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I . Introduction 

The remarkable feature of ionizing radiations is their discontinuous interac
tion with matter. However, absorbed dose and absorbed dose rate are defined 
as statistical averages that disregard the resulting random fluctuations [1]. For 
most radiobiological considerations these quantities therefore lose all direct 
meaning. The knowledge of absorbed dose may permit no statement on energy 
actually imparted to individual cells or to subcellular structures. The deviations 
are most substantial for small volumes, for small doses, or for densely ionizing 
radiations; in many cases the energy imparted at a given absorbed dose can be 
zero or it can exceed the expectation value by orders of magnitude. Additional 
concepts and quantities are therefore required to specify the energy concentra
tions in microscopic regions. This is the subject matter of microdosimetry. 

The random nature of energy deposition attracted considerable attention early 
in the history of radiation biology; this led to the target theory and various relat
ed approaches. These approaches were aimed at an explanation of the shape of 
dose-effect relations in terms of the statistics of energy deposits that were 
termed hits and that were alternatively thought to be single ionizations [2], or 
events of point heat [3]. As a heuristic principle this interpretation was useful. 
The first monograph on the subject [4] still deserves attention, and some princi
ples of target theory will be considered in Section IV. In many applications, 
however, the approach failed because it made only limited use of physics data 
or the general tools of probability theory. Absorbed dose remained the sole 
reference quantity. The parameters of actual interest were derived from simple 
formulae based on the Poisson statistics for assumed identical and statistically 
independent events of energy deposition. 

A far more realistic treatment emerged in the work of Lea, who attempted 
a more detailed description of the random configurations of energy deposition 
in the tracks of charged particles. His monograph "Actions of Radiations on 
Living Cells" [5] is still a classic; the premature death of Lea (1947) interrupted 
a promising development. 

Microdosimetry in its present sense was, however, not the result of a gradual 
development. Instead it is founded entirely on an original approach introduced 
by H. H. Rossi when he recognized the fundamental difference between ab
sorbed dose and the corresponding random variables that need to be described 
by probability distributions. He and his colleagues proceeded then to develop 
techniques for measuring the random fluctuations of energy deposition, to con
struct a novel conceptional and mathematical framework, and to apply the new 
concepts and methods to radiobiology (see, e.g., [6-9]). 

The theoretical basis of microdosimetry is treated in this chapter. Experimen
tal techniques, numerical data, and applications are referred to for illustration 
of essential concepts and results. A recent report of the ICRU [10] can be con
sulted for additional details, for technical aspects, and for a compilation of nu-
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merical data. The chapter by Rossi in the earlier, related monograph [8] retains 
special value as an overall introduction and as a synopsis of the essentials of the 
field. 

I L General Concepts and Basic Quantities 

A. N A T U R E O F T H E P R O B L E M 

The theory of radiation quality has a twofold aspect. The physicist asks for 
a precise description of a radiation field; the biophysicist requires information 
on the energy distributions in microscopic structures, or on the local concentra
tions of the radiation-induced ionizations and subsequent radiation products. 

For a description of a radiation field one can employ radiometric quantities, 
such as the fluences of the different particles and their spectral distributions in 
energy and direction. The computation or the experimental determination of 
these quantities will usually be complex, and even i f they are fully known a com
plete description of the radiation field is not attained. Such a description would 
require additional information on the spatial and temporal correlation of the 
fluence of different secondary particles that always occurs when a primary ioniz
ing particle interacts with matter. 

To obtain information on the energy distribution in the exposed medium one 
requires material constants, such as cross sections and stopping powers, in addi
tion to the radiometric quantities. The necessary computations may be difficult, 
but—provided the input information is sufficient—they are always possible, for 
example, by Monte Carlo simulation. A far more fundamental problem is the 
inherent complexity of the resultant information. The microscopic patterns of 
energy deposition differ so widely with different types of radiation and on differ
ent levels of spatial resolution that even the most detailed description or simula
tion may contribute little toward the recognition of those features and parameters 
that are critical for the biological effect. The purpose of microdosimetry is there
fore not the unlimited generation of data, but their deliberate reduction to the 
most essential parameters. 

The radiobiologist has always used highly simplified parameters to elucidate 
the role of the microscopic distribution of energy and the effectiveness of differ
ent types of ionizing radiations. The treatment in terms of linear energy transfer 
(LET) is an extreme simplification, but is very widely utilized and, in view of 
its simplicity, it has been remarkably successful. The treatment in terms of 
microdosimetry is more complex and far more realistic. However, it too rests 
on various approximations. Such approximations are acceptable when they bring 
out those aspects that differ for the different types of ionizing radiation; they 
need not take full account of features that are common to different radiations. 
For this reason quantities can be employed that are linked to the energy imparted 
without specific regard to the nature of the electronic alterations; the latter can 
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be assumed to be largely similar for different types of ionizing radiations. For 
example, there is reason to assume that excitations contribute little to the action 
of ionizing radiations on the cell, but this need not be reflected in the definition 
of microdosimetric quantities. The definitions refer only to total energy impart
ed. Nevertheless, the quantities remain valid because the ratio of excitations to 
ionizations and their spatial interrelation are similar for different radiations. Fur
thermore, one may note that, in contrast to their definitions, the microdosimetric 
quantities are experimentally determined by ionization measurements in gas. 
This leads to inaccuracies that are usually not critical. The spatial distribution 
of ionizations produced by a charged particle in tissue-equivalent gas is largely 
representative also of the distribution of all energy transfers along the particle's 
track in tissue. 

