
Deductive and 
Object-Oriented Databases 

Proceedings of the First International Conference on 
Deductive and Object-Oriented Databases (DOOD89) 

Kyoto Research Park, Kyoto, Japan, 4-6 December, 1989 

Edited by 

Won KIM 
MCC 

Austin, Texas 
U.S.A. 

Jean-Marie NICOLAS 
Ε CRC 
Munich 

Federal Republic of Germany 

Shojiro NISHIO 
Department of Information and Computer Sciences 

Osaka University 
Toyonaka, Osaka 

Japan 

1990 

N O R T H - H O L L A N D 
A M S T E R D A M · NEW Y O R K · O X F O R D · T O K Y O 



ix 

CONTENTS 

K E Y N O T E ADDRESS 

Towards a New Step of Logic Paradigm 
Κ. Fuchi 3 

Α STATUS UPDATE ON DEDUCTIVE DATABASES 

Object Identity and Inheritance in Deductive Databases: 
An Evolutionary Approach (invited Paper) 

C Zaniolo 7 

Query Evaluation in Recursive Databases: Bottom-up and Top-down Reconciled 

DEDUCTIVE QUERY EVALUATION 

On Termination of Datalog Programs (Extended Abstract) 

A. Brodsky and Y. Sagiv 47 

The Level-Cycle Merging Method 
J. Han and L.J. Henschen 65 
Distribution of Selections: The Missing Link between Strategies for 

Relational Databases and Deductive Databases 
N. Miyazaki 83 

Combining Deduction by Certainty with the Power of Magic 

H. Schmidt, N. Steger, U. Güntzer, W. Kiessling, R. Azone, and R. Bayer 103 

On Deductive Query Evaluation in the DedGin* System 
A. Lefebvre and L . Vieille 123 
Detecting and Eliminating Redundant Derivations in Logic Knowledge Bases 
A.R. Helm 145 

OODB T H E O R Y 

A Theory of Functional Dependencies for Object-Oriented Data Models 
G.E. Weddell 165 

Object Identity, Equality and Relational Concept 
Y. Masunaga 185 

F. Bry 25 



χ 

A Formal System for Producing Demons from Rules in 
an Object-Oriented Database 

Y. Caseau 203 

OODB FEATURES 

The Object-Oriented Database System Manifesto (Invited Paper) 
M. Atkinson, F. Bancilhon, D. DeWitt, Κ. Dittrich, D. Maier, and S. Zdonik 223

Meta Operations for Type Management in Object-Oriented Databases: 
A Lazy Mechanism for Schema Evolution 

L . Tan and T. Katayama 241 

A Tool Kit System for the Synthesis and the Management of 
Active Media Objects 

Y. Tanaka 259 

OODB QUERIES 

Object-Oriented Queries: Equivalence and Optimization 

G.M. Shaw and S.B. Zdonik 281 

On Natural Joins in Object-Oriented Databases 
K. Tanaka and T.-S. Chang 297 
Reloop, an Algebra Based Query Language for an Object-Oriented 

Database System 
S. Cluet, C Delobel, C Lecluse, and P. Richard 313 

PANEL DISCUSSION 

Next Generation Database Management Systems Technology 
M.L. Brodie, F. Bancilhon, C. Harris, M. Kifer, Y. Masunaga, E.D. Sacerdoti, 

and K. Tanaka 335 

DATALOG EXTENSION 

Integration of Functions Defined with Rewriting Rules in Datalog 

S. Grumbach 349 

Possible Model Semantics for Disjunctive Databases 

C Sakama 369 

The Well Founded Semantics for Disjunctive Logic Programs 
K.A. Ross 385 



INTEGRATING OBJECTS AND RULES 

Formal Models for Object Oriented Databases (Invited Paper) 
C. Beeri 

HILOG: A High-Order Logic Programming Language for Non-INF 
Deductive Databases 

Q. Chen and W.W. Chu 

Towards a Dedutive Object-Oriented Database Language 
S. Abiteboul 

Semantics and Evaluation of Rules over Complex Objects 
A. Heuer and P. Sander 

Inference Rules in Object Oriented Programming Systems 
L. Wong 

Features of the TEDM Object Model 
D. Maier, J. Zhu, and H. Ohkawa 

Software Process Modeling as a Strategy for KBMS Implementation 
M. Jarke, M. Jeusfeld, and T. Rose 

QUERY TRANSFORMATION 

Query Optimization in Database Programming Languages 
P. Valduriez and S. Danforth 

Integrating Complex Objects and Recursion 
H. Schöning 

OOLP: A Translation Approach to Object-Oriented Logic Programming 
M. Dalai and D. Gangopadhyay 

Author Index 



Deductive and Object-Oriented Databases 
W. Kim, J.-M. Nicolas, and S. Nishio (Editors) 
© Elsevier Science Publishers B.V. (North-Holland), 1990 25 

Query Evaluation in Recursive Databases: 
Bottom-up and Top-down Reconciled 

Francois Bry 

ECRC, Arabellas*. 17, D - 8000 Munich 81, West Germany 
uucp:... /pyramid! ecrcvaxlfb 

It is desirable to answer queries posed to deductive databases by computing fix-
points because such computations are directly amenable to set-oriented fact 
processing. However, the classical fixpoint procedures based on bottom-up 
reasoning - the naive and semi-naive methods - are rather primitive and often 
inefficient. In this article, we rely on bottom-up meta-interpretation for formaliz­
ing a new fixpoint procedure that performs a different kind of reasoning: We 
specify a top-down query answering method, which we call the Backward Fix-
point Procedure. Then, we reconsider query evaluation methods for recursive 
databases. First, we show that the methods based on rewriting on the one hand, 
and on resolution on the other hand, implement the Backward Fixpoint Procedure. 
Second, we interpret the rewriting of the Alexander and Magic Set methods as a 
specialization of the Backward Fixpoint Procedure. Finally, we argue that this 
rewriting is also needed for implementing efficiently the resolution-based 
methods. Thus, the methods based on rewriting and the methods based on resolu­
tion implement the same top-down evaluation of the original database rules by 
means of auxiliary rules processed bottom-up. 

1. Introduction 

For various reasons, fixpoint procedures are rather natural ways of processing queries posed 
to deductive databases. First, the declarative semantics of a set of Horn clauses can be 
defined as the fixpoint of an 'immediate consequence operator', as shown by van Emden 
and Kowalski in [vEK 76]. Moreover, although this so-called 'fixpoint semantics' is not 
procedural, it directly induces set-oriented query answering procedures, namely the methods 
that are called 'naive' and 'semi-naive' by Bancilhon and Ramakrishnan in [BAR 86]. 
Finally, the fixpoint theory which was developed in formal logic for studying recursive 
functions provides us with a useful mathematical tool for investigating query answering 
procedures for recursive databases. 

The naive and semi-naive methods are based on rather primitive deduction techniques and 
are often inefficient. Indeed, both methods perform forward reasoning, i.e., they proceed 
bottom-up from the database rules and facts. Therefore, they do not use the constants occur­
ring in the queries for restricting the search space. In contrast, such a restriction is a by­
product of backward - or top-down - reasoning. The rewriting of the Alexander [RLK 86] 
and Magic Set [BMSU 86, BR 87] methods aims at achieving the same restriction on the 
search space with bottom-up reasoning. 



26 

In this paper, we show that it is possible to keep the advantages of processing queries 
through fixpoint computations, without necessarily sticking to the basic principle of the 
naive and semi-naive methods. We specify a new fixpoint query answering procedure, the 
'Backward Fixpoint Procedure', which is based on top-down - or backward - reasoning. In 
other words, we apply fixpoint theory to databases with another operator than the classical 
immediate consequence operator of van Emden and Kowalski. The Backward Fixpoint Pro­
cedure is a sound and complete query answering method for recursive databases. 

