying modus ponens.

believes(A, x) «— believes(B, x) A -» believes(C, x)
believes(C, x) <— fact(x)
believes(B, x) <— proven(x)
believes(C, x) *— simple(x)

simple(Fi A F 2) <— s i m p l e ^) A simple(F 2)
simple(F) <- fact(F)

Finally, we propose a meta-program for default reasoning. General rules are assumed
to be stored is facts by means of a predicate "clause". For example,

clause(flies(x) <— bird(x))

means that birds normally fly. Exceptions to general rules are assumed to be ex
pressed by using an "except" predicate. Since penguins are birds, but do not fly, we
have:

except (flies (penguin))

The following meta-program implements default reasoning:

proved(x) 4 - clause(x <— y) A proved(y) A -> except(x)
proved(xi A x a) <— proved(xi) A proved(x2)
proved(x) <— fact(x)

42

From the following object-program

clause(flies(x) <— bird(x))
bird(crow)
bird(penguin)
except(flies(penguin))

the above-defined meta-program derives only the fact flies(crow).

It is worth noting that exceptions - i.e., "except" facts - can as well be defined
by means of clauses. These clauses in turn can admit exceptions. Processing such
"nested exceptions" by means of the Conditional or Ternary Fixpoint Procedures
results in the hierarchical reasoning suggested by Poole in [Poo98] for default reason
ing Systems. Thus, logic meta-programming is very convenient to easily specifying
- and implementing - sophisticated default logics.

We illustrate the notion of "nested exceptions" on an example. Cars must stop if
the traffic light is red. This rule however does not apply to ambulance cars provided
they are in Service. This last restriction - i.e., "in service" - may be viewed as
an exception to the derogatory rule for ambulance cars. In the formalism of the
above-defined meta-program, this example can be represented as follows:

stop <— red
except(stop) <— ambulance
except (except (stop)) <— after-service

Instead of refering to predicates - "stop" and "except(stop)" in the previous example
- exceptions can also ref er to clauses. This requires a slight modification of the
formalism. This is easily achieved by, for example, naming the clauses and modifying
the "proved" meta-program. We assume that a clause x <— y is uniquely assigned an
identifier z. We also assume that clauses named in this way can be retrieved using
a binary predicate "clause":

clause(z, x <— y)

The following meta-program handles exceptions to clauses:

proved(x) <— clause(z, x «— y) A proved(y) A -> except(z)
proved(xi A x a) <— proved(xi) A proved (x 2)
proved (x) +— fact(x)

Döing so, different exceptions can be given for "stop", depending on the stop-rule
under consideration. Such a refined representation give rises, for example, to express
that there is no derogation to stopping at level crossing when a train arrives. The
following clauses formalize this example:

43

clause(l, stop *— red)
clause(2, stop <— level-crossing A train)
clause(3, except(l) <— ambulance)
clause(4, except(except(l)) *— after-service)

Clearly, some applications might require to handle both, exceptions to clauses as
well as exceptions to predicates, depending on the predicates. We leave specifying
the corr->:ponding meta-program to the reader, for it is quite easy.

Because it gives rise to easily refining various deduction schemes, we argue that meta-
programming is very convenient for defining and implementing complex reasoning,
especially nonmonotonic reasoning Systems.

7. Conclusion

In this article, we have proposed a particular interpretation of logic programs. Ac-
cording to this interpretation, logic programming departs from modern mathematics.
It restricts reasoning to certain inference rules, in a manner which corresponds to a
primitive form of mathematical logic, constructive logic. It provides us with rather
natural explanations for several features of logic programming.

In particular, it explains very naturally syntactical restrictions such as "stratiflca
tion" and "local stratiflcation" that were proposed for overcoming difficulties result-
ing from the non-monotonicity of negation as failure. The constructive interpreta
tion of logic programs also provides us with a convenient framework for defining a
ternary semantics for syntactically unrestricted programs.

The constructive viewpoint also suggests a formalization of meta-programming. B y
means of a few examples of meta-programs^ we have shown how logic program
ming is closely related to other non-monotonic logics. We have shown how meta-
programming gives rise to elegant specifications of various logics that depart from
the very semantics of logic programming. These specifications are as well implemen-
tations. Thus, although it implements a restricted, constructive fragment of classical
logic, logic programming gives rise, through meta-programming, to overcoming its
own limitation.