A further simplification in microdosimetry results from the fact that only the 
tracks of charged particles need to be considered. Al l ionizing radiations work 
ultimately through charged particles. Electromagnetic radiations release in mat
ter electrons and positrons, and neutrons release nuclear recoils or nuclear frag
ments. These charged particles produce the majority of electronic excitations 
and ionizations that are responsible for the biological effect. It is, therefore, 
sufficient to treat only the directly ionizing, charged particle radiation field. Be
cause the mean free path of photons or neutrons is larger than the structures of 
interest in microdosimetry, it is possible to disregard any spatial correlation of 
charged particles even i f they are produced by the same uncharged particle. An 
important exception is the multiplicity of electrons released in an Auger cascade. 
Other exceptions are a- or ß-emitting hot spots. These exceptional cases (see, 
e.g., [11-13]) are not treated in this chapter, but they can be of considerable 
radiobiological interest. 

Figure 1 serves as a rough illustration of the configuration of charged particle 
tracks. The dots symbolize individual ionizations in tracks that are computed on 
the basis of random numbers. The diagrams are somewhat simplified. In particu
lar, the track of the densely ionizing 500-keV proton is actually considerably 
more narrow than indicated in the diagram, where an attempt has been made to 
resolve the individual ionizations. Furthermore, it will be noted that the diagram 
fails to indicate the complex spatial orientation of tracks that occur randomly in 
the exposed medium. An essential point, however, is the substantial increase of 
the ionization density with decreasing velocity of the particle. This increase 
leads to considerable differences in the concentration of the energy transferred 
to the cell and it has evident implications for the biological effectiveness of ioniz
ing radiations. The local fluctuations of energy deposition and the resultant com
plexities of energy distribution are equally important and they are the objective 
of the microdosimetric analysis. 

There is, at present, no satisfactory method for obtaining images of tracks ex
perimentally. Nuclear emulsions have been employed for studies of track struc-
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Fig. 1. Diagram of track segments in tissue of electrons and protons with various energies. The 
dots represent ionizations. The lateral extension of the track core is somewhat enlarged to permit 
the resolution of individual energy transfers. The length of the track segments is 1 pm. 

ture [14, 15], but they do not have sufficient resolution to represent individual 
ionizations. Somewhat better resolution has been obtained with the more sensi
tive cloud chamber, which permits a fairly accurate visualization of the tracks, 
at least of sparsely ionizing particles [16]. However, the only common and prac
ticable method for obtaining geometric representations of charged particle tracks 
is Monte Carlo simulation on the basis of known and interpolated collision cross 
sections. Such studies have provided the basis for a quantitative evaluation of 
particle tracks. In view of the available computer codes and their descriptions 
(see, e.g., [17-19]) it wi l l not be necessary to give details here. The simulated 
charged particle tracks can be considered as available input information. 

B . CONVENTIONAL PARAMETERS 

Certain basic features of the microdistribution of energy deposition by ioniz
ing radiations can be described in terms of conventional parameters; this facili
tates the subsequent introduction of the microdosimetric concepts and their 
interpretation. 

1. Fluence 

The most important radiometric quantity is the fluence 0 of a specified type 
of particle. It is defined as the mean number (expectation value) of particles en
tering a sphere of unit cross section (diameter: d = The definition is 
equivalent to the statement that, on the average, <j>/2 particles traverse a unit 
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plane surface area randomly oriented, or, in a unidirectional field, 0 particles 
traverse a unit surface element orthogonal to the direction of the field. Another 
equivalent statement is that the fluence is equal to the mean total length of parti
cle trajectories per unit volume. 

Figure 2 gives the fluence per unit absorbed dose in water for monoenergetic 
photons, neutrons, and charged particles. The diagram shows that the fluence 
of uncharged particles, necessary to deliver a given dose, exceeds that of 
charged particles very substantially. However, a cell or a subcellular structure 
can be traversed by many uncharged particles without any interaction, and it is 
therefore the fluence of charged particles that is directly relevant to 
microdosimetry. 