We rely on bottom-up meta-interpretation for formalizing the Backward Fixpoint Proce­
dure, i.e., we specify a top-down evaluation of the database rules in a meta-language by 
means of rules intended for bottom-up processing. Meta-interpretation is a technique com­
monly used in Functional and Logic Programming. As we show below, bottom-up meta-
interpretation permits one to obtain a surprisingly simple specification for the Backward 
Fixpoint Procedure. 

Then, we reconsider evaluation methods for recursive databases from the viewpoint of fix-
point computation. Several methods have been proposed for evaluating queries on recursive 
databases. Those that ensure termination on all recursive databases defining finitely many 
facts - e.g., function-free databases - follow one or the other of two approaches. The 
methods of the first type rewrite the database rules and process the rewritten rules bottom-
up. The Alexander [RLK 86] and Magic Set [BMSU 86, BR 87] methods are based on this 
principle. The second approach is an extension of SLD-Resolution [LLO 87] that consists of 
storing the encountered queries and the proven answers. The ET* and ETmt 

algorithms [DIE 87], OLDT-Resolution [TS 86], QSQ and SLDAL-Resolution [VIE 87], 
and the RQA/FQI procedure [NEJ 87], are methods of the second type. We investigate both 
types of methods. We show that the methods based on rewriting as well as the methods 
based on resolution implement the Backward Fixpoint Procedure. In other words, they ex­
press the same top-down reasoning principle in different formalisms. 

Similarities between rewriting-based and resolution-based methods were already observed 
by many authors. In particular, Beeri and Ramakrishnan showed in [BR 87] that the same 
strategies - called 'sideway information passing strategies' - can be applied to optimize 
both types of methods. Moreover, Ramakrishnan noticed in [RAM 88] that the same 
propagation of constants is possible with rewriting-based and resolution-based methods. 
This point was investigated more formally by Ullman in [ULL 89]. Commonalities in the 
inferences of both types of methods were often cited - e.g., in [DR 86, BEE 89, VIE 89]. 
Recently, Seki established a one-to-one mapping between the inferences performed by 
methods of both types [SEK 89]. These observations and results are precursors of the study 
we present here. 

Examining efficient implementations of the Backward Fixpoint Procedure, we investigate a 
technique called specialization. Specializing meta-interpreters is a classical way of obtain­
ing efficient procedures from formal specifications. We show that the rewriting of the 
Alexander and Magic Set methods can be interpreted as a specialization of the Backward 
Fixpoint Procedure. We argue that this rewriting is also needed in efficient implementations 
of resolution-based methods. This motivates features of the implementation of SLDAL-
Resolution which is reported in [LV 89]. Thus, efficient implementations of methods of 
both kinds have to rely on the same rewriting of the database rules and to process the rewrit­
ten rules bottom-up. 

Relying on the meta-interpreter for the Backward Fixpoint Procedure, we give in [BRY 89] 
simple soundness and completeness proofs for the Alexander and Magic Set methods, and 
for the ET* and ETinterp algorithms, OLDT-Resolution, QSQ and SLDAL-Resolution, and 
the RQA/FQI procedure. Thus, bottom-up meta-interpretation appears to be a useful for­
malism for theoretical investigations of query answering procedures. 



27 

The article consists of eight sections, the first of which is this introduction. In Section 2, we 
review background notions and introduce notations. In Section 3, we show how rules in­
tended for bottom-up computation can be used for specifying fixpoint procedures. Then we 
show in Section 4 that top-down processing of queries can be performed by a fixpoint pro­
cedure. We make use of bottom-up meta-interpretation for specifying the Backward Fix-
point Procedure. In Section 5, we refine the definition of this procedure. In Section 6, we 
investigate implementation issues and we show that the rewritings of the Alexander and 
Magic Set methods are specializations of the Backward Fixpoint Procedure. Section 7 is 
devoted to recursive query processing methods based on SLD-Resolution. We first show 
that they implement the Backward Fixpoint Procedure as well. Then we show that they re­
quire the very rewriting of the Alexander and Magic Set methods. In Section 8, we sum­
marize the results presented in the article and we indicate directions for further research. 

Because of space limitations, the proofs are omitted. They can be found in the full version 
of this article [BRY 89]. 

2. Background 

A deductive database is a finite set of deduction rules and facts. Given a database DB, we 
shall denote its subset of deduction rules by DR(DB) and its subset of facts by F(DB). Facts 
are ground atoms and deduction rules are expressions of the form: 

Η <— L j Λ ... Λ L n 

where η > 1, Η is an atom, and the LjS are literals. Such a rule denotes the formula: 

Vxj...Vx k (Lj Λ ... Λ L n => Η) 

where the XjS are the variables occurring in Η or in the L ^ . If all L ŝ are positive literals, 
then the rule is called a Horn rule. A database is called a Horn database if all its rules are 
Horn rules. Η is called the head of the rule. The conjunction L j A ... Λ L n is called its body. 

A dependency relationship on database predicates - or relations - is inductively defined as 
follows. A predicate ρ depends on each predicate occurring in the body of a rule with head 
predicate p, and on each predicate on which one of these body predicates depends. A predi­
cate which depends on itself is said to be recursive. A database is recursive if one of its 
predicates is recursive. 

Words beginning with lower case letters from the end of the alphabet (u, v, w, etc.) - with 
or without subscripts - denote variables. Words beginning with other lower case characters 
are used for denoting constants and predicates. 

The Herbrand base HB(DB) of a database DB is the set of ground atoms that can be con­
structed from the predicate, constant, and function symbols occurring in DB. HB(DB) is 
finite if and only if DB contains no function symbols. 

A ground atom A is said to be an immediate consequence of a database DB if there exist: 

• a rule Η <— L j A ... Λ L n e DB 

• a substitution τ 

such that: 

• Ητ = A 
• Lxx e F(DB) if Lj is a positive literal, and LjX g F(DB) otherwise. 



28 

The immediate consequence operator Τ on DB - formally, on HB(DB) u DR(DB) - is the 
function associating with each D Q H(DB) U DR(DB) the set T(D) of its immediate con­
sequences. 

More generally, an operator on a set S is a function on the power set of S. An operator Γ on 
a set S is monotonic if it satisfies the property: 

VP l C S V P 2 c S [ P j c P 2 => riP^cnPj)] 
Restricted to Horn databases, the immediate consequence operator Τ is monotonic. 
However, Τ is not monotonic on non-Horn databases. 

If Γ is an operator on a set S and if Ρ c S, we recall the notation: 

Γί ω (Ρ) = u n 6 N r t n ( P ) 

where: ΓΤ°(Ρ) = Ρ 

Γ ΐ η + 1 (Ρ) = Γ(ΓΤη(Ρ)) υ ΓΤη(Ρ) for η € Ν 

A least fixpoint of an operator Γ on a set S is a set r t n (S ) (n G N* U {ω}) such that: 

ΓΤω(8) = rTn(S) 

ΓΤ ω(8) Φ rTk(S) fork < η 

A monotonic operator on a set S has a unique least fixpoint on S [TAR 55]. Therefore, Τ 
admits a unique least fixpoint on Horn databases. This fixpoint is finite if 
ΤΤ ω (ϋΒ) = Tt n (DB) for some η < ω. This is in particular the case if no function symbols 
occur in DB. The semantics of a Horn database DB is formalized by defining its true facts 
as the facts in the least fixpoint τΤ ω (ϋΒ). 

The least fixpoint of Τ on a function-free Horn database DB can be constructed by itera-
tively computing the sets TT n(DB) for increasing n. The computation halts as soon as no 
new facts are generated, i.e., when a step η is reached such that: 

T(TTn(DB)) C Tt n (DB) 

Since the least fixpoint τΤ ω (ϋΒ) of Τ on a function-free Horn database is finite, this proce­
dure always terminates when applied to such databases. In particular, it terminates on recur­
sive function-free Horn databases. Following Bancilhon and Ramakrishnan [BAR 86], we 
call this procedure the naive method. 

