
i n : Proc. Workshop on Non-Standard Queries and
Non-Standard Answers, Toulouse, France
J u l y 1-4, 1991

Constrained Query Answering

- Preliminary Report -

Frangois Bry

ECRC, Arabellastr. 17, D - W 8000 München 81, Germany
bry@ecrc.de

ABSTRACT Traditional answering methods evaluate queries only against positive
and definite knowledge expressed by means of facts and deduction rules. They do
not make use of negative, disjunctive or existential information. Negative or in
definite knowledge is however often available in knowledge base systems, either as
design requirements, or as observed properties. Such knowledge can serve to rule out
unproductive subexpressions during query answering. In this article, we propose an
approach for constraining any conventional query answering procedure with general,
possibly negative or indefinite formulas, so as to discard impossible cases and to
avoid redundant evaluations. This approach does not impose additional conditions
on the positive and definite knowledge, nor does it assume any particular seman
tics for negation. It adopts that of the conventional query answering procedure it
constrains. This is achieved by relying on meta-interpretation for specifying the
constraining process. The soundness, completeness, and termination of the under
lying query answering procedure are not compromised. Constrained query answering
can be applied for answering queries more efficiently as well as for generating more
informative, intensional answers.

1. Introduction

Traditional answering methods evaluate queries only against positive and definite knowledge
expressed by means of facts and deduction rules. They do not make use of negative, disjunctive
or existential information. Negative or indefinite knowledge is however often available in knowl
edge base systems, either as design requirements - e.g. database integrity constraints or logic
program specifications - , or as observed properties - e.g. "memoized" answers or computed
generalizations as in, e.g., [Sie88, YS89]. I t has often been observed that negative and indefi
nite knowledge could serve to improve query answering. However, the methods for performing
such improvements that have been proposed either impose strong limitations, or require rather
complex inference engines - for example theorem provers that are complete for full first-order
logic. I t is not clear whether their principles can be combined with techniques developed for
conventional query answering - e.g. for processing recursive deduction rules.

1

mailto:bry@ecrc.de

In this paper, we describe an approach called "constrained query answering" extending
conventional backward - or top-down - reasoning procedures with a processing of general,
possibly negative or indefinite, knowledge in order to rule out unproductive subexpressions. We
restrict ourselves to backward reasoning procedures for two reasons. Firstly, most procedures
that have been proposed for processing logic programs or querying deductive databases perform
backward reasoning - in the sense which is relevant here, so do the Alexander [Roh86] and Magic
Set [Ban86, BR87, Ram88] methods. Secondly, it is not clear whether the paradigm investigated
here could be applied with forward reasoning.

The approach described in this article constrains any conventional, backward reasoning
query answering procedure - e.g. SLD-resolution [Llo87], OLDT or SLDAL-resolution [TS86,
Vie89], the Alexander [Roh86] or Magic Set [Ban86, BR87, Ram88] methods, etc. - by dis
carding unsatisfiable and redundant subexpressions. This is done by relying on additional
knowledge such as integrity constraints or "memoized" answers. I f such a knowledge is not
available, or i f i t is not relevant to the query under consideration, the reasoning performed by
the underlying answering procedure is not affected.

Constrained query answering does not impose any condition on the definite knowledge used
by the underlying procedure - in particular, i t does not preclude recursive deduction rules.
Neither does i t assume any particular semantics for negation, but i t adopts the semantics im
plemented by the underlying answering procedure. This inheritance of features of the underlying
answering procedure is achieved by specifying the constraining process as a meta-interpreter
for this procedure.

The three features:
(1) no additional conditions imposed on deduction rules,
(2) independence from the formalization of negation as failure,
(3) extension of a conventional query answering procedure by means of meta-interpretation,

are, to the best of our knowledge, specific to the method proposed here. They distinguish
it from other proposals based on similar ideas, in particular from the approaches described
in [HZ80, Kin81a, Kin81b, Cha84, Cha86, S087, LM88, Cha88, LH88, Mot89, S089, PR89,
Lee91] ([Mot90] gives a comparative introduction to some of the methods described in these
articles). Although constraints are general first-order formulas, constrained query answering
neither specifies a new "full theorem prover", nor "disguises" a known approach to theorem
proving.

Constrained query answering can be applied for answering queries more efficiently as well
as for generating more informative, intensional answers. Detecting and ruling out unproduc
tive evaluations can indeed be applied to improve efficiency of query answering. Since the
constraining process takes place before the extensional knowledge - i.e. the database of facts
- is accessed, considerable gains of efficiency can be expected for database applications that
usually contain large numbers of facts. Constrained query answering can also be applied to gen
erate more informative answers. I t indeed answers queries without consulting the extensional
knowledge, in those cases where the intensional information - i.e. the deduction rules and the
constraints - is sufficient. Answers computed only from intensional knowledge such as deduc
tion rules, design requirements, and integrity constraints can be considered more informative
than answers depending on casual, extensional data.

This report first defines constrained query answering for Horn knowledge bases, then for
knowledge bases with deduction rules containing negative literals. The classical fixpoint of the

immediate consequence operator is used for defining the semantics of Horn knowledge bases
and of their constraints. In order to define constrained query answering independently from
any actual backward reasoning query answering procedure, we specify it in terms of an abstract
model of backward reasoning. This model formalizes the generation of goals during backward
reasoning as thefixpoint of a meta-interpreter. This model has been introduced in [Bry90] where
it was applied to investigating different paradigms for querying recursive deduction rules.

Rather different semantics have been proposed for non-Horn knowledge bases. Moreover,
their definitions refer to a great variety of formalisms. For some of these semantics no backward
reasoning query answering procedures have been proposed. For these reasons, i t is desirable
to keep the definition of constrained query answering as independent as possible from any
particular semantics of negation. We show that this is possible, provided one restricts himself
to semantics fulfilling a certain condition conveying the notion of "supported deduction". We
argue that this weak condition reflects the intuitive meaning of negation in knowledge bases
and logic programs. We show how the abstract model of backward reasoning extends to non-
Horn knowledge bases under any "support-based" semantics. Relying on this extended model,
we show that constrained query answering extends as well to non-Horn knowledge bases under
such a "support-based" semantics.