2. Mean Free Path and Range 

Figure 3 gives the range of charged particles and the mean free path of un
charged particles in water. The mean free path of photons and neutrons is large 
compared to cells and cellular structures, i.e., to sites of interest in microdosim
etry. The spatial correlation of charged particles set in motion by the same un-
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Fig. 2. Fluence per unit absorbed dose in water for charged and uncharged particles with speci
fied initial energies. The fluence of the uncharged particles is always considerably larger than the 
fluence of the charged secondaries, for equal doses. Charged particle equilibrium is assumed to exist 
for the uncharged particle fields. 
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charged particle can therefore, as stated in the preceding paragraph, be 
disregarded in most microdosimetric considerations. The plot of the ranges of 
charged particles can be utilized to judge whether the particle ranges are large 
compared with the structures of interest, a condition of considerable importance 
for the considerations of Section V. 

There are various definitions of the range of charged particles; they differ 
most substantially for electrons, because electrons are subject to considerable 
energy-loss straggling and angular scattering. The range in Fig. 3 is an integrat
ed range, i.e., the mean total length of the trajectory of the particle. 

3. Linear Energy Transfer (LET) 

Linear energy transfer (LET), or collision stopping power, is defined as 
L = dE/dx, where dE is the mean energy lost by a charged particle in electronic 
collisions along an element ax of its trajectory. The value of L depends on the 
energy of the particle (see Fig. 4), and in the usual case of a mixed radiation 
field one deals with a distribution of L in the exposed material. To characterize 
a radiation by a single parameter one has to utilize a mean value of LET, but 
such a mean value may provide little useful information on the radiation field. 
Moreover there are two common ways to specify LET distributions, and accord
ingly two different mean values. It is instructive to consider the distinction be
cause it has its correspondence with microdosimetric functions (see Section I I , F). 

Fig. 4. Linear energy transfer (LET) for electrons and protons in water as a function of their 
energy. (From Kellerer and Rossi [41].) 
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The frequency distribution of LET is defined in terms of total track length of 
the charged particles or, equivalently, in terms of the particle fluence. The dis
tribution function (or sum distribution) F(L) is the fraction of total track length, 
i.e., the fraction of fluence, that is associated with linear energy transfer not 
larger than L : 

F(L) = <f>L/<t> (1) 

where </> is the total fluence and <j>L is the fluence of particles with LET not ex
ceeding L . 

For electrons there is the obvious difficulty that it is unclear whether secon
dary electrons, i.e., b rays, are to be included in the definitions. A possible con
vention is to include only those electrons, regardless of whether they are 
primaries or secondaries, that exceed a certain threshold energy. A suitably res
tricted LET value must then be applied. This will be considered later in this sub
section, where it wil l also be pointed out that the LET concept is, for additional 
reasons, particularly problematic for electrons. 

The density of LET in track length or fluence is denoted by 
f(L) = dF(L)/dL. The track (or frequency) average is the mean value that cor
responds to the distribution:* 

L F = j Lf(L) dL = J [1 - F(L)] dL (2) 
The dose distribution (or weighted distribution) of LET is defined in terms of 
the absorbed dose delivered by particles of specified LET. The distribution func
tion D(L) is the fraction of absorbed dose due to particles with linear energy 
transfer not larger than L : 

D(L) = DL/D (3) 

where D is the total absorbed dose, and DL is the absorbed dose due to parti
cles with LET not exceeding L. 

The corresponding density of LET in dose is denoted by d(L) = dD(L)/dL. 
The dose average (or weighted average) is 

Z
D
 = j L d(L) dL = J (1 - D(L)) dL (4) 

The dose distribution of LET is related to the frequency distribution: 

d(L) = Lf(L)/LF (5) 

*The indices F and D are used in this chapter for frequency averages and dose (or energy) 
-weighted averages of various distributions. The densities and weighted densities are designated by 
/ ( • ) and d{ • ). This notation is a compromise with common usage. In the more mathematical 
treatment of Section III, D and in the discussion of the straggling problem a different notation is 
used; for example, the frequency mean and the weighted mean of the collision spectrum are denoted 
by 5, and 62 rather than by 6F and 5 D . 



86 A L B R E C H T M. K E L L E R E R 

Accordingly one can express the dose average LET in terms of the first two mo
ments of f(L): 

L D = Z | /L F (6) 

For any distribution the variance equals the second moment minus the square 
of the first moment. Thus one obtains for the variance and for the relative 
variance: 

al = Ll - LI (7) 

VL = a\/L\ = ( L D / L F ) - 1 (8) 

It follows that the dose average is always larger than the frequency average, the 
difference being proportional to the variance of f(L): 

L D - L F = (Ll- Zp)/LF = a%/LF (9) 

In spite of its complexities the LET concept can, at best, provide a crude charac
terization of the charged particle tracks that occur in the exposed medium. Three 
features are essential in describing charged particle tracks: 

(1) The finite range of the particles and the change of LET along the track. 
(2) The lateral extension of the particle tracks due to the finite range of d 

rays. 
(3) The statistical fluctuation of energy loss along the particle track, often 

termed energy-loss straggling. 