A drawback of the naive method is to compute repeatedly facts that have already been 
generated: While computing T t n + 1 ( D B ) , all immediates consequences of TT^DB) for 
0 < i < η are recomputed. Since Τ is monotonic on Horn databases, it suffices to generate 
those elements of T T n + 1 ( D B ) that have at least one premise in Tt n (DB) \ Tt n" 1(DB). Im­
proving the naive method in this way results in the so-called semi-naive method. Various 
search strategies for the semi-naive method are investigated in [SKGB 87]. 

For the sake of simplicity, we shall consider databases without function symbols. Though 
simple in principle, the extension of the results presented in this article to databases with 
function symbols would require more sophisticated formulations of a few definitions. 



29 

3. Fixpoint Procedures as Bottom-up Meta-interpreters 

In this section, we introduce the 'bottom-up meta-interpretation' technique with a quite ob­
vious and simple example. This technique is used in more interesting ways in Section 4. 

The computation of the immediate consequences T(DB) of a Horn database DB can be 
paraphrased as follows. For all rules Η <— Aj Λ ... Λ A n in DB and all substitutions χ such 
that AAx G DB (i = 1 , n ) , the facts Hx are proved. The immediate consequence operator Τ 
can be expressed as the forward processing of the following rule: 

fact(H) <r- rule(H^-B) Λ evaluate(B) 

where the predicates 'rule' and 'evaluate' respectively express access to the set of deduction 
rules and facts. For the sake of simplicity, we assume here and in the rest of the article that 
bodies of rules are evaluated from left to right. Note, however, that this hypothesis is not 
necessary and that the results we establish do not require it. 

A bottom-up evaluation of the above-defined rule produces an expression 'fact(F)' for each 
F G T(DB). By iterating in the naive or semi-naive manner, one generates an expression 
'fact(F)' for each F G ΤΤω(ΌΒ). Figure 1 illustrates this principle on an example. 

Database: r(a) s(a) p(x) <— q(x) Λ r(x) 
s(b) q(x) <- s(x) 

Successful derivations: 

Step 1: fact(q(x)) <- rule(q(x)«- s(x)) Λ evaluate(s(x)) 

Step 2: fact(p(x)) <- rule(p(x) <— q(x) Λ r(x)) A evaluate(q(x) Λ r(x)) 

Fig. 1 

The evaluation of 'rule(H f- B)' first binds Η to 'p(x)' and Β to 'q(x) Λ r(x)\ Since there 
are no q facts in the database, the evaluation of Β fails. Η and Β are then respectively bound 
to 'q(x)' and 's(x)' from the second rule. Processing 'evaluate(B)' yields the bindings 
Gj=[x:a] and a2=[x:b], i.e., *fact(q(a))' and 'fact(q(b))' are proven. They are added to the 
database. These new facts now 'fire' the database rule 'p(x) <— q(x) Λ r(x)' when Η is bound 
to 'p(x)' and Β to 'q(x) Λ r(x)\ 'evaluate(B)' succeeds with the binding a3=[x:a]: 
'fact(p(a))' is proven. The procedure stops because the most recently derived fact p(a) can­
not serve as a premise in any rule. 

The semantics of 'evaluate' can be formally defined as follows: If Β is an atom or a con­
junction of atoms and σ is a substitution of constants for variables in B, 'evaluate(B)o' 
holds if and only if Βσ evaluates to true over the current facts, i.e., the database facts and 
the already generated 'fact' atoms. We do not specify here any procedure for 'evaluate': 
Let us assume that we rely on a non-deductive, relational query evaluator. 

The above-defined rule is a meta-interpreter, i.e., it is a logic program that treats another 
logic program, namely the database under consideration, as data and interprets or runs it. 
Meta-programming is a common practice in Functional and Logic Programming. The vari-

σ 2=[χ:ο] 

a3=[x:a] 



30 

ables in a meta-interpreter range over atomic and conjunctive queries. We denote them with 
upper case letters, in order to distinguish them from conventional variables that range over 
attribute values. 

Let M D B denote a database consisting of the above-defined deduction rule and of the two 
relations (rule(R) I R G DR(DB)} and (fact(A) I A G F(DB)}. The following proposition 
shows that the least fixpoint T T 0 ) ( M d b ) expresses the least fixpoint τΤω(ΌΒ) of the under­
lying database DB. 

Proposition 3 . 1 : 

Let DB be a Horn database, A a fact, and η G Ν*. 

1 . A G Τ ί ω ( ϋ Β ) iff fact(A) G T T ^ M ^ ) 

2 . A G TT n (DB)\TT n " 1 (DB) iff fact(A) G T T ^ M ^ X T T ^ ^ M ^ ) 

Intuitively, the second point of Proposition 3 .1 means that the semi-naive computation of 
T t C 0 ( M D B ) expresses the semi-naive computation of τΤ ω (ϋΒ) in the meta-language. It fol­
lows that the above specification of the operator Τ by means of a rule can be viewed - and 
used - as an implementation, if we have at our disposal a naive or semi-naive query 
evaluator. This is not really interesting here, since we use the operator Τ itself. However, it 
is useful with other operators, as it permits us to run fixpoint procedures that perform deduc­
tions of other types with a semi-naive evaluator. 

Specifying query answering procedures as bottom-up meta-interpreters has two main con­
sequences, as far as the computation of fixpoints is concerned. First, terms that are not in 
first normal form are generated, e.g., 'fact(p(a))\ Second, non-ground terms can be 
generated, as happens with the Backward Fixpoint Procedure of Section 4. This requires 
replacing syntactical identity tests by more expensive instance tests. In Section 5, we 
describe a normalization technique and we show how to perform instance tests efficiently. 
In the next section, we shall assume that the semi-naive query evaluator at hand correctly 
handles unnormalized and non-ground terms. 

4. The Backward Fixpoint Procedure: Principle 

In the previous section, we have given a bottom-up meta-interpreter to process the object 
rules - i.e., the database rules - in a bottom-up manner. In this section, we show that 
bottom-up meta-interpretation can also be applied for specifying top-down reasoning on the 
object rules. 

The following rules specify an operator, that we call T b . This operator processes the 
database rules - accessed with the predicate 'rule' - in a top-down manner. The rule for 
'fact' expresses that a body of a rule is evaluated only in case a query is posed on the head 
of that rule. The top-down evaluation principle is rather clearly recognizable in the rules for 
'queryb': The first queryb-rule for example induces a query on the body of a rule from a 
query on its head. The last two rules split conjunctive queries into atomic ones in order to 
permit the top-down expansion of these atomic expressions with the first queryb-rule. 

(i) fact(Q) <r- queryb(Q) Λ rule(Q <- Β) Λ evaluate(B) 
(ii) query5(B) f- queryb(Q) Λ rule(Q <-Β) 
(iii) queryb(Q!) <- query^Qj Λ Q 2 ) 
(iv) queryb(Q2) <- query^Qj Λ Q 2 ) Λ evaluate^) 



31 

The predicate Evaluate' expresses access to the already generated facts, as in the rule for 
the immediate consequence operator Τ given in Section 3. 

We call 'Backward Fixpoint Procedure' the procedure that, applied to a Horn database DB 
and to a set Q of queryb-atoms, computes the least fixpoint T B T C 0 (DB u Q) of the operator 
T b on DB and Q. The atoms in Q are the initial queries posed to the database DB. Figure 2 
shows on an example how the Backward Fixpoint Procedure computes T b (DB u Q). Note 
that no t-facts are derived. 