This article consists of seven sections, the first of which is this introduction. Section 2 recalls
some background notions and introduces a few notations. We give in Section 3 the abstract
formalization of backward reasoning. Relying on this formalization, we show in Section 4 how
to rule out inconsistent subexpressions. In Section 5, we define a similar approach to avoiding
redundant evaluations. Section 6 is devoted to specifying constrained query answering to non-
Horn knowledge bases. In a last section, we briefly discuss relationships with related issues.

2. Background

We define a knowledge base KB as a triple of finite sets, KB = (F, DR, C), where F is the set
of facts, DR the set of deduction rules, and C the set of constraints. Elements of F, DR, and
C are assumed to be expressed in a same first-order language £ΚΒ· The variables of CKB will
be denoted by lower case italics characters.

Informally, F and DR specify definite and positive knowledge on which conventional query
answering methods rely; C is a set of properties known to be implied by F U DR. Typically,
elements of C are integrity constraints, program specifications, or observed properties such
as "memoized" answers or computed generalizations. Since F U DR implies C, completeness
of query answering can be achieved by evaluating queries against F U DR only as done by
conventional answering procedures. Thus, C express redundant knowledge. Formally, facts,
deduction rules, and constraints are defined as follows.

Facts are atoms and deduction rules are expressions of the form:
Η «- L i Λ . . . Λ L n

where η > 1, Η is an atom (called the head of the rule), and the Lis are literals (called body
literals). Such a rule denotes the formula:

V x i . . . V x k (L i A . . . A L n = » H)
where the XjS are the variables occurring in Η or in the Lis. I f the body literals Ljs are all
positive, then the rule is called a Horn rule. A knowledge base KB = (F, DR, C) is a Horn

3

knowledge base i f all rules in D R are Horn rules. Constraints are closed first-order formulas.

For simplifying the description of the method, but without loss of generality, we assume
that constraints are expressions of the form:

Αι Λ . . . Λ A n -> B i V . . . V B m

where η > 0, m > 0, the AiS and BjS are atoms. Such an implication denotes the formula:
V x i . . . Vx k (Αι Λ . . . Λ A n =• Bi V . . . V B m)

where the XjS are the variables occurring in the AjS or in the BjS. For η = 0 it denotes:
V x i . . . Vx k (true =• Βχ V . . . V B m)

Similarly, if m = 0, i t denotes:
V x i . . . Vx k (Αι Λ . . . Λ A n false)

Such a constraint is often called a denial. The AiS (BjS, resp.) are called body literals (head
literals, resp.). This implicative form is almost identical to the clausal form. I t is derived from
general first-order logic formulas by representing existentially quantified variables by Skolem
functions, and by computing prenex disjunctive normal forms. Note that, due to the implicative
form, negation does not occur explicitly in constraints.

The semantics of a Horn knowledge base is defined in terms of the immediate consequences
derivable from its facts and deduction rules. A ground atom A is an immediate consequence of
F U D R if there exists:

• R = Η *- L i Λ . . . Λ L n € D R

• a substitution σ of constants for variables in R
such that:

• Ησ = A
• \J\G € F, for all i = 1, . . . , n.

The immediate consequence operator of a Horn knowledge base KB = (F, D R , C) is the
function associating with each subset D of the Herbrand base of CKB ~ i-e. the set of all ground
atoms expressible in CKB - the set T D R (D) of immediate consequences of D U D R . The fixpoint
T D R T W (D) is the set of all facts derivable from D U D R by repeated applications of TDR.
Formally:

T D R T I D) = UneN T D R T N (D)
where:

T D R T ° (D) = D

T D R T N + 1 (D) = T D R (T D R T (D)) U T D R | N (D)

The fixpoint T D R t w (F) is finite if F U D R contains no function symbols or if D R is not recursive.

The fixpoint T D R ϊω(Ρ) specifies the (unique) model MKB of a Horn knowledge base
KB = (F, D R , C) as follows: a ground atom is true in MKB if i t belongs to T D R T W (F) , it
is false otherwise. A general formula G is true or satisfied in KB - denoted KB h G - if
MKB |= G, i.e. i f MKB is a model of G. Note that the truth of formulas in a knowledge base
does not depend on its constraints.

The semantics of constraints in a Horn knowledge base KB = (F, D R , C) is formally defined
by the condition:

VG e C KB h G
I t is worth emphasizing this definition of constraints, for two reasons. Firstly, i t defines the
semantics of constraints in terms of the semantics of facts and rules, i.e. in practice, by relying

4

on the available query answering procedure. Secondly,the concept of constraint considered here
departs from that of "constraint programming languages" [Lel87], in particular from "constraint
logic programming" [JL87, Van89] and from the "constraint query languages" investigated in
[Kan90]. In these languages, constraints do not necessarily express redundant information.

We conclude this section with some remarks on the computation of the fixpoint T D R *\W(F)
of a Horn knowledge base KB = (F, DR, C).

The definition T D R T (F) = I U N T D R T n (F) suggests to compute the fixpoint T D R H F)
by computing the sets T D R ? n(F) for increasing values of n. Termination - in those cases
where the fixpoint T D R ^ (F) is finite - is ensured by avoiding redundant computations. The
computation can be interrupted as soon as no new consequences are generated. Formally:

T D R i " (F) = T D R T k(F) T D R T k + 1 (F) C T D R T k (F)

This approach to computing the fixpoint of a Horn knowledge base is often called the naive
method. Although sufficient to ensure termination, the redundancy condition

T D R i k + 1 (F) C T D R t k (F)
can be strengthened so as to generate at step n+1 only atoms with some premises that where
generated at step n. This refined procedure is often named the semi-naive method.

In defining constrained query answering, fixpoint computations are described that require
more sophisticated redundancy conditions than that of the naive and semi-naive methods.
Constrained query answering can be viewed as strengthening the redundancy conditions of
fixpoint computations using the knowledge expressed by the constraint.