All three features, and others, e.g., the angular scattering, are disregarded 
in the LET concept. Only the second point is sometimes taken into account by 
consideration of a restricted LET, i.e., a stopping power that includes only colli
sions with energy transfer below a specified cutoff [21]. However, this modifi
cation is of doubtful value; one requires a set of LET distributions that belong 
to different cutoff values but one gains little information about the actual struc
ture of particle tracks. 

I f a charged particle traverses a spherical reference volume of diameter J, the 
mean chord length is 2d/3 and one would, therefore, expect the energy loss 
\Ld. However, the actual energy losses can deviate substantially from this 
value. A quantitative evaluation [22] shows that the LET concept is never ade
quate for electrons; there are no sites sufficiently small to disregard the finite 
range of the electrons and at the same time sufficiently large to discount the 
energy-loss straggling and lateral escape of ö rays. For heavy ions, on the other 
hand, there are site sizes and particle energies for which the LET concept 
predicts adequately the energy deposition. But even in this case the LET is of 
limited value since it permits no statement on the energy distribution within the 
sites, although this distribution can differ substantially for particles that have the 
same LET but different velocities. 
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These limitations of the LET concept illustrate the need for a treatment that 
is based on random variables rather than statistical expectation values. This has 
been the historical root of microdosimetry. The spherical proportional counters 
that are now the main tool of microdosimetry were first utilized in the attempt 
to measure LET spectra in various radiation fields. In the course of these experi
ments Rossi realized the inherent impossibility of determining exact LET distri
butions. Microdosimetry originated when he recognized that the seemingly 
inadequate response of the detectors was, in fact, superior to the information 
originally sought. Not the values of LET, but the actual energy concentrations 
determine the biological effect. These energy concentrations need therefore to 
be analyzed. 

C. Two ASPECTS O F MICRODOSIMETRY 

The spatial patterns of energy deposition in the tracks of charged particles and 
the resulting biological effectiveness of radiations can be regarded from two 
different points of view. This needs to be explained before the definitions of bas
ic quantities are considered. 

The concept that has been utilized first and that is still most familiar involves 
certain sensitive structures (sites) in the cell, and postulates that the biological 
effect is determined by the amount of energy deposited in these structures. In 
a first approximation the spatial distribution of energy within the site is often 
disregarded, although it must evidently codetermine the effectiveness of the 
energy imparted. For any considerations in terms of the site concept one re
quires the probability distribution, and certain expectation values, of energy im
parted in the specified structures (see Section I I , E). Of equal importance is the 
probability distribution of energy imparted i f exactly one particle and/or its as
sociated particles affect the site (see Section I I , F). The probability distributions 
of energy imparted depend on size and shape of the structure and on the type 
of radiation. 

Energy imparted and its probability distributions can be determined, for any 
radiation field, with walled or wall-less proportional counters developed for this 
purpose. Such detectors, termed Rossi counters, simulate spherical or cylindri
cal tissue regions with linear dimensions not less than fractions of a micrometer 
(see, e.g., [10, 23]). It is essential that microdosimetry has been developed in 
terms of quantities that are readily measurable, even for an unknown radiation 
field. These quantities have remained the conventional basis of microdosimetry. 
In the present chapter, too, most definitions and a major part of the theoretical 
considerations relate to functions and parameters linked to the site concept. 

Microdosimetry and microdosimetric quantities are, however, not limited to 
the site concept or to the notion of energy imparted to certain structures. With 
the advancement of computational methods and the availability of Monte Carlo 
simulations of charged particle tracks a more general view has been adopted and 
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new methods were sought to quantitate or parametrize the microgeometric pat
terns of energy deposition. While there is, of course, an unlimited variety of 
possible approaches, one can make the rough distinction between methods that 
relate the random pattern of energy deposits to a site, i.e., a spatial "probe," 
and methods that characterize the pattern in terms of spatial interrelations that 
do not refer to a reference geometry but only to the spatial structure of the track 
itself. Parameters obtained by this latter method remain meaningful even in a 
uniform extended medium. 

The site concept and the measurements with microdosimetric detectors cor
respond to the first class of approaches. The LET concept is perhaps the simplest 
example of the second method. More sophisticated descriptions in terms of the 
proximity concept utilize the notion of the distribution of distances between ener
gy transfers. It is evident that the spatial proximity of energy transfers governs 
the probabilities of interactions, according to the lifetime and the mobility of 
radiation products such as free radicals or, on a more complex scale, of macro-
molecular lesions. Concepts, such as the proximity function [10, 24], have there
fore extended the application of microdosimetry to radiation chemistry [25] and 
radiation biology [26, 27]. The novel approaches cannot be adequately treated 
within this chapter—and some of the results still lack a satisfactory mathematical 
basis. Some essentials are, however, explained in Section V I . The same section 
gives the fundamental interrelation that links essential quantities for the site and 
the proximity concepts. 