Database: r(a) s(a) u(a) p(x) <— q(x) Λ r(x) 
s(b) u(b) q(x) <r- s(x) 

t(x) <— s(x) Λ u(x) 

Queries: queryb(p(b)) queryb(q(x)) 

Successful derivations: 

Stepl: fact(q(x)) <— queryb(q(x)) Λ rule(q(x) <- s(x)) 
A evaluate(s(x)) aj=[x:a] 

σ 2=[χ:ο] 

queryb(q(x) Λ r(x)) <- queryb(p(b)) Λ rule(p(x) <-q(x) Λ Γ (Χ) ) a3=[x:b] 

queryb(s(x)) <- queryb(q(x)) Λ rule(q(x) < -S(X) ) σ 4=[] 

Fig. 2 

Evaluating the body of rule (i) first binds 'queryb(Q)' to 'queryb(p(b))\ Β to 'q(x) Λ r(x)' 
and yields the binding [x:b]. Β is not satisfied by the database facts: No facts are generated. 
'queryb(Q)' from rule (i) is then bound to 'queryb(q(x))\ and Β to *s(x)\ The evaluation of 
Β over the database facts yields the bindings θγ=[χ:&] and a2=[x:b], thus generating 
'fact(q(a))' and *fact(q(b))\ Rule (ii) generates from ' query b(p(b))' the expression 
'queryb(q(x) Λ r(x))' with the binding a3=[x:b]. Similarly, 'queryb(s(x))' is derived by rule 
(ii) from cqueryb(q(x))\ 

It is reasonable to evaluate the bodies of rules (i)-(iv) from left to right. With this ordering, 
the queryb-atoms constrain the evaluations. In rule (iv), this ordering ensures that Qj is 
bound to an atom when 'evaluate^)' is processed. With another ordering, the type of the 
variable Qj, i.e., the set of database queries, would have to be searched. Evaluating the con­
junction 

rule(Q <— Β) Λ evaluate(B) 

before *queryb(Q)' in rule (i) would be inefficient because useless 'evaluate(B)' expressions 
would be processed. However, this inefficient ordering would not compromise the top-down 
paradigm: The useless values would be filtered out during the evaluation of 'queryb(Qy. 

It is worth noting that, although based on backward reasoning like Linear and 
SLD-Resolution [LLO 87], the Backward Fixpoint Procedure differs significantly from 
these methods. A fundamental difference with SLD-Resolution is that new answers 



32 

generated with the Backward Fixpoint Procedure - i.e., new values for the relation 'fact' -
may trigger the generation of new queries - i.e., new values for the relation 'queryb'. 

For example, an expression 

queryb(p(x) Λ q(x, y)) 

can be generated during the computation of Tt n (DB) at a time where p-facts have not yet 
been generated. The generation of a fact 'p(a)' at step m > η induces from the previously 
computed queryb-expression a term 'queryb(q(a, y))' during the computation of 

T T m + 1 ( D B ) . In contrast, SLD-Resolution would have to recompute the expression 

queryb(p(x) Λ q(x, y)) 
in order to generate 'queryb(q(a, y))' once 'p(a)' is obtained. In order to ensure termination 
on recursive databases, the query answering procedures based on SLD-Resolution collect 
queries and answers, in the same way as the Backward Fixpoint Procedure does. 

The following proposition establishes the soundness and completeness of the Backward Fix-
point Procedure. 

Proposition 4.1: 
Let DB be a Horn database, A an atom, and τ a substitution such that Ax is 
ground. 

Ατ<= τΤω(ΟΒ) iff fact(At) e Τ 5 Τ ω (ϋΒ u {queryb(A)}) 

The semi-naive method always terminates on databases defining finitely many facts, even if 
they are recursive. Therefore, so does the Backward Fixpoint Procedure. It follows from 
Proposition 4.1 that: 

Corollary 4.1: 
The Backward Fixpoint Procedure is a sound and complete query answering 
method for (possibly recursive) Horn databases. 

It is a terminating query answering method for databases defining finitely many 
facts - e.g., function-free databases. 

5. The Backward Fixpoint Procedure Revisited 

A direct implementation of rules (i)-(iv) can induce undesirable redundancies. Consider for 
example a database containing a rule 'p f - q Λ r' and the query 'p'. The following instances 
of the rules (i)-(iv) are relevant: 

fact(p) <- queryb(p) Λ rule(p <- q A r) Λ evaluate(q Λ r) from (i) 
queryb(q Λ Γ) <— queryb(p) Λ rule(p <— q Λ r) from (ii) 
queryb(q) <- queryb(q Λ r) from (iii) 
queryb(r) <— queryb(q Λ r) Λ evaluate(q) from (iv) 

Both the first and the last rules consult the facts for 'q' 
ing the specification of the predicate 'evaluate'. 

This access can be shared by refin-



33 

We replace the unary predicate 'evaluate' by a binary one, whose arguments respectively 
denote the already evaluated part of a conjunctive query, and the rest of the query. Thus, an 
expression 'evaluate(0, Q)' denotes a completely non-evaluated query 'Q\ By contrast, 
'evaluate(B)' in rules (i) ('evaluate^)' in rule (iv), resp.) must be replaced by 
'evaluate(B, 0 ) ' ('evaluate^, 0)' , resp.) which denotes a completed evaluation of Β (Q 1 ? 

resp.). The following bottom-up rules specify the binary predicate 'evaluate': 

(v) evaluate(0, B) queryb(Q) A rule(Q <-B) 
(vi) evaluate(Bj, B 2 ) <- evaluate(0, Β x A B 2 ) A facKBj) 
(vii) evaluate(Bj A B 2 , B 3 ) <- evaluate^, B 2 A B 3 ) A B 2 * 0 A fact(B2) 
(viii) evaluate(B, 0 ) <- fact(B) 
(ix) evaluate(B1 A B 2 , 0 ) <- evaluate^, B 2 ) Α Β ^ 0 A fact(B2) 

Let T' b be the operator specified by the rules (i)-(ix) - an expression 'evaluate(X)' being 
replaced in rule (i) and (iv) by 'evaluate(X, 0)' . 

Proposition 5.1: 
Consider a database DB and a set of queryb-facts Q. Let Bj denote either 0 , or an 
atom, or a conjunction of atoms. Let B 2 and Β3 denote atoms or conjunctions of 
atoms. Let η G N. 

3BX 3 B 3 evaluate^, B 2 A B 3 ) G Τ' 5 Τ ω (ϋΒ u Q) iff 
queryb(B2) G T' bT c u(DB u Q) 

By Proposition 5.1, rules (ii)-(iv) can be replaced by the following rules, without affecting 
the semantics of the operator T'b. 

(x) queryb(B2) <- evaluate^, B 2 ) A B 2 ^ ( C 1 A C 2 ) 

(xi) queryb(B2) <- evaluate(Bj, B 2 A B 3 ) 

Finally, we prove the equivalence of the operator T' b specified by rules (i) and (v)-(xi) and 
the operator T b specified by rules (i)-(iv). 

Proposition 5.2: 
Let DB be a Horn database, Q a set of queryb-facts, A an atom, and χ a substitu­
tion such that Ax is ground. 

evaluate(Ax, 0 ) e Τ ' 5 Τ ω (ϋΒ u Q) iff fact(Ax) G Τ 5 Τ ω (ϋΒ u Q) 

When it is not otherwise stated, we shall not distinguish any more between T b and T'b, and 
we shall implicitly refer to the last specification of the Backward Fixpoint Procedure, i.e., 
the specification by means of rules (i) and (v)-(xi). 

6. Specialization: The Logic of Magic 

Two difficulties are encountered when implementing the Backward Fixpoint Procedure. The 
meta-interpreter which specifies it, on the one hand relies on structures like 'queryb(p(a, b))' 
that are not in first normal form, i.e., that contain nested terms. On the other hand, it 
generates non-ground tuples such as 'queryb(p(x, b))'. 