3. A Formalization of Backward Reasoning

In order to answer a query Q posed to a Horn knowledge base KB = (F, DR, C), one can
compute the fixpoint T D R t w (F) and then evaluate Q against this fixpoint, using the query
evaluator of a relational, non-deductive database system. This approach has some drawbacks.
In particular, i t requires to materialize the whole of T D R i w (F) although most queries only
refer to parts of this fixpoint. Techniques have been developed that aim at restricting the
computation of derived facts to data relevant to the considered queries. Backward reasoning is
the paradigm upon which most of these techniques rely.

Backward reasoning is formalized in different manners, usually, as input resolution, or as
a degenerated form of SL-resolution called SLD-resolution [Llo87]. We give here a different
formalization in term of the fixpoint of a set of deduction rules. These deduction rules are quite
similar to that of a knowledge base, but their variables range over formulas of the language
CKB of the knowledge base KB under consideration. The variables occurring in the rules of
KB in contrast range over constants of £ΚΒ · Thus, the deduction rules formalizing backward
reasoning specify a meta-interpreter for the rules of the knowledge base under consideration.
We call Backward Fixpoint Procedure, short BFP, this meta-interpreter. Upper case characters
in italics denote meta-variables.

5

fact(<2) <— query($) Λ mle(Q <— Β) Λ evaluate(i?)
query(J5) *— query(<2) Λ rule(Q <— B)
query(<5i) *- query(φι Λ Q2)
query(<22) <— query(Qi Λ Q2) Λ evaluate(<2i)

The predicate "rule" denotes access to the set of deduction rules of the knowledge base under
consideration. The predicate "evaluate" answers conjunctive and atomic queries against the
set of facts extended with the already generated atomic answers. The first rule describes the
generation of answers to posed queries. The three other rules describe how atomic goals are
generated by reasoning backward: the first one generates a conjunctive goal from an already
posed query which unifies with the head of a rule. The last two rules decompose conjunctive
queries into atomic goals.

The Backward Fixpoint Procedure was introduced in [Bry90] for investigating the relation
ship between various query answering procedures for recursive rules. I t is shown there that the
rewritings of the Magic Set methods result from the partial evaluation of the Backward Fix-
point Procedure over the object rules, i.e. the rules of the considered knowledge base. For this
reason, the Magic Set methods can be seen as backward reasoning query answering procedures.

Proposi t ion 1 : [Bry90] Let KB = (F, DR, C) be a Horn knowledge base, Q a set
of "query(G)" expressions where the Gs are atoms in the language CKB of KB, and
A an atom in the language CKB- I f there is an expression "query(G)" in Q such
that A and G unify, the following equivalence holds:

fact(A) G TBFP T" (F U DR U Q) A G T D R T (F)

Though unconventional, the formalization of backward reasoning given above has, in the
context of this article, a major advantage: as i t is shown in Section 6, i t extends to any
semantics of negation which satisfies a condition formalizing the intuitive notion of "supported
deduction". This allows us to extend constrained query answering to non-Horn knowledge
bases.

Termination - in those cases where the queries in Q have finitely many answers - requires
to refine the redundancy tests of the naive and semi-naive methods. Since the last three meta
rules in BFP might generate facts containing object language variables, syntactically distinct
but semantically undistinguishable expressions such as "query(p(x, a))" and "query(p(j/, a))"
can be generated. I t follows that the fixpoint TBFP T W (F U DR U Q) is subsumed by the set
TBFP T*(F U DR U Q) for some finite k if all elements of T B F P T * + 1 (f U DR U Q) are instances
of facts in TBFP T*(F U DR U Q). Moreover, at each step η of the computation, elements of
TBFP T n (F U DR U Q) that are instances of facts in T B F P f ̂ (F U DR U Q) can be eliminated
before computing the next set of consequences.

The Backward Fixpoint Procedure does not relate a goal - i.e. a meta-language "query"
expression - to the goals i t is generated from. This relationship is however needed for specifying
constrained query answering. We therefore conclude this section with a modified version called
BFP* of the Backward Fixpoint Procedure which associates with each goal its "ancestor" and
"cousin" goals.

6

query(5, S2)
query(Qu S)
query(Q 2 y S)

query(£, {Q})
fact(<2)

<- query((5)
<— query(Q, £) Λ vu\e(Q <— Β) Λ evaluate(i?)
<- query(£, 5 ι) Λ rule(Q <— Β) Λ merge(5i, 5 , S 2)
4 - query (φι AQ2, S)
<— query((3i Λ ζ? 2 , Λ evaluate(<3i)

The first rule initializes the set of goals related to an initial goal. The second rule describes the
generation of answers to queries, as in the previous version of the Backward Fixpoint Procedure.
The third rule generates a conjunctive goal from an already generated goal which unifies with
the head of a rule. We assume that "merge(Si, 5 , £ 2) " holds if and only if S2 denotes the
set Si augmented with the literals occurring in B. The set S2 is associated by the third rule
with the generated conjunctive query B. The last two rules decompose a conjunctive query
into atomic ones, like in the previous version of the procedure. During this decomposition, the
set of related goals is transmitted to the generated component goals.

The predicate "merge" can be implemented either procedurally, assuming that the rule
language accepts procedural attachements, or by means of additional deduction rules. Since
these rules are rather straightforward to specify, we do not give them here.

The following proposition establishes the soundness and completeness of the BFP* proce
dure.