D . T H E INCHOATE DISTRIBUTION OF ENERGY TRANSFERS 

For all geometric considerations in microdosimetry the notion of the inchoate 
distribution of energy transfers is essential. It can also help to clarify the defini
tion of the conventional microdosimetric quantities, and it is therefore in
troduced here. 

A convention on terminology is required first. The term ionizing particle is 
subsequently used for a particle with kinetic energy exceeding a specified 
threshold. The threshold energy will depend on the type of particle and the ex
posed material, but the choice of the numerical value is not of concern for the 
present considerations. It is sufficient that appropriate values can be selected for 
specific circumstances, and one may note that the selected value need not strictly 
conform to the actual threshold for ionizations in the material. 

Ionizing charged particles undergo interactions and lose energy at certain 
points in the exposed medium. The point of interaction is termed a transfer 
point. The particle of kinetic energy Zs, can be stopped at the transfer point or 
it can emerge with reduced kinetic energy E2. It wi l l be treated as an emerging 
particle only i f its kinetic energy still exceeds the specified cutoff. The interac
tion may also produce one or more secondary ionizing particles with kinetic 
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energies £ 3 . £ 4 , etc. I f no ionizing particle emerges from the point of interac
tion, the point is the end of a charged particle track or of one of its branches. 
The various possibilities are exemplified in the diagram of Fig. 5. 

At any transfer point 7], the energy transfer e, is the energy that has left the 
field of ionizing radiations, i.e., it equals the kinetic energy of the incoming par
ticle minus the kinetic energy of all emerging ionizing particles.* 

In an exposed medium a random configuration of transfer points occurs. The 
term particle track is used for the configuration of transfer points and of as
sociated charged particles. The entire constellation of transfer points in the ex
posed medium has been called the inchoate distribution (of energy transfers) 
[24]. The term inchoate refers to the fact that this is the incipient distribution 
before the subsequent processes of further energy degradation. 

The notion of the inchoate distribution of energy transfers is particularly per
tinent to microdosimetric computations, because any microdosimetric variable 
and its probability distribution can be determined from repeated random realiza
tions of inchoate distributions or from multiple sampling of a sufficiently extend
ed inchoate distribution. This wi l l be dealt with in Section V I . 

Fig. 5. Schematic diagram of a segment of a charged particle track with indication (•) of the 
transfer points and the corresponding energy transfers (e,-). 

*A rigorous definition has to account also for possible changes of rest mass. In the interest of 
brevity it is here omitted; it is sufficient to note that it is analogous to the formulation in the definition 
of absorbed dose [1, 28]. 
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E. T H E STOCHASTIC QUANTITIES A N D THEIR DISTRIBUTIONS 

Energy imparted e is the sum of all energy transfers within a specified site 
S. It is a random variable and its relative fluctuations are greatest for small sites, 
for densely ionizing radiations, and for small doses. 

e = 2 €/ (ef in S) (10) 

Energy imparted has a uniquely defined value in a specified region after an ex
posure has taken place. The values vary with repeated irradiations, and predici-
tons can be made only on the basis of probability distributions. 

A closely related quantity is the specific energy. The specific energy z is de
fined as the energy imparted divided by the mass m of the specified region: 

z = e/m (11) 

Although z and e are closely related quantities, it is often more convenient to 
use z because it is the random analog of absorbed dose D. In many radiobiologi
cal applications one utilizes the energy unit keV and expresses the mass as the 
product of the volume V in cubic micrometers and the density p in grams per 
cubic centimeter. One has then the relation 

z (Gy) = 0.1602 e ( k c V ) (12) 
K( /mi 3 ) • p (g/cm 3 ) 

or for a spherical site of diameter d 

z (Gy) = 0.306 (13) 
[d ( /mi ) ] 3 ' P (g/cm 3 ) 

The probability distribution Junction (or sum distribution) of z at an absorbed 
dose D is denoted by F(z\ D): 

F(z\ D) = P(z < z I D) (14) 

i.e., the distribution function is equal to the probability that the random variable 
z does not exceed z at an absorbed dose D. 

The probability density (or differential distribution) f(z\ D) of z is the deriva
tive of F(z\ D): 

f(z\ D) = dF(z; D)/dz (15) 

The definitions of the distributions for energy imparted are entirely analogous 
and therefore need not be stated. The same applies to other subsequent consider
ations that are formulated in terms of specific energy but can equally be given 
for energy imparted. 