34 

First, we show that normalized structures can be obtained by relying on a technique called 
'specialization'. We consider an encoding of variables by means of ground expressions and 
we show that a specialization also permits us to perform this encoding at compile time. 
Then, we apply these specializations to the Backward Fixpoint Procedure. This yields the 
rewriting algorithms of the Alexander and Magic Set methods. 

6.1. Normalization by Specialization 

Consider rule (i) of the Backward Fixpoint Procedure: 

(i) fact(Q) <r- queryb(Q) Λ rule(Q <-Β) Λ evaluate(B) 

It can be specialized with respect to a database DB by pre-evaluating the expression 
*rule(Q <— B)' over the rules in DB. Doing so, each rule in DB yields one partially instan­
tiated version of (i). For example, a database rule 'p(x) <— q(x) A r(x)' yields: 

fact(p(x)) <- queryb(p(x)) A evaluate(q(x) A r(x)) 

which can be simplified into: 

p(x) <- queryb(p(x)) A q(x) A r(x) 

The expression 'queryb(p(x))' can similarly be normalized by specializing the predicate 
'queryb' with respect to the relation 'p' into a predicate 'queryb-p': 

p(x) <r- queryb-p(x) A q(x) A r(x) 

Such a normalization by means of rule and predicate specialization is a kind of 'partial 
evaluation'. Partial evaluation techniques are commonly applied in artificial 
intelligence [SES 87]. 

By the following lemma, normalization by specialization does not affect the semantics of a 
database. Given a database DB, let B F P D B denote the set of rules obtained by evaluating the 
'rule' expressions in the rules (i)-(iv) that specify the Backward Fixpoint Procedure over the 
database rules in R(DB). Given a set Q of queryb-atoms, let N(BFP D B ) denote the set of 
rules and facts obtained from R D B u Q by applying the following rewriting rules, where ρ 
denotes a database predicate and t a list of terms: 

fact(F) -> F 
evaluate(B) —» Β 
queryb(p(?9) -> queryb-p(^) 

Lemma 6.1: 

Let DB be a database, Q a set of queryb-atoms, and η e Ν u {ω}. 

1. fact(p(2)) e T B T n (DB) iff p(*) e T B T n (N(BFP D B ) ) 

2. queryb(p0O) e T B T n (DB) iff queryb-p00 e T B T n (N(BFP D B ) ) 

The improved version of the Backward Fixpoint Procedure given in Section 5, i.e., the 
specification by means of rules (i) and (v)-(xi), relies on a binary predicate 'evaluate'. The 
normalization by specialization of rules (i) and (v)-(xi) therefore requires a more sophis­
ticated rewriting than the one given above. This rewriting is introduced below, in Section 
6.3. Lemma 6.1 also holds for this refined rewriting. 



35 

6.2. Ρ re-encoding of Variables 

The Backward Fixpoint Procedure may generate non-ground tuples. Non-ground tuples are 
undesirable for two reasons. On the one hand, the elimination of logical duplicates has to 
rely on full unification instead of syntactical identity. Indeed, although they are syntactically 
different, the non-ground tuples 'queryb(p(x))' and 'queryb(p(y))' are logically equivalent. 
On the other hand, non-ground tuples either have to be encoded, or special file systems are 
needed for storing non-encoded tuples. 

Non-ground expressions can be represented in terms of ground expressions by encoding the 
variables with ground values. One way of doing this is to reserve special symbols, not 
available in the user language, for this usage. Thus, a non-ground tuple 'p(x, y, a)' is rewrit­
ten into the ground tuple 'p(*, *, a)', assuming that **' denotes the reserved constant used 
for encoding variables. 

Such an encoding is not completely faithful, for distinct tuples like 'p(x, y, a)' and 
'p(z, z, a)' are represented identically. In order to faithfully encode the constellation of vari­
ables, different codes - e.g., *1, *2, etc. - for different variables are needed. This permits 
for example to encode the tuple 'p(x, y, a)' as 'p(*l, *2, a)\ the tuple 'p(z, z, a)' as 
•p(*l ,*l ,a)\ 

The following proposition shows that it is possible to rely on matching - or half-unification 
- for checking if a non-ground expression is subsumed by an expressions the variables of 
which are faithfully encoded. 

Proposition 6.1: 
Let DB be a database, A and Β non-ground atoms, and B c a faithful encoding of Β 
- i.e., an instance Βσ of Β such that the substitution σ uniquely assigns to each 
variable in Β a constant which is not in the language of DB. 

Β subsumes A if and only if A and B c match. 

Proposition 6.1 shows that encoding variables is useful not only for storing non-ground 
tuples with conventional file systems, but also for performing subsumption tests efficiently. 
Examples better treated with faithful encoding are discussed in [ULL 89]. 

However, it is a debatable question, whether or not the overhead of faithful encoding pays 
off. We do not discuss this issue here, and we assume in the sequel that an encoding with a 
single reserved symbol suffices. 

Using the notation introduced by Ullman in [ULL 85], an encoded term *p(*, *, a, *, c)' is 
written 'p f f b f b(a, c ) \ where the adornment 'ffbfb' expresses that the first two attributes are 
variables ( T stands for free), the third is the constant 'a' ('b' stands for bound), etc. Ex­
pressed either with reserved symbols or with adornments, the encoding of variables can be 
pre-computed by specializing the rules. Assume that predicates with subscript V may have 
non-ground facts. Consider the following rule: 

pv(x, z) <- q(x, y) Λ rv(y, z) 

If ζ is bound during the evaluation of 'rv(y, z) \ then it is bound in pv(x, z). Otherwise, it is 

free. The relation 'r v ' can be specialized into four relations 'r^', 'rjf', 'r^', and 'rf' denoting 
respectively the various possible patterns of free variables in an rv-tuple. The specialization 
of 'r v ' induces among others the following specialized rule for *pv': 



36 

p*(x,z) <- q(x,y) Λ r*b(y,z) 

Such a transformation of rules performs the encoding of variables once, during rule 
specialization. It is far less efficient to perform it each time a non-ground tuple is generated. 
The specialization of rules according to the patterns of instantiated variables can serve other 
purposes than the encoding of variables. 

It is in general also used for enforcing an optimal propagation of constants during the 
evaluation of bodies of rules, by reordering the body literals. This can be viewed as a com­
pilation ahead of time of 'selection functions'. By Corollary 4.1 this optimization is not 
necessary for the correctness, the completeness, or the termination of the method. 

6.3. Specialization of the Backward Fixpoint Procedure 

Consider a Horn database DB. We assume that the rules in DB are assigned unique iden­
tifiers (1), (2), etc. Consider a rule labeled (k) in DB. The general form of a database rule is: 

(k) P(*Q) <r- qfäi) A ... A qj(xj) A ... A q ^ ) 

where η G N*, and where the x̂ s denote lists of terms. Let us denote the body of this rule 
by: 

The specialization with respect to (k) of the rules specifying the Backward Fixpoint Proce­
dure refers to the the body of rule (k) and to beginning subparts of it: 

A I ^ A ) O S j S n ) 

We shall denote such a begining subpart by the pair (k, j ) . This characterization is not am­
biguous since, by hypothesis, the database rules are assigned unique identifiers. 

Proposition 6.2: 
Specializing the rules (i) and (v)-(xi) of the Backward Fixpoint Procedure with 
respect to a database rule (k) p(x*0) <— A™^ qm0?m) yields the following 
rules: 

(ak) P(XQ) <r- queryb-p(^0) A evaluate(k, η, Z) from (i) 
(bk) evaluate(k, 0, Z) <- queryb-p(^0) from (v) 

For j = 0,..., η - 1: 

( φ evaluate(k, j+1, t) <- evaluate(k, j , x*) A q j + 1 ( X j + 1 ) from (vi)-(ix) 

( φ query b -q j + 1 (Xj + 1 ) <- evaluated, j , x4) from (x)-(xi) 

Figure 3 (on next page) illustrates the specialization of the Backward Fixpoint Procedure on 
an example. As usual, the base relations 'r' and's' are not specialized with adornments. 