We argue that it is preferable to specify refined forms of reasoning as logic meta-
programs, instead of developing new formalisms or new implementation paradigms,
for the following reasons. First, constructive reasoning - the paradigm of logic
programming - is very natural and intuitive. Second, the meta-programming ap
proach gives rise to easily combining into one System, different forms of reasoning.
Finally, program transformation techniques - in particular partial evaluation, see,
e.g., [SS86a] - have been developed for automatically generating efficient implemen-
tations from specifications in form of logic meta-programs.

44

Acknowledgement

This research was partly supported by the European Community in the framework
of the Basic Research Action C o m p u l o g No. 3012.

References

[ABW88] K . R. Apt , H . A . Blair, and A . Walker. F o u n d a t i o n s of D e d u c t i v e
Databases a n d L o g i c P r o g r a m m i n g , chapter Towards a Theory of Declar
ative Knowledge. Morgan Kaufmann, Los Altos, Calif., 1988.

[BD88] M . Bruynooghe and D. De Schreye. Tutorial Notes for: Abstract Inter
pretation in Logic Programming. Research report, University of Leuven,
1988. Invited tutorial of the bth Int. Conf. on Logic Programming (ICLP),
Seattle, 1988.

[Bec88] C. Beckstein. Z u r L o g i k der L o g i k - P r o g r a m m i e r u n g - E i n k o n s t r u k t i v e r
Ansatz. Informatik-Fachbericht 199. Springer-Verlag, 1988.

[BF90] N . Bidoit and C. Froidevaux. Negation by Default and Unstratifiable
Logic Programs. T h e o r e t i c a l C o m p u t e r Science, 1990. To appear.

[BMSU86] F . Bancilhon, D . Maier, Y . Sagiv, and J . Ullamn. Magic Sets and
other Strange Ways to Implement Logic Programs. In P r o c . 5th A C M
S I G M O D - S I G A C T Symp. o n P r i n c i p l e s of D a t a b a s e Systems (P O D S) ,
1986.

[Boj86] D. Bojadziev. A Constructive View of Prolog. J o u r n a l of L o g i c P r o
g r a m m i n g , 3(l):69-74, 1986.

[BR87] C. Beeri and R. Ramakrishnan. On the Power of Magic. In P r o c .
6th A C M S I G M O D - S I G A C T Symp. o n P r i n c i p l e s of D a t a b a s e Systems
(P O D S) , 1987.

[Bry89a] F . Bry. Logic Programming as Constructivism: A Formalization and
its Application to Databases. In P r o c . Sth A C M S I G A C T - S I G M O D -
S I G A R T Symp. o n P r i n c i p l e s of D a t a b a s e Systems (P O D S) , Philadel
phia, Penn., March 1989.

[Bry89b] F . Bry. Query Evaluation in Recursive Databases: Bottom-up and
Top-down Reconciled. In P r o c . l s t I n t . Conf. o n D e d u c t i v e a n d O b j e c t -
O r i e n t e d Databases (D O O D) , Kyoto, Japan, Dec. 1989. The complete
version of this article will appear in the special issue of D a t a & K n o w l
edge E n g i n e e r i n g devoted to the D O O D '89 Conference.

[Bry89c] F . Bry. Towards an Efficient Evaluation of General Queries: Quantifier
and Disjunction Processing Revisited. In P r o c . A C M - S I G M O D Conf. o n
M a n a g e m e n t of D a t a (S I G M O D) , Portland, Oreg., May-June 1989.

45

[Bry90] F . Bry. Negation in logischer Programmierung: Eine Formatierung in
konstruktiver Logik. Research Report IR-KB-72, E C R C , 1990.

[Cal79] A . Calder. Constructive Mathematics. S c i e n t i f i c A m e r i c a n , 241 (4):134-
143, 1979.

[Cla78] K . L . Clark. L o g i c a n d D a t a b a s e s , chapter Negation as Failure. Plenum
Press, New York, 1978.

[dK86] J . de Kleer. A n Assumption-Based Truth Maintenance System. A r t i f i c i a l
I n t e l l i g e n c e , 28:127-162, 1986.

[Doy79] J . Doyle. A Truth Maintenance system. A r t i f i c i a l I n t e l l i g e n c e , 24, 1979.

[End72] H . B . Enderton. A M a t h e m a t i c a l I n t r o d u c t i o n t o L o g i c . Academic Press,
1972.

[Fit85] M . Fitt ing. A Kripke-Kleene Semantics for Logic Programs. J o u r n a l of
L o g i c P r o g r a m m i n g , 4:295-312, 1985.

[GCS88] J . Gallagher, M . Codish, and E . Shapiro. Specialisation of Prolog and
F C P Programs Using Abstract Interpretation. New G e n e r a t i o n C o m
p u t i n g , 6:159-186, 1988.