Sum distribution and probability densities of specific energy are illustrated by 
a numerical example in Figs. 6 and 7. The distributions are computed from the 



2. F U N D A M E N T A L S OF MICRODOSIMETRY 91 

MeV NEUTRONS 
6 Mm SPHERE 

/ 

' / M i l s c o "v R A y s 
6 Htn SPHERE 

10c 

S P E C I F I C ENERGY z, Gy 

Fig. 6. Sum distributions F{z\ D) of specific energy in a tissue sphere of 6-^m diameter and 
unit density exposed to different doses of ^Co y rays and to 15-MeV neutrons. This and subse
quent figures are based on data by Kliauga and Dvorak [66] for ^Co y rays and on data by Booz 
and Coppola [61] for neutrons. The distributions are calculated by the algorithm of successive con
volutions that is explained in Section III and the Appendix. 

single-event distributions that are introduced in the next subsection. The com
putational procedures and their theoretical basis are considered in Section I I I and 
the Appendix. One may note that dose-dependent distributions f(z\D) were ob
tained experimentally in the early microdosimetric studies [29] before the com
putational procedures were developed. 

The function/(z; D) determines the probability for a specified value z of the 
specific energy at the absorbed dose Z), i .e . , / (z ; D) dz is the probability that 
the specific energy assumes a value between z and z + dz. At low doses the 
relative fluctuations are large, and it is then impractical to represent the distribu
tions on a linear scale. Accordingly one uses, as in Figs. 6 and 7, a logarithmic 
scale. On a logarithmic scale the densities are transformed; one must plot the 
dimensionless quantity 

dF(z; D)/d\nz = z • f(z; D) (16) 

This transformed density is properly normalized with respect to the natural 
logarithm of z. Normalization relative to the base-10 logarithm would require 
an additional numerical factor ln(10) ~ 2.30. 

There is always a finite probability F(0; D) for z = 0. Whenever this proba
bility cannot be disregarded, a 6-function F(0; D) • d(z) has to be included in f(z; 
D). When the densities are given on a logarithmic scale of z, this discrete com-
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Fig. 7. Densities of specific energy that correspond to the sum distributions in Fig. 6. 

ponent at z = 0 cannot be represented. However, at low doses the area under 
the curves is less than unity, and, as in Fig. 7, the defect of the area indicates 
the magnitude of the d function. 

The average (expectation value) specific energy in a site 

z = P zf(z\ D)] dz = T [1 - F{z\ D)\ dz (17) 
Jo Jo 

is equal to the absorbed dose D when the site is uniform and is exposed to a uni
form radiation field. Otherwise z equals the average absorbed dose in the site. 
Under nonuniform conditions a rigorous definition of absorbed dose must be 
given in terms of the limit value: 

D = lim z 
m-+0 

(18) 

This relation illustrates the fact that the random variable z and its probability dis
tribution are more fundamental than the absorbed dose. 

For a specified reference site and a specified radiation one deals with func
tions, F(z\ D) o r / ( z ; D ) , of two variables. In practice, it is rarely necessary 
to utilize the explicit functions; essential biophysical and radiobiological argu
ments can instead be based on a few parameters of these distributions (see Sec-
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tion IV) . In those cases where the explicit distributions are required, they can 
be derived from the probability distributions of specific energy produced in in
dividual events of energy deposition. These distributions are considered next. 

F . T H E SINGLE-EVENT DISTRIBUTION 

An event in a site is energy deposition due to particles that are statistically 
correlated [1]. If, for example, an a-particle passes outside a reference region 
and injects a number of b rays, these b rays belong to the same event in the site. 
Similarly electrons of an Auger cascade contribute to the same event. Two 
recoils released by the same neutron, or two electrons liberated by one photon, 
are also correlated, but, as pointed out earlier, their spatial separation is usually 
so large that they are unlikely to appear in the same microscopic site. 

The single-event distribution is denoted by F{(z) and/,(z): 

The specification v = 1 indicates that F,(z) and /,(z) are the distributions of 
specific energy under the condition that exactly one event has taken place in the 
site. It must be noted that the single-event distributions do not contain a discrete 
component at z = 0. By definition, an event requires energy deposition; the 
mere passage of a charged particle without energy transfer to the site is therefore 
not counted as an event. 

The single-event distributions for energy imparted are defined in an analo
gous way. There is, furthermore, a related variable that has, originally in some
what different form, been introduced by Rossi and colleagues as the random 
analog to LET. The lineal energy y is defined as the energy imparted in one 
event divided by the mean chord length I that results from the random inter
ception of the site by a straight line:* 

The mean chord length is equal to 4V/S for a convex site of volume V and sur
face S (see, e.g., [30-32])t 

It is customary to give y in kilo-electron-volts per micrometer. For the density 
P = 1 g/cm 3, as often assumed in radiobiological applications, one has the re-

*The utilization of the mean chord length / in the definition of y is somewhat arbitrary, because 
/ is the mean value for one special type of randomness, i.e., uniform isotropic randomness. Other 
types of randomness exist and are associated with other mean chord lengths (see Section VI). 

tFor a spherical site of diameter d one has / = 2d/3; for a circular cylinder of diameter d and 
height h the mean chord length is / = 2dh/(d + 2/z); for a spheroid with two axes d and one 
smaller axis (e • d) one has, with e = V l — e2, the mean chord length / = d/[\/2e + 
ln(l/e + e2)/2e] (see also Section V, B, Fig. 24). 