The direct generation of the adorned form of the rules of Proposition 6.2 from a database 
rule is precisely the rewriting procedure of the Alexander method and of the Supplementary 
Magic Set method, the improved version of the Magic Set method given in [BR 87]. In 
other words, the Alexander and the Supplementary Magic Set methods implement the Back­
ward Fixpoint Procedure by specializing its meta-interpretative specification with respect to 
the database rules. Like the Backward Fixpoint Procedure, these methods perform top-down 
processing of the original, non-rewritten database rules. 



37 

By Lemma 6.1 and Proposition 6.2, it follows from Proposition 4.1 that: 

Corollary 6.1 
The Alexander, Magic Set, and Supplementary Magic Set methods are sound and 
complete query answering methods for (possibly recursive) Horn databases. 

They are terminating methods for databases defining finitely many facts - e.g., 
function-free databases. 

The representation of begining parts of rule bodies by a pair (k, j) in the specialized rules of 
Proposition 6.2 is a simple means for normalizing expressions containing conjunctions. 

Omitting the lists of terms x* or Xj in the 'evaluates' terms would compromise the propaga­
tion of constants during the evaluation of bodies of rules. The Alexander method does keep 
the lists x\ while the Magic Set method does not. The Supplementary Magic Set method has 
been proposed for remedying this deficiency. In fact, the Supplementary Magic Set method 
re-expresses the Alexander method in a different terminology. A 'queryb-p' predicate is 
called 'problem-p' in the Alexander method, while it is called 'magic-p' in the Magic Set 
method. The 'evaluate' atoms correspond to the 'continuations' of the Alexander method 
and to the 'supplementary-magic' atoms of the Supplementary Magic Set method. 

Database rules: (1) p b (x)f-q b (x)Ar(x) 
(2) qb(x)<-s(x). 

Specialization of the Backward Fixpoint Procedure: 

pb(x) <r~ queryb-pb(x) Λ evaluate(l,2,x) 

evaluate(l,0,x) <— queryb-pb(x) 
evaluate(l,l,x) <- evaluate(l,0,x) A qb(x) 
evaluate(l,2,x) <— evaluate(l,l,x) A r(x) 

queryb-qb(x) f- evaluate(l,0,x) 

qb(x) <— queryb-qb(x) A evaluate(2,l,x) 

evaluate(2,0,x) <— queryb-qb(x) 
evaluate(2,l,x) «- evaluate(2,0,x) A S(X) 

queryb-sb(x) <— evaluate(2,0,x) 

Fig. 3 

7. From SLD-Resolution to Fixpoint Computation 

In this section, we consider the algorithms £T* and ETinterp [DIE 87], OLDT-
Resolution [TS 86], QSQ or SLDAL-Resolution [VIE 87], and the procedure 
RQA/FQI [NEJ 87]. All these methods are based on SLD-Resolution [LLO 87] and extend 
it in the same way. We first investigate the differences between SLD-Resolution and the 
Backward Fixpoint Procedure. Then, we show that the above-mentioned procedures basi­
cally remove these differences. Finally, we argue that efficient implementations of 
resolution-based methods must rely on the rewriting of Proposition 6.2 and process the 
rewritten rules bottom-up. 



38 

Applied to Horn databases, SLD-Resolution evaluates an atomic query Q by trying to unify 
it with database facts or heads of rules. A unification with a fact yields an immediate 
answer. A unification with the head of a rule in turns entails the evaluation of the rule body. 
Conjunctive bodies are evaluated atom after atom, following the ordering specified by a 
'selection function', e.g., strictly left to right. 

This approach is very similar to the Backward Fixpoint Procedure. In order to evaluate the 
same query, SLD-Resolution and the Backward Fixpoint Procedure in fact access the same 
database rules and pose the same queries. Therefore, the rules that specify the Backward 
Fixpoint Procedure can be viewed as a logical specification of SLD-Resolution, in the case 
of Horn databases. 

Database: s(a) t(a) u(a) v(a) p(x)«- r(x) Λ s(x) 
s(b) t(b) u(b) q(x) <- r(x) Λ t(x) 

r(x) <- u(x) Λ v(x) 
h(x) <- p(x) Λ q(x) 

Evaluation of 'h(x)': 

(1) h(x) <- (2) p(x) <- (3) r(x) *- (4) u(x) [x:a] or [x:b] 
(5) v(x) [x:a] 

(6) s(x) [x:a] 
(7) q(x) <- (8) r(x) <- (9) u(x) [x:a] or [x:b] 

(10) v(x) [x:a] 
(11) t(x) [x:a] 

Fig. 4 

However, although SLD-Resolution and the Backward Fixpoint Procedure are based on the 
same 4logic', they do not apply the same 'control', in the sense of Kowalski's well-known 
equation: Algorithm = Logic + Control. In contrast to the Backward Fixpoint Procedure, 
SLD-Resolution does not share results between different evaluations. Consider the example 
of Figure 4. In order to answer the query 'h(x)', the Backward Fixpoint Procedure shares 
the evaluation of the query 'r(x)' between the processing of 'p(x)' and 'q(x)'. It does not 
expand the proof trees rooted at 'r(x)' twice. SLD-Resotytion expands it first at node (3), 
and re-expands it at node (8). 

The difference between both procedures can be explained in terms of data structures. The 
Backward Fixpoint Procedure collects generated queries and proven facts in relations. 
Therefore, identical queries occurring in distinct parts of a proof tree are merged (this merg­
ing is the 'admissibility test' of resolution-based methods). By contrast, SLD-Resolution 
relies on a hierarchical data structure that relates proven facts and generated queries to the 
queries they come from. 

In order to make clear the commonalities as well as the differences between the Backward 
Fixpoint Procedure and SLD-Resolution, we specify the latter method in the formalism of 
bottom-up meta-interpretation. We express the hierarchical data structure by labeling 
generated queries and proven facts. 

Although a faithful expression of SLD-Resolution should be based on the version of the 
Backward Fixpoint Procedure given in Section 5 (rules (i) and (v)-(xi)), we consider the 
version of Section 4 (rules (i)-(iv)) for the sake of simplicity: 



39 

fact,.(Q, L) <r- queryr(Q, I, L) Λ rule(Q <- Β) Λ evaluater(B, I) fromiy) 

query^Qj Λ Q 2, [I IL]) <- queryr(Q, I, L) Λ rule(Q <— Qx A Q 2 ) from (ii) 

qucryr(Q l f J, [I I L]) <- queryr(Q, I, L) Λ rule(Q <- Q x ) 

A Qi ^ (Cj A C 2 ) A new-identifier(J) from (ii) 

queryr(Q1, J, L) <— query^Qj A Q 2, L) A new-identifier(J) from (iii) 

queryr(Q2, J, L) <— query^C^ A Q 2, L) A fact^Qj, L) A new-identifier(J) from (iv) 

An expression 'fact/F, L ) ' relates a proven fact F to the queries it contributes to answer: 
The list L consists of the identifiers of these queries. For example 

fact^a), [3, 2,1]) 

denotes the first evaluation of 'r(x)' in the example of Figure 4. The ternary predicate 
'query/ associates with a query Q its identifier and the identifiers of the of queries it comes 
from. Thus the two 'r(x)' queries in Figure 4 are respectively represented by: 

queryr(r(x), 3, [2, 1]) 

queryr(r(x), 8, [7, 1]) 

Conjunctive queries are similarly related to the atomic queries they come from (no iden­
tifiers are given to conjunctive queries). [I IL] denotes the list obtained by adding the iden­
tifier I in front of the list L. An initial query Q is expressed as: 

queryr(Q, 1, []) 

The 'evaluate/ predicate is defined as follows: If Β is an atom or a conjunction of atoms 
and σ is a substitution, 'evaluater(B, Ι)σ' holds if and only if Βσ evaluates to true over the 
facts that are labeled by I or that are explicit in the database. 