[Gir87] J . -Y . Girard. Linear Logic. T h e o r e t i c a l C o m p u t e r Science, 50:1-102,
1987.

[GL88] M . Gelfond and V . Lifschitz. The Stahle Model Semantics for Logic
Programming. In P r o c . bth I n t . Conf. a n d Symp. o n L o g i c P r o g r a m m i n g
(I C L P - S L P) , Seattle, 1988.

[GLT89] J . -Y. Girard, Y . Lafont, and P. Taylor. P r o o f s a n d Types. Cambridge
Tracts in Theoretical Computer Science 7. Cambridge University Press,
1989.

[Hue86] G. Huet. F u n d a m e n t a l s of A r t i f i c i a l I n t e l l i g e n c e , chapter Deduction and
Computation. L N C S 232. Springer-Verlag, 1986.

[Kow79] R. Kowalski. L o g i c f o r P r o b l e m S o l v i n g . North Holland, 1979.

[Llo87] J . Lloyd. F o u n d a t i o n s of L o g i c P r o g r a m m i n g . Symbolic Computation.
Springer-Verlag, 1987. Second Edition.

[Man89] R. Manthey. Can We Reach a Uniform Paradigm for Deductive Query
Evaluation? In P r o c . 3rd I n t . G l Congress " K n o w l e d g e Based Systems",
München, Oct. 1989.

[Moo85] R. C. Moore. Semantical Considerations on Nonmonotonic Logic. A r t i
ficial I n t e l l i g e n c e , 25, 1985.

46

[Poo98] D. Poole. Explanation and Prediction: A n Architecture for Default and
Abductive Reasoning. Tech. Report 89-4, Dept. of Comp. S c , Univ. of
British Columbia, 198.

[Prz88] T. C. Przymusinski. F o u n d a t i o n s of D e d u c t i v e Databases a n d L o g i c P r o
g r a m m i n g , chapter On the Declarative Semantics of Deductive Databases
and Logic Programs. Morgan Kaufmann, Los Altos, Calif., 1988.

[Rei78] R. Reiter. O n C l o s e d W o r l d D a t a b a s e s , pages 56-76. Plenum Press, New
York, 1978.

[Rei80] R. Reiter. A Logic for Default Reasoning. A r t i f i c i a l I n t e l l i g e n c e , 13,
1980.

[Rob65a] J . A . Robinson. A Machine-Oriented Logik Based on the Resolution
Principle. J o u r n a l of t h e A C M , 12(1):23-41, 1965.

[Rob65b] J . A . Robinson. Automated Deduction with Hyper-Resolution. J o u r n a l
of C o m p . M a t h . , 1:227-234, 1965.

[SS86a] S. Safra and E . Shapiro. Meta Interpreters for Real. In P r o c . \ 2 t h I F I P
W o r l d C o n g r e s s , 1986.

[SS86b] L . Sterling and E . Shapiro. The A r t of P r o l o g . M I T Press, 1986.

[Sti86] M . E . Stickel. A n I n t r o d u c t i o n t o A u t o m a t e d D e d u c t i o n , pages 75-132.
Springer Verlag, Berlin, 1986.

[Van88] A . Van Gelder. F o u n d a t i o n s of D e d u c t i v e Databases a n d L o g i c P r o g r a m
m i n g , chapter Negation as Failure Using Tight Derivations for General
Logic Programs. Morgan Kaufmann, Los Altos, Calif., 1988.

[Van89] A . Van Gelder. The Alternating Fixpoint of Logic Programs with Nega
tion. In P r o c . Sth A C M S I G A C T - S I G M O D - S I G A R T Symp. o n P r i n c i -
ples of D a t a b a s e Systems (P O D S) , Philadelphia, Penn., March 1989.

[vEK76] M . van Emden and R. Kowalski. The Semantics of Predicate Logic as a
Programming Language. J o u r n a l of t h e A C M , 23(4):733-742, 1976.

[Vie89] L . Vieille. Recursive Query Processing: The Power of Logic. T h e o r e t i c a l
C o m p u t e r Science, 69(l): l-53, Dec. 1989.

[VRS88] A . Van Gelder, K . A . Ross, and Schlipf J . S. The Well-Founded Seman
tics for General Logic Programs. In P r o c . 7th A C M S I G A C T - S I G M O D -
S I G A R T Symp. o n P r i n c i p l e s of D a t a b a s e Systems (P O D S) , Austin,
Texas, March 1988.