F}(z) = P(z < z I v = 1) and f,(z) = dFx{z)/dz (19) 

(20) 



94 A L B R E C H T M. K E L L E R E R 

lation between the specific energy and the lineal energy in a sphere of diameter 
d: 

z(Gy)= 0.204 ^ Y i f > (21) 
[d (Aim)]2 

The definition of y is restricted to energy imparted in one event; this convention
al restriction appears reasonable because y is the random analog of LET. 

The single-event distributions of lineal energy are largely equivalent to the 
single-event distributions of specific energy. The values of the sum distributions 
are equal for corresponding values of z and y\% 

F{y) = F.iz) (22) 

The relation is somewhat more complex for the corresponding densities. For 
a site of density p = 1 g/cm 3 with volume V and surface area S one has 

f(y) = (V/l)Mz) = (S/4)Mz) (23) 

where the last equality applies to convex sites. 
In the convenient logarithmic representation, considered in the preceding 

subsection, the densities of specific energy and lineal energy are equal and can 
be represented in the same plot. Characteristic single-event spectra are 
represented in Fig. 8. They are given in terms of the weighted distributions that 
are introduced later in this section [see Eq. (27)]. One of the striking features 
of these distributions is the wide range of values assumed by the random varia
ble. Narrow distributions result only i f low-energy monoenergetic photons 
release photoelectrons in a site with linear dimensions substantially larger than 
the electron ranges. In the typical cases of very broad single-event distributions 
it is always appropriate to utilize a logarithmic scale of e, z, or y, and the density 
must then be transformed, as explained in the preceding section. 

The single-event distributions are of far greater pragmatic importance than 
the dose-dependent distributions. Because individual events are statistically in
dependent it is sufficient to derive, experimentally or computationally, the 
single-event distributions. The dose-dependent distributions can then be comput
ed, as will be explained in subsequent sections. These sections will also deal in 
some detail with the moments of the microdosimetric distributions. However, 
the most essential results wil l first be given without derivation, so that they are 
accessible without the need to penetrate the mathematical treatment. 

The average specific energy produced by an event in the site is 

^ = r d z = H 1 - f ^ d z < 2 4 > 
Jo Jo 

*The index 1 is not required with the distribution of v, because y relates by definition only to 
a single event. 
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Fig. 8. Distributions of lineal energy in spherical tissue regional of l-/xm diameter exposed to 
various radiations. In the lower panel the distributions are represented as dose-weighted densities 
v d(y) relative to a logarithmic scale of lineal energy y. These spectra determine the fraction of ab
sorbed dose delivered per unit logarithmic interval of lineal energy. In the upper panel the cor
responding sum distributions D(y) are given, and they specify the fraction of events up to a lineal 
energy y. On top of the upper panel an additional abscissa is given for the specific energy z. Relative 
to this scale the curves in the lower panel are the weighted densities z dx (z) of specific energy in 
single events; the curves in the upper panel are the sum distributions Dx{z) of specific energy in 
single events. 

The index F is used to distinguish this frequency average from the weighted aver
age that plays a considerable role in many applications of microdosimetry and 
that will be considered later in this section. 

The average specific energy at the absorbed dose D is the product of the mean 
event size z¥ and the mean number v of events. But it is also equal to D: 

zFT = z(D) = D (25) 

It follows that the average number v of events is equal to D/zP. In particular, 
one concludes that the event frequency per unit absorbed dose is 

0(0) = 1/ZF (26) 

Knowledge of the event frequencies permits general and important conclusions 
in radiobiological applications (see Section I V , B). Table I gives a synopsis of 
event frequencies for several site diameters and different types of ionizing radi
ations. 
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T A B L E I 

E V E N T FREQUENCIES ( 0 ) PER G R A Y IN SPHERICAL T I S S U E REGIONS 

EXPOSED TO D I F F E R E N T RADIATIONS 

Type of radiation 

Neutrons 

Diameter of 
critical region ^Co 7 rays 0.43 MeV 5.7 MeV 15 MeV 

d (j*m) 

12 2000 55 51 61 
5 360 4.2 8.6 11 
2 58 0.39 1.2 1.6 
1 12 0.08 0.32 0.38 
0.5 1.7 0.02 0.073 0.09 

In analogy to the frequency mean event size of specific energy one can define 
the frequency mean lineal energy yF. The quantity is related to zf according to 
Eq. (21). 