The 'new-identifier' expression is a call to a procedural subroutine which returns a new 
identifier. 

In an actual implementation of SLD-Resolution, the dependencies between queries are im­
plicitly expressed by the data structure. If a depth-first strategy is chosen, a stack suffices to 
express it. PROLOG interpreters, for example, rely on this data structure. In the example of 
Figure 4, the stack would be successively [1], [2, 1], [3, 2, 1], [4, 3, 2, 1], [5, 3, 2, 1], 
[6, 2, 1], etc. 

As opposed to the Backward Fixpoint Procedure, SLD-Resolution is incomplete for query­
ing recursive databases: The extension that was proposed in [DIE 87, TS 86, VIE 87, NEJ 
87] achieves completeness by preventing reprocessing of queries that were already 
answered, and by evaluating these queries over the facts that were proven. In terms of the 
above-defined rules, this extension consists on the one hand of tracking the generated 
queryr-atoms that coincide on the first argument, and on the other hand of modifying the 
definition of 'evaluate/ so that the identifiers are no longer considered. Clearly, this exten­
sion can be specified by simply removing the query identifiers and query dependency lists, 
i.e., by the Backward Fixpoint Procedure. 

Since the resolution-based methods can be specified by the Backward Fixpoint Procedure, 
we have from Proposition 4.1: 



40 

Corollary 7.1: 
The algorithms ET* and ETinterp, OLDT-Resolution, QSQ, SLDAL-Resolution, 
and the RQA/FQI procedure are sound and complete query answering methods 
for (possibly recursive) Horn databases. 

They are terminating query answering methods for databases defining finitely 
many facts - e.g., function-free databases. 

The fixpoint formalism is useful to understand the differences between some resolution-
based methods. In this formalism, the resolution-based methods are viewed as computing a 
fixpoint on answers and queries. In [DIE 87] an incomplete algorithm, called ET, is con­
sidered for defining the complete methods ET* and ETinterp. The algorithm ET corresponds 
to the procedure QSQ as it is defined in [VIE 86] - QSQ is corrected in [NEJ 87] and [VIE 
87]. The reason for incompleteness is that queries are generated only during the first round. 
During the subsequent rounds, the fixpoint is performed on answers only. Completeness 
requires treating answers and queries similarly, i.e., computing a fixpoint on both answers 
and queries. 

Also, the difference between the so-called recursive and iterative versions of QSQ [VIE 86] 
lies in different processing of queries and answers: Recursive QSQ applies the semi-naive 
optimization to both, queries and answers, while Iterative QSQ applies it only to queries and 
does not eliminate answers that are not new. Clearly, the former approach is more efficient 
than the latter. This was experimentally observed in [BAR 86]. Like completeness, ef­
ficiency requires treating answers and queries similarly. 

The formalization of resolution-based as well as rewriting-based methods in terms of the 
same procedure yields the following questions. In order to achieve an efficient implemen­
tation of one of these methods is it desirable to: 

1. structure hierarchically the encountered queries following their generation? 

2. rely on a semi-naive query evaluator? 

3. rely on the rewriting of the Alexander or Supplementary Magic Set method? 

We think that the first question must be answered negatively, the other two positively, for 
the following reasons: 

1. A hierarchical data structure that follows the way in which the queries are generated 
could make their retrieval more complicated. In particular, such a structure would induce an 
overhead for the so-called 'admissibility test', i.e., for checking if an encountered query is 
new. 

Moreover, a great advantage of relying on a relational data structure is to build on other 
components of the database management system. This makes it easier to store large sets of 
queries on secondary memory. Also, this permits centralized control of main memory 
resources. 

2. It is not mandatory to rely on a language of bottom-up rules for implementing a fixpoint 
procedure. However, the optimization principle that distinguishes the semi-naive from the 
naive method is needed for the sake of efficiency. As discussed in Section 3, fixpoint 
procedures can be formalized in terms of bottom-up rules in a rather natural manner. No 
gains in efficiency seem to be reachable by changing the rule syntax on which a semi-naive 
procedure relies to some other, e.g., the equational syntax which is conventionally used in 
mathematics. 



41 

Moreover, relying on a semi-naive evaluator has the advantage of using a component of the 
system that is useful for efficiently processing queries that do not give rise to constant 
propagation, e.g., for materializing the whole of a relation. The various search strategies of 
the resolution-based methods - depth-first, breadth-first, and their multi-stage versions - are 
as well obtainable with a semi-naive method. They are investigated in [SKGB 87]. 

Finally, relying explicitly on a semi-naive query evaluator allows us to process some rules 
top-down, others bottom-up, during the same query evaluation process: It suffices not to 
rewrite the rules whose bottom-up evaluation is desired. This is a very simple way to imple­
ment sophisticated query optimization strategies. 

3. The rewriting of the Alexander and Supplementary Magic Set methods results from the 
specialization of the Backward Fixpoint Procedure with respect to the database rules, as 
shown in Section 5. There, we justified it by showing that it permits on the one hand to 
normalize nested terms, and on the other hand to pre-encode the variables occurring in the 
generated queries. The rationale of normalization is to simplify the data structures and to 
permit one to rely on well-established file systems. 

As we have observed, it is more efficient to pre-encode variables than to do it repeatedly 
when query-tuples are generated. Pre-encoding is possible only if auxiliary predicates - the 
'queryb' predicate of the Backward Fixpoint Procedure - are introduced. Indeed, these 
auxiliary predicates give rise to distinguishing queries that are amenable to encoding from 
the atoms that must be kept unchanged in order to permit their later evaluation. This justifies 
the introduction of the 'queryb' expressions - i.e., the 'problem' atoms of the Alexander 
method or the 'magic' atoms of the Magic Set method. 

The remaining feature of the rewriting, the ternary predicate 'evaluate' of Proposition 5.2 -
i.e., the 'continuation' or 'supplementary magic' atoms - is justified by efficiency con­
siderations, as discussed in [RLK 86], in [BR 87], and more briefly in Section 6. 

An additional advantage of the rewriting of the Alexander and Magic Set methods is not to 
have to distinguish between tuples that express answers and tuples that express queries. This 
simplifies the procedure as well as the data structure. 

8. Conclusion 

During the last five years, several methods have been proposed for evaluating queries on 
recursive databases. Those that ensure termination on recursive databases defining finitely 
many facts follow one or the other of two approaches. The methods of the first type rewrite 
the database rules and process the rewritten rules bottom-up. This is how the 
Alexander [RLK 86] and Magic Set [BMSU 86, BR 87] methods proceed. The second ap­
proach is an extension of SLD-Resolution that consists of storing the encountered queries 
and the proven answers. It has been proposed in [DIE 87] with the £T* and ETint al­
gorithms, in [TS 86] with OLDT-Resolution, in [VIE 87] with QSQ and SLDAL-
Resolution, and in [NEJ 87] with the RQA/FQI procedure. 

On the one hand, the bottom-up processing of the first approach is often opposed to the 
top-down reasoning principle of the second. On the other hand, strong similarities between 
the two approaches were often observed. However, Beeri and Ramakrishnan noted: 

"So far there is no uniform framework in terms of which these strategies may be 
described and compared, and the basic ideas that are common to these strategies 
remain unclear" 



42 

in an article [BR 87] giving, with the notion of 'sideway information passing strategy', a 
first contribution towards such a framework. 

In this article, we have proposed a common framework. We relied on the concept of fixpoint 
procedure for comparing the rewriting-based and the resolution-based methods. We showed 
that fixpoint theory can be applied to databases with other operators than the bottom-up 
reasoning immediate consequence operator of van Emden and Kowalski [vEK 76]. 