Proposi t ion 2: Let KB = (F, DR, C) be a Horn knowledge base, Q a set of
"query(G)" expressions where the Gs are atoms in the language CKB of KB, and A
a ground atom in the language £ΚΒ · I f there is an expression "query(G)" in Q such
that A and G unify, the following equivalence holds:

Proof: (sketched) I t suffices to prove that for all integers n:
(1) For each expression query(Qi, S) in TBFP* (F U DR U Q), there exists an expression
"query(Q 2)" in T B F P T" (F U D R U Q) such that Qi and Q 2 are variants.
(2) For each expression "query(Q 2)" in TBFP (F U DR U Q) there exists an expression
"query(Qi, 5)" in T B F P * T" (F U DRU Q) such that Qi and Q 2 are variants.
Both properties result from the definition of BFP and BFP*. •

Termination - in case the considered queries have finitely many answers - requires to refine
once again the redundancy condition. Eliminating variant "query(Q, S)" expressions while
computing the sets TBFP* T n (F U DR U Q) does not suffice to ensure termination, because
larger sets S of related goals are generated for increasing values of n. Termination is achieved
by not applying the third rule in BFP*

in case Q is an instance of an element of S\. This does not compromise completeness for
the following reasons. Firstly, by construction of the set of goals Si, if Q is an instance of
an element Q1 of Si, then a goal "query(Q', £ ')" has already been generated. Secondly, the
generation of answers by the second rule of BFP* depends only on the first argument Q of the
"query" expression and does not take the set S of goals into account.

fact(A) e TBFP* T W (F U D R U Q) A G T D R Γ (F)

query(B, S2) 4 - query(Q, Si) Λ rule(Q *— Β) Λ merge(5i, B, S2)

7

4. Ruling out Inconsistencies

In this section, we show how to reason on the constraints of a knowledge base and on the goals
generated by the BFP* procedure for ruling out inconsistencies. We first informally suggest
the approach on an example. Then, we formalize i t in the general case and we establish its
correctness. Finally, we specify an extension to the BFP* procedure which discards inconsistent
goals.

Consider the following knowledge base KB = (F, DR, C), the set Q of queries, and the
facts and meta-facts generated by the BFP* procedure. Below, S n denotes the set of newly
generated facts at step n, i.e. the difference set

TBFP* T n (F U DR U Q) \ T B F P * Γ " 1 ^ U DR U Q) .

F: b

DR: a <— b q <— r Λ s
ρ <— q Λ u q <— t
r «— a t <— b

C: s A u - 4 false
ρ Λ t —• false
ρ Λ q —» ν

Q: query(p)

S1: query(p, { p »
S2: query (q Λ u >{p» q> u »
S3: query(q, {p» q > u))
S4: query (r Λ s, {p , q, u, r, s »

queryjt, {p , q, u, t }
S5: query(r, {p , q, u, r, s »

query(b, {p, q, t , b »
S6: t
S7: q

By definition, constraints express properties that are satisfied by the facts and deduction rules.
Thus, the constraint

s Λ u —• false
states that V and "u" are not both true in KB. As a consequence, there is no need to farther
expand partial proofs relying on these two facts. In particular, the goal

query(r Λ s, {p , q, u, r, s})
generated at step 4 is useless in the sense that i t must fail. I t cannot yield a proof of "r Λ s"
since its associated set of related goals contains both "s" and "u". Similarly, the constraint

ρ Λ t —• false
gives rise to discarding the second goal

query(t, {p , q, t })

8

of S4. Thus, by reasoning on the constraints, one can interrupt the BFP* procedure already at
step 4.

One should notice that the constraint
ρ Λ q —> ν

does not allows us to rule out queries referring to a set of goals such as {p, q, u} (steps 2 and
3). Although this set does not satisfy the constraint ρ Λ q —* ν, neither does it falsify this
constraint: the set of goals {p, q, u} represents an incomplete proof tree, indeed. Intuitively,
the above-mentioned constraint would be definitely violated only if the set would be extended
with - i v . Then, there would be no ways to extend furthermore a set containing p, q, and -»v
into a set satisfying the constraint ρ Λ q —• v.

In presence of non-ground rules and constraints, one should pay a special attention to the
meaning of the sets of goals generated by the BFP* procedure. Consider for example the
following set S of goals and the constraint E i :

S = {p(a, x), q(x, ?/), r(y, d)}
Ei = p(a, b) Λ q(b, c) —> false

S contains the goals of a partly expanded proof tree, which can be completed in many ways.
In particular, further expansions of this proof tree may well bind χ and y to other values than
b, and c, respectively. Thus, the constraint Εχ is not sufficient for ruling out the "query"
expression containing the set of goals S. On the contrary, a more general constraint such as

E 2 = p(s, y) Λ q(y, z) -» false
would be violated by S.

The following proposition formalizes and generalizes these remarks. I t relies on the notion
of existential closure of a set of atoms which we first define.

Def in i t ion 1 : The existential closure of a finite set S = { L i , . . . , L n } of literals is
the formula EC(S) = 3x\... 3xk (In Λ . . . Λ L n) where the a?,s are the variables
occurring in the LjS.

Propos i t ion 3: Let KB = (F, DR, C) be a Horn knowledge base, Q a set of
"query(G)" expressions where the Gs are atoms in the language CKB of KB, η an
integer, Η an atom, and S a set of atoms such that query(H, S) € TBFP* T n (F U
DR U Q). I f C U {EC(S)} is inconsistent, then for all atoms A in the language CKB
which unify with a goal in Q, we have:

fact(A) e TBFP* Γ (TBFP* T n (F U DR U Q) \ {query(G, S) »

A e T D R r (F)

Proof: (sketched) By induction on k such that
TBFP* T W (F U DR U Q) = TBFP* T k (F U DR U Q)

one establishes that
fact(A) e TBFP* T n (F U DR U Q) ^ fact(A) e TBFP* Γ (TBFP* T n (F U DR U Q) \

{query(G, S)}). The result follows by Proposition 2. •

By Proposition 3, the expressions "query(G, S)" such that the existential closure of S
violates the constraints can be discarded while answering queries with the BFP* procedure
without compromising completeness of the query answering procedure.

9

The formalism of deduction rules gives rise to specifying intuitively and elegantly when
constraints and sets of goals are inconsistent.

inconsistent(S') <— constraint(C) Λ violates^, C)

violates(5, false)
violates^, Β —• false) *— satisfies^, B)

satisfies^, B) <— A G S Λ instance(B, A)
satisfies^, Βι A B2) <— relevant-conjunction(J3i Λ B2)

A satisfies^, B\) A satisfies^, B2)

The meta-predicate "constraint" denotes access to the set of constraints. We assume that,
given two atoms A and J5, "instance(i?, A)" holds i f there exists a substitution σ for variables
in Β - but not in A - such that Βσ = A. The predicate "relevant-conjunction" aims at
restricting the computation of satisfied conjunctive formulas to bodies of rules. This predicate
can be specified as follows: The body of a deduction rule of the considered knowledge base is
a relevant conjunction. A subformula of a relevant conjunction is also a relevant conjunction.
This predicate can also be specified by means of meta-rules. We do not give such rules here,
because reasoning backward on the rules for "satisfies" make the "relevant-conjunction" filter
useless.

Let I denote the above-defined set of meta-rules for "inconsistent". By the following propo
sition, I is a sound and complete specification.

Proposi t ion 4: Let KB = (F, DR, C) be a knowledge base and S a set of atoms
in the language £KB of KB. C U {EC(S)} is inconsistent if and only if

inconsistent(S) € T i ^ ({ S })

Proof: (sketched) Proposition 4 is implied by the soundness and completeness of binary resolu
tion. The rationale of requiring "instance" not to bind variables occurring in its first argument
is that variables in sets of goals S must be interpreted as existentially quantified. The con
ventional framework of binary resolution assumes these variables being represented by Skolem
functions. •

Refining the redundancy condition of the naive and semi-naive method so as to discard
"query(Q, S)" expressions such that "inconsistent(S)" holds gives rise to avoid unproductive
computation without compromising the completeness of the BFP* procedure.

5. Detecting Redundancies

Some of the goals generated during backward reasoning are redundant. This is the case in
particular when several deduction rules repeatedly specify some conditions. The additional
knowledge provided by constraints can also be used for eliminating redundant goals.

10

We first consider intrinsic redundancies, i.e. redundancies that are independent from the
constraints. We outline on an example how such redundancies can be detected and eliminated.
We formalize the approach and specify it as an extension to the BFP* procedure. Then, we
extend the approach to constraint dependent redundancies.

Consider the following knowledge base KB = (F, DR, 0), the set Q of queries, and the sets
S n of facts generated at steps η of the BFP* procedure.

F: r(a) t(a)
t(b)

DR: p(x) <- q(x) A t(x)
q(x) <— t(x) Α i(x)

Q: query(p(z))

S1: query(p(x), {p (*)})
S2: query(q(z) Λ t(ar), {p(rr), q(x), t(x)})
S3: query(q(x), {p(rr), q(z), t(x)})

query(t(z) Λ r(z), {p(z) , q(z), t (z) , r(a;)})
S4: query(t(z), {p(z) , q(x), t(x), v(x)})
etc.

The goal ut(x)" is encountered at step 2 and once again at step 3, each occurrence resulting
from a different deduction rule. There is of course no need to evaluate it twice. The conjunctive
goal t(x) A T(X) generated from the expression "query(q(:r), {p(#), q(#), t (#)}) " can therefore
be simplified into r(x).

I t is worth noting that a strict instance of an already encountered goal in general cannot be
discarded. Consider for example the same initial goal "p(#)" and assume that the predicates ρ
and q are defined as follows:

p(x) <— q(x) A t(x)
q(x) «— t(a) Λ T(X)

I t is possible that t(x) only holds for other substitutions than χ = a. Therefore, discarding the
goal "t(a)" could result in incorrect derivations. Only goals that are syntactically identical to
previously generated goals can be discarded.

Multiple processing of redundant goals is avoided by modifying the third rule of the BFP*
procedure into:

query(B, S2) +- query(Q, Si) Λ rule(<2 4 - B) A simplify(J3, Su Bx) A merge(5i, 5 , S2)

where the predicate wsimplify(J5, 5Ί, i?i)" holds if Βχ is the expression resulting from removing
from Β all literals belonging to the set Si. (In case all literals in Β are in Si, B\ is equal to
'"true"': no "query" expression needs to be generated).

Let us denote B F P + the BFP* procedure modified as i t is specified above. The following
proposition establishes the soundness and completeness of the B F P + procedure.

11

Proposi t ion 5: Let KB = (F, DR, C) be a Horn knowledge base, Q a set of
"query(G)" expressions where the Gs are atoms in the language CKB of KB, and A
a ground atom in the language £KB - I f there is an expression "query(G)" in Q such
that A and G unify, the following equivalence holds:

fact(A) e T B F p + Γ (F U DR U Q) <=> A e T D R Γ (F)

Proof: (sketched) Relying on Proposition 2, i t suffices to prove that:
fact(A) e T B F P + T " (F U DR U Q) fact(A) £ T B F P * Γ (F U DR U Q)

This is done by induction on k such that
TBFP* Γ (F U DR U Q) = TBFP* T* (F U DR U Q). •

Constraints can sometimes be used for detecting redundancies. This is quite obvious for
constraints with atomic heads. Such constraints could be used like deduction rules by the
underlying, conventional query answering procedure. This is however often inefficient, because
this results in re-evaluating these constraints instead of exploiting the additional knowledge
they provide. Consider the following knowledge base KB = (F, DR, C) and the set Q of
queries.

F: q(a) r(a) t(a) u(a) v(a)
t(c) u(d) v(e)

D R : p(x) «- q(x) Λ τ(χ)
s(x) <— u(a;) Λ v(ic)

C: s(x) Λ t(ic) —»• q(x)

Q: query(p(a:))

Processing the constraint like a deduction rule corresponds to computing the fixpoint
TBFP* T W (F U D R U C U Q)

instead of
TBFP* T (F U D R U Q)

Both computations are listed below (for simplifying, the second argument of "query" expressions
is omitted):

S1

S2

S 3

S4

S5

S 6

S5

T B F P . r (F U D R U C U Q)

query(p(a;))
query(q(a;) Λ r(x))
p(a)
query(q(x))
query(r(a))
query(s(x) Λ t (i))
query(s(o;))
query(u(x) Λ v(x))
query(u(x))
query(v(a;))

TBFP* T w (F U D R U Q)
query(p(x))
query(q(x) Λ f(x))
p(a)
query(q(a;))
query (r(a))

12

This example clearly shows that generating goals by reasoning backward on the constraint is
undesirable because useless "query" expressions are generated. Processing constraints with
atomic heads like rules has another drawback. This can generate answers containing Skolem
constants. Since Skolem functions usually have no meaning for the end user, this is in general
considered undesirable. Constraints with atomic heads can nevertheless be used for speeding
up the generation of answers. In presence of a constraint like

s(x) A t(x) —• q(x)
the goal "q(#)" can be discarded as soon as both goals "s(;r)" and "t(#)" have already been
encountered.