We specified a fixpoint query answering procedure, which we call the Backward Fixpoint 
Procedure. This procedure performs top-down reasoning but it is specified by a bottom-up 
meta-interpreter, i.e., in a meta-language by means of rules intended for bottom-up process­
ing. The Backward Fixpoint Procedure was shown to be a sound and complete query 
answering method for recursive databases. 

Then, we interpreted the Alexander and Magic Set methods on the one hand, the algorithms 
ET* and ETinterpi OLDT-Resolution, QSQ, SLDAL-Resolution, and the procedure 
RQA/FQI on the other hand, in terms of the Backward Fixpoint Procedure. We showed that 
all these methods implement the Backward Fixpoint Procedure. Roughly speaking, 
rewriting-based and resolution-based methods are no longer distinguishable when expressed 
as fixpoint procedures in the formalism of meta-interpretation. 

More precisely, we first showed that the rewriting of the Alexander and Magic Set method 
results from specializing the Backward Fixpoint Procedure with respect to the database 
rules. Then, investigating the nature of the extensions to SLD-Resolution in the ET* and 
ETinterp algorithms, OLDT-Resolution, SLDAL-Resolution, and the RQA/FQI procedure, 
we showed that the Backward Fixpoint Procedure formalizes these methods as well. Finally, 
we argued that an efficient implementation of a resolution-based procedure has to explicitly 
rely on a semi-naive query evaluator and on the very rewriting of the Alexander and Magic 
Set methods. 

Relying on bottom-up meta-interpreters for specifying fixpoint query answering procedures 
appears to be a useful technique for both theoretical and practical issues. On the one hand, it 
often permits simple soundness and completeness proofs, like in this article. On the other 
hand, bottom-up meta-interpretation can be applied to specifying advanced fixpoint query 
answering procedures. This technique seems to be an interesting direction for further 
research. 

The Backward Fixpoint Procedure can be called an 'upside-down meta-interpreter', for it 
relies on bottom-up reasoning for implementing a top-down evaluation. Meta-interpretation 
can also be applied in the reverse way, i.e., for specifying bottom-up reasoning in a top-
down language. We applied this approach for implementing the rather unconventional 
theorem prover SATCHMO in the top-down language PROLOG [MB 88]. 'Upside-down 
meta-interpretation' does not seem to have attracted much attention. Further investigations 
of this technique are desirable. 

Finally, efforts should be devoted to investigating strategies for combining top-down and 
bottom-up reasoning, i.e., strategies for chosing which rules to rewrite ä la 
Alexander/Supplementary Magic Set and which rules to keep unchanged. As recent results 
in various fields of automated reasoning show, approaches combining the two inference 
principles often permit considerable gains in efficiency. 



43 

Acknowledgements 

I am indebted to Jean-Marie Nicolas for his encouragement and support during this 
research, and to Alexandre Lefebvre and Rainer Manthey for helpful discussions. 

References 

[BAR 86] F. Bancilhon and R. Ramakrishnan. An amateur's introduction to recursive 
query processing strategies. In Proc. ACM-SIGMOD Conf. on Management of Data 
(SIGMOD). Washington, D.C., 1986. 

[BEE 89] C. Beeri. Recursive query processing. In Proc. 8th ACM SIGACT-SIGMOD-
SIGART Symp. on Principles of Database Systems (PODS). Philadelphia, Penn., 1989. 
Tutorial. 

[BMSU 86] F. Bancilhon, D. Maier, Y . Sagiv, and J. Ullman. Magic sets and other strange 
ways to implement logic programs. In Proc. 5th ACM SIGMOD-SIGACT Symp. on Prin­
ciples of Database Systems (PODS). 1986. 

[BR 87] C. Beeri and R. Ramakrishnan. On the power of magic. In Proc. 6th ACM 
SIGACT-SIGMOD-SIGART Symp. on Principles of Database Systems (PODS). San Diego, 
Calif., 1987. 

[BRY 89] F. Bry. Query evaluation in recursive databases: Bottom-up and top-down 
reconciled. Research Report IR-KB-64, ECRC, 1989. 

[DIE 87] S.W. Dietrich. Extension tables: Memo relations in logic programming. In 
Proc. Symp. on Logic Programming (SLP). San Francisco, Calif., 1987. 

[DR 86] R. Demolombe and V. Royer. Evaluation strategies for recursive axioms: A 
uniform presentation. Internal Report, ONERA-CERT, Toulouse, France, 1986. 

[LLO 87] J.W. Lloyd. Foundations of logic programming. Springer-Verlag, Berlin, New 
York, 1987. 2 n d Ed. 

[LV 89] A. Lefebvre and L. Vieille. On deductive query evaluation in the Dedgin* sys­
tem. In Proc Ist Int. Conf. on Deductive and Object-Oriented Databases (DOOD). Kyoto, 
Japan, 1989. In this book. 

[MB 88] R. Manthey and F. Bry. SATCHMO: A theorem prover implemented in 
Prolog. In Proc. 9th Int. Conf. on Automated Deduction (CADE). Argonne, 111., 1988. 

[NEJ 87] W. Nejdl. Recursive strategies for answering recursive queries - The RQA/FQI 
strategy. In Proc. 13th Int. Conf. on Very Large Data Bases (VLDB). Brighton, Great Brit., 
1987. 

[RAM 88] R. Ramakrishnan. Magic templates: A spellbinding approach to logic 
programs. In Proc. 5th Int. Conf. and Symp. on Logic Programming (ICLPISLP). Seattle, 
Wash., 1988. 

[RLK 86] J. Rohmer, R. Lescceur, and J.-M. Kerisit. The Alexander method, a technique 
for the processing of recursive axioms in deductive databases. New Generation Computing 
4(3), 1986. 

[SEK 89] Η. Seki. On the power of Alexander templates. In Proc. 8th ACM SIGACT-
SIGMOD-SIGART Symp. on Principles of Database Systems (PODS). Philadelphia, Penn., 
1989. 



44 

[SES 87] P. Sestoft and Η. S0ndergaard. A bibliography on partial evaluation. 
SIGPLAN Notices 23(2), 1987. 

[SKGB 87] H. Schmidt, W. Kiessling, U. Güntzer;-and R. Bayer. Compiling exploratory 
and goal-directed deduction into sloppy delta-iteration. In Proc. Symp. on Logic Program­
ming (SLP). San Francisco, Calif., 1987. 

[TAR 55] A. Tarski. A lattice-theoretical fixpoint theorem and its applications. Pacific 
Jour, of Mathematics 5, 1955. 

[TS 86] Η. Tamaki and T. Sato. OLD resolution with tabulation. In Proc. 3rd Int. Conf 
on Logic Programming (ICLP). London, Great. Brit., 1986. 

[ULL 85] J. D. Ullman. Implementation of logical query languages for databases. Trans, 
on Database Systems 10(3), 1985. 

[ULL 89] J. D. Ullman. Bottom-up beats top-down for Datalog. In Proc. 8th ACM 
SIGACT-SIGMOD-SIGART Symp. on Principles of Database Systems (PODS). Philadel­
phia, Penn., 1989. 

[vEK 76] M. van Emden and R. Kowalski. The semantics of predicate logic as a pro­
gramming language. Jour, of the ACM 23(4), 1976. 

[VIE 86] L. Vieille. Recursive axioms in deductive databases: The Query-Subquery Ap­
proach. In Proc. 1st Int. Conf. on Expert Database Systems (EDS). Charleston, New CaL, 
1986. 

[VIE 87] L. Vieille. A database-complete proof procedure based on SLD-resolution. In 
Proc. 4™ Int. Conf on Logic Programming (ICLP). Melbourne, Australia, 1987. 

[VIE 89] L. Vieille. Recursive query processing: The power of logic. Theor. Comp. Sc., 
1989. to appear. 