Such redundant goals can be discarded by refining the above mentioned meta-predicate
"simplify": "simplify(J5, 5Ί, i?i)" should hold if Βχ is the expression resulting from removing
from Β all literals belonging to the set S\ as well as all literals that are implied from S\ by
the constraints. Implied literals L can be specified by the following rules. (The meta-predicate
"satisfies" has been defined in Section 4.)

implies(5, L) «— constraint(l? —> L) A satisfies^, B)

Let B F P + + denote the resulting extension of the B F P + procedure. Reasoning similarly as
for proving Proposition 5, one can establish the soundness and completeness of the B F P + +

procedure:

Proposi t ion 6: Let KB = (F, DR, C) be a Horn knowledge base, Q a set of
"query(G)" expressions where the Gs are atoms in the language CKB of K B , and A
a ground atom in the language £ΚΒ · I f there is an expression "query(G)" in Q such
that A and G unify, the following equivalence holds:

fact(A) € T B F P + + f (F U D R U Q) ^ A e T D R Γ (F)

Constraints with disjunctive heads can also be used for answering disjunctive queries. In
this article, we do not investigate this issue which involves classical theorem proving techniques.
Constraint reasoning techniques do not seem to provide new insight on the subject.

6. Extension to Non-Horn Knowledge Bases

The semantics of knowledge bases has been extended in various manners to non-Horn knowl
edge bases - among other in [Apt88, GL88, Van88, Bry89]. The various proposals are quite
different from each other and they rely on a great variety of formalisms. Moreover, for some
of the proposed semantics, no backward reasoning query answering procedures have been pro
posed. Therefore, extending constrained query answering to non-Horn knowledge bases seems
to require considering the various semantics the one after the other. In this section, we show
that such a laborious approach can be avoided. We prove that the principles of constrained
query answering extend to any semantics of non-Horn knowledge bases which conveys the no
tion of "supported deduction". We argue that this condition reflects the intuitive meaning of
negation in knowledge bases and logic programs.

13

We first define a two-valued model A i j | B °f a non-Horn knowledge base KB relatively to
any semantics S. This definition gives rise to defining the semantics of constraints in a uniform
manner, whatever semantics is considered. Then, we extend the BFP and BFP* procedures to
processing negation. We show that these extensions are correct for semantics reflects the notion
of "supported deduction". Finally, we generalize to non-Horn knowledge bases the propositions
establishing the correctness of constrained query answering.

A semantics for non-Horn knowledge bases defines "true" and "false" literals, like in the
Horn case. This definition is achieved in different manners, depending on the semantics. This is
sometimes explicit as in [Van88], by assigning one of the three truth-values "true", "false", and
"unknown" to the atoms of the Herbrand base. This is in other cases done implicitly, through
the definition of several, alternative models as in [GL88]: the atoms satisfied (falsified, resp.)
in all models can be viewed as assigned the truth-value "true" ("false", resp.); atoms satisfied
in some models, falsified in others, can be viewed as assigned the truth-value "unknown".

Given a non-Horn knowledge base KB = (F, DR, C) and a semantics S of non-Horn knowl
edge bases, we shall denote by M^B the s e t consisting of:

• The ground atoms A that are true in F U DR according to <S;
• The negative literals ~«A for all ground atoms A that are false in F U DR according to S.

In contrast to the model Λ4η of a Horn knowledge base H, the model Ai^B °f a non-Horn
knowledge base KB is not necessarily complete: Λ^ΚΒ might well contain neither A nor -» A
for some ground atom A of the Herbrand base of KB. I f the semantics S is specified in terms
of distinct models, M^B c a n ^ e s e e n a s the agreement between these models. I f S is defined
in a three-valued logic, Adf<B * s defined from the atoms assigned one of the truth values "true"
and "false".

We say that a formula G is true or satisfied in KB relatively to a semantics S - noted
K B Ks G - i f ΛίκΒ 1S a model of G. Intuitively, if S is a three-valued semantics, KB hs G
means that G is true in KB however the "unknown" information is interpreted. For a multiple
model semantics 5, KB hs G holds i f G is true in all <S-models of F U DR.

The semantics of constraints is defined for a non-Horn knowledge base KB = (F, DR, C)
relatively to a semantics S as in the Horn case by the condition:

V G G C KB Ks G

The following definition formalizes the notion of "supported deduction".

Def in i t ion 2: Let KB = (F, DR, C) be a knowledge base and ΜχΒ its model
relatively to a semantics S. Prooftrees in ΜχΒ are recursively defined as follows:
Τ is a proof tree of a ground literal L in ΜχΒ if Τ = L <— Τχ, . . . T n and if one of
the following conditions holds:

• L is a negative literal, η = 1, L 6 M ^ B , and T i = true.
• L is a positive literal, L € F, η = 1, and T i = true.
• There is a rule Η *— Ui Λ . . . Λ U n in DR and a substitution σ such that
L = Ησ and each Tt- is a proof tree of \]χσ in Λ4χΒ.

S is a support-based semantics if for all knowledge bases KB and all literals
L € Λ^ΚΒ there are proof trees of L in ΜχΒ.

Some semantics are not support-based. This is in particular the case if non-constructive

14

inference principles such as the excluded middle are considered, or i f implications are not
constructively interpreted.

A correct specification of the goal generation during backward reasoning requires to extend
the Backward Fixpoint Procedure with the following meta-rule:

query(Q) «- query(-iQ)

This rule ensures that the answers to Q, if there are some, will be generated, thus preventing
wrong evaluations of -<Q. Let BFP"1 denote the BFP procedure extended with this rule. The
BFP* procedure requires a similar extension. Note that sets of goals occurring as second
argument of a "query" expression must be correspondingly be modified:

query(<9, S2) <- query(-<?, Sx) AS2 = (S\ {-*Q}) U {Q}

Let BFP"1* denote the BPF* procedure extended with this rule. The following generalization
of Proposition 1 establishes the correctness of the BFP"1 and BFP"1* procedures, provided the
considered semantics is support-based. Given a semantics <S, a knowledge base KB = (F, DR,
C) and a set Q of "query(G)" expressions where the Gs are literals in the language £KB of KB,
A 4 f F P . (K B , Q) (Λ<|ρρ.-,(ΚΒ, Q), resp.) denotes the 5-model of the BFP" (BFP*", resp.)
relatively to the knowledge base KB and the set Q of queries.

Proposi t ion 7: Let KB = (F, DR, C) be a (possibly non-Horn) knowledge base,
Q a set of "query(G)" expressions where the Gs are literals in the language CKB
of KB, and L a literal in the language £ΚΒ· I f S is support-based and if there is
an expression "query(G)" in Q such that L and G unify, the following equivalences
hold:

fact(L) € A 4 f F P . (K B , Q) fact(L) € Λ ί | ρ ρ · . (Κ Β , Q) L e M&B

Proof: (sketched) By induction on the maximum depth η of the proof trees of the literal L,
one first establishes the result for positive literals L. The result for negative literals then follows
because of the second condition in the definition of support-based semantics. •

Reasoning similarly, one establishes the following result which generalizes Proposition 3.
This result can be applied to ruling out inconsistent goals during answering queries posed to
non-Horn knowledge bases.

Proposi t ion 8: Let KB = (F, DR, C) be a (possibly non-Horn) knowledge base,
Q a set of "query(G)" expressions where the Gs are literals in the language CKB of
K B , S a set of literals in £ K B , and Η a literal in CKB such that:

query(H, S) 6 A4£ F P . - , (KB, Q)

C U {EC(S)} is inconsistent if and only if no proof trees of a literal in MKB contain
instances of S.

15

The set I of meta-rules for detecting inconsistent goals given in Section 4 needs to be
extended, in order to take negatives goals into account. More precisely, the definition of the
predicate "violates" has to be extended with the following rules:

violates^, Β —> Η) *— constraint(i? —* Η)
Λ satisfies(5, Β) Λ violates(£, Η)

violates^, Hi V Η2) «— relevant-disjunction(^i V # 2)
Λ violates(5, Hi) A violates(5, # 2)

The predicate "relevant-disjunction" restricts the derivation of disjunctive formulas to con
clusions of constraints. I t is defined as follows: The conclusion of a constraint is a relevant
disjunction. A subformula of a relevant disjunction is also a relevant disjunction. Let I - 1 denote
the extension of I with the above-defined rules.

Proposi t ion 9: Under the assumptions of Proposition 8, C U {ES(S)} is inconsis
tent if and only if inconsistent(S) G Mf^^y

Proof: (sketched) Similarly as the proof of Proposition 4. •

The following result is a counterpart to Proposition 5. I t gives rise to avoid multiple evalu
ations of redundant goals during a same proof.

Proposi t ion 1 0 : Under the assumptions of Proposition 8, i f χ ι,..., x j\ are the
variables occurring in H, V # i . . . V# n (EC(S) H) if and only if no proof trees of
literals in M^B contain instances of S and of the complement of H.

The predicate "implies" of Section 5 must be extended with the following rule, in order to
correctly detect redundant goals:

implies^, Β —> Η, A) <— element-rest(A, i?, H) A satisfies(5, B) A violates^, R)

The expression "element-rest(A, i?, #) " holds i f A is one of the disjunct of the disjunction H,
and if R is the disjunction resulting form Η once A is removed. (R reduces to "true" if Η is
an atom.) Reasoning like for proving Proposition 5 and 6, one establishes the soundness and
correctness of the extended definition of "implies".

7. Concluding Remarks

Constrained query answering does not compromise the completeness of the underlying conven
tional answering procedure. Its constraining process is complete in the sense that an expression
which is contradicted or subsumed by a constraint is not evaluated by the traditional answering
procedure - provided this procedure is complete and terminates.

Although i t performs deduction on general formulas - the constraints - , constrained query
answering is neither a (yet another) "full theorem prover", nor a known theorem prover in

16

disguise. Constrained query answering relies on redundant knowledge - the constraints - for
discarding unproductive evaluations. Classical theorem prover, in contrast, in general increase
the number of tentative proofs when redundant information is added. Constrained query an
swering is however closely related with subsumption techniques that are implemented in some
automated reasoning systems.

Constrained query answering extends the so-called "semantic query optimization" methods
of relational databases, e.g. [Aho79, HZ80, Kin81a, Kin81b, S087, S089], because it handles
deduction rules and i t is complete. The approach outlined here differs from [LM88]: the meta-
program given there transforms the deduction rules, while constrained query answering refines
the reasoning performed on unmodified rules. The approaches described in [Cha84, Cha86,
Cha88, PR89, Mot89, Lee91] also transform the rules through quite complex reasonings. I t is
not clear whether a conventional query answering procedure would suffice to implement them.
Moreover, rule transformation methods do not seem to be applicable in presence of recursive
deduction rules without compromising completeness of the constraining process [LH88, MY90].

I t is interesting to compare constrained query answering with programming languages based
on the paradigm of constraint [Lel87], in particular with constrained logic programming [JL87,
Van89, Bür90] which inspired us. Two major differences should be noticed:

• The constraints in constrained query answering are general formulas.
• they are assumed to be implied by the facts and deduction rules.

This distinguishes our proposal from constraint logic programming, from the query languages
discussed in [Kan90], as well as from the notion of exception proposed in [KS90].

I t would be interesting to investigate whether the second of the above-mentioned assump
tions can be relaxed. I f this is the case, the relationship between the resulting approach to
query answering should be compared with query answering methods for disjunctive databases
and logic programs [Min90].

Acknowledgement

This work was supported in part by the ESPRIT Basic Research Action Compulog No. 3012.
The author is grateful to Giuseppe Serrecchia, Jesper L. Träff, and Suryanarayana M . Sripada
for comments and discussions.

References

[Aho79] A.V. Aho et al. Equivalences among Relational Expressions. SI AM Jour, of Comput.,
8, 1979.

[Apt88] K. R. Apt et al. Foundations of Deductive Databases and Logic Programming, chapter
Towards a Theory of Declarative Knowledge. Morgan Kaufmann, Los Altos, Calif.,
1988.

[Ban86] F. Bancilhon et al. Magic Sets and other Strange Ways to Implement Logic Programs.
In Proc. 5th ACM Symp. Principles of Database Systems, 1986.

17

[BR87] C. Beeri and R. Ramakrishnan. On the Power of Magic. In Proc. 6th ACM Symp.
Principles of Database Systems, 1987.

[Bry89] F. Bry. Logic programming as Constructivism: A Formalization and its Application
to Databases. In Proc. 6th ACM Symp. Principles of Database Systems, 1989.

[Bry90] F. Bry. Query Evaluation in Recursive Databases: Bottom-up and Top-down Recon
ciled. Data & Knowledge Engineering, 5, 1990.

[Bür90] H. J. Bürkert. A Resolution Principle for Clauses with Constraints. In Proc. 10th Int.
Conf. Automated Deduction (CADE). Springer-Verlag, LNCS 449, 1990.

[Cha84] U.S. Chakravarthy et al. Semantic Query Optimization in Expert Systems and
Database Systems. In Proc. Int. Workshop Expert Database Systems, 1984.

[Cha86] U.S. Chakravarthy ei al. Semantic Query Optimization: Additional Constraints and
Control Strategies. In Proc. 1st Int. Conf. Expert Database Systems, 1986.

[Cha88] U.S. Chakravarthy et al. Foundations of Semantic Query Optimization for Deductive
Databases. In Foundations of Deductive Databases and Logic Programming. Morgan
Kaufmann, 1988.

[GL88] Μ. Gelfond and V. Lifschitz. The Stable Model Semantics for Logic Programming.
In Proc. 5th Int. Conf. and Symp. Logic Programming, 1988.

[HZ80] M . Hammer and S.B. Zdonik. Knowledge-based Query Processing. In Proc. 6th Int.
Conf. Very Large Data Bases, 1980.

[JL87] J. Jaffar and J.-L. Lassez. Constraint Logic Programming. In Proc. 14th Annual ACM
Symp. Principles of Programming Languages, 1987.

[Kan90] P.C. Kanellakis et al. Constraint Query Languages. In Proc. 9th ACM Symp. Prin
ciples of Database Systems, 1990.

[Kin81a] J.J. King. Query Optimization by Semantic Reasoning. Technical Report STAN-CS-
81-857, Stanford Univ., Dept. of Computing, 1981.

[Kin81b] J.J. King. QUIST: A System for Semantic Query Optimization in Relational
Databases. In Proc. 7th Int. Conf. Very Large Data Bases, 1981.

[KS90] R. Kowalski and F. Sadri. Logic Programs with Exceptions. In Proc. 7th Int. Conf.
Logic Programming, 1990.

[Lee91] S. Lee et al. Semantic Query Reformulation in Deductive Databases. In Proc. 7th
IEEE Int. Conf. Data Engineering, 1991. To appear.

[Lel87] W. Leler. Constraint Programming Languages. Addison Wesley, 1987.

[LH88] S. Lee and J. Han. Semantic Query Optimization in Recursive Databases. In Proc.
4th IEEE Int. Conf. Data Engineering, 1988.

[Llo87] J.W. Lloyd. Foundations of Logic Programming. Springer-Verlag, 1987. 2nd edition.

18

[LM88] J. Lobo and J. Minker. A Metaprogramming Approach to Semantically Optimize
Queries in Deductive Databases. In Proc. 2nd Int. Conf. Expert Database Systems,
1988.

[Min90] Minker, J. A Fixpoint Semantics for Disjunctive Logic Programs. Jour, of Logic
Programming, 9, 1990.

[Mot89] A. Motro. Using Integrity Constraints to Provide Intensional Responses to Database
Queries. In Proc. 15th Int. Conf. Very Large Data Bases, 1989.

[Mot90] A. Motro. Intensional Answers to Database Queries. Unpublished manuscript, 1990.

[MY90] A. Motro and Q. Yuan. Querying Database Knowledge. In Proc. 15th Int. Conf.
Management of Data, 1990.

[PR89] A. Pirotte and D. Roelants. Constraints for Improving the Generation of Intensional
Answers in a Deductive Database. In Proc. 5th IEEE Int. Conf. Data Engineering,
1989.

[Ram88] Ramakrishnan, R. Magic Templates: a Spellbinding Approach to Logic Programs. In
Proc. Int. Conf and Symposium on Logic Programming, 1988.

[Roh86] J. Rohmer et al. A Technique for the Processing of Recursive Axioms in Deductive
Databases. New Generation Computing, 4(3), 1986.

[Sie88] M.D. Siegel. Automatic Rule Derivation for Semantic Query Optimization. In Proc.
2nd Int. Conf Expert Database Systems, 1988.

[S087] S.T. Shenoy and Z.M. Ozsoyoglu. A System for Semantic Query optimization. In
Proc. ACM-SIGMOD Int. Conf. Management of Data, 1987.

[S089] S.T. Shenoy and Z.T. Ozsoyoglu. Design and Implementation of a Semantic Query
Optimizer. IEEE Trans, on Knowledge and Data Engineering, 1(3), 1989.

[TS86] H. Tamaki and T. Sato. OLD Resolution with Tabulation. In Proc. 3rd Int. Conf.
Logic Programming, 1986.

[Van88] A. Van Gelder et al. The Well-Founded Semantics for General Logic Programs. In
Proc. 7th ACM SIGACT-SIGMOD-SIGART Symp. on Principles of Database Systems
(PODS), Austin, Texas, March 1988.

[Van89] P. Van Hentenryck. Constraint Satisfaction in Logic Programming. M I T Press, 1989.

[Vie89] L. Vieille. Recursive Query Processing: The Power of Logic. Theoret. Comp. Sc.,
69(1), 1989.

[YS89] C T . Yu and W. Sun. Automatic Knowledge Acquisition and Maintenance for Se
mantic Query Optimization. IEEE Trans, on Knowledge and Data Engineering, 1(3),
1989.

19