The frequency mean lineal energy is largely analogous to the frequency mean 
LET introduced in Section I I , B. When energy-loss straggling and the lateral es
cape of <5 rays out of the reference region play no role and when_the range of 
the ionizing particle is sufficiently large, the two mean values L F and yF are 
approximately equal. 

In analogy to the definitions of the LET distributions one can consider weight
ed distributions of lineal energy or of specific energy: 

d(y) = yf(y)/y, d{(z) = zf,(z)/zF (27) 

The weighted distributions are also termed dose distributions. They determine 
the fractions of absorbed dose or of energy imparted that are associated with cer
tain values of y or z, and they are therefore relevant to all considerations of the 
effectiveness of radiation as a function of local energy concentration in 
microscopic sites. 

The mean values of the weighted distributions are 

J D = \y d(y) dy = y2f(y) dy/yF = yl/yF 

J J _ (28) 
zD = j z dx(z) dz = j z2f\(z) dz/zF = zl/z¥ 

The variance of any distribution is equal to the second moment minus the square 
of the mean, 

°Ky) = yl - yl (29) 
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From this and the analogous relation for z one concludes that the dose averages 
yD and zD are always larger than the frequency averages yF and zF. Furthermore 
one has, again in analogy to the corresponding relation for LET (see Section I I , 
B ) , 

°Uy"> = (J ; D - y?) * <*Hz) = ( Z D - zF) • zF (30) 

The relative variance is equal for f(y) and/,(z): 

Vi = (yo/y?) - i = (z D / z F ) - i (3i) 

A less evident but equally fundamental relation links the second moment of the 
dose-dependent distributions f(z\ D) of specific energy with the two first mo
ments of the single-event distribution /,(z): 

4 = ( Z D + D)D (32) 

This relation wi l l be derived in Section I I I , D; it is essential to the analysis of 
radiobiological mechanisms that depend on the square of specific energy. The 
relation is also important in dosimetry because it yields the relation for the vari
ance of specific energy at a certain value of absorbed dose: 

o\ = 4 - z2p = zD • D (33) 

The relative standard deviation of z is therefore 

aJD = y/zD/D9 since zF = D. (34) 

Applications of these relations are discussed in Section I V . 

I I I . The Compound Poisson Process in Microdosimetry 

A. T H E D O U B L E ROLE OF THE COMPOUND POISSON PROCESS 

When a microscopic site is exposed to a radiation field, events of energy 
deposition occur in a random sequence. According to I C R U definition [1] the 
events are statistically independent: each individual event can be due to the ap
pearance of one or several correlated charged particles in the site with conse
quent energy deposition. Frequently one deals with the simple case where 
independent charged particles traverse the site in straight random paths, and this 
situation is schematically represented in the left-hand panel of Fig. 9. During 
the time interval that corresponds to a specified absorbed dose D events occur 
randomly, and i f the mean specific energy per event is zF the expected number 
of events is, as pointed out in the preceding subsection, v — D/zF. The actual 
number v of events is subject to statistical fluctuations and, because the events 
are independent, it follows a Poisson distribution. Accordingly, i f the event fre
quency per unit absorbed dose 1/ZF is known and i f one is interested merely in 
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EVENTS: 

v=5 

COLLISIONS: 

H = 4 

Fig. 9. Schematic diagram that indicates the double role of the compound Poisson process for 
the energy deposition in a site at specified dose. In the left panel v events are represented that cor
respond to statistically independent traversals of charged particles. In the right panel one of the 
events is selected and is represented as a sequence of (JL statistically independent collision processes 
along the particle track. 

the number of events, one deals with a simple Poisson process. The probabilities 
for 0 events, for 1 event, or for any specified number of events can then be readi
ly calculated. 

The assessment of energy imparted is, however, far more complex because 
the energy imparted per event varies widely. As is apparent from the examples 
in Fig. 8, typical single-event distributions span several orders of magnitude of 
the random variable. The statistical fluctuations of energy imparted to a site are, 
in fact, predominantly determined by the varying amount of energy imparted per 
event. As will be shown in Section V, B, the fluctuations of the number of 
events, although they are always present, are far less consequential. It is there
fore the essential feature of energy imparted that it results from a mixed (or com
pound) Poisson process, i.e., a process of independent events of varying 
magnitude. Formally this can be expressed by the relation 

The e, are the energies imparted in individual events, v is the number of 
events, which follows the Poisson distribution. The subsequent section deals 
with the mathematical and numerical essentials of the compound Poisson 
process. Basic parameters of the dose-dependent distributions of energy impart
ed or specific energy in a site wil l be expressed in terms of the corresponding 
parameters of the single-event distributions. Furthermore, the explicit relation 
between the dose-dependent distributions and the single-event distributions wil l 
be treated, and the computational procedure wil l be described that can be utilized 
to derive the dose-dependent distributions from the single-event distributions. 

The compound Poisson process is treated with emphasis on the mathematical 
relations rather than on the connection between single-event distributions and 
dose-dependent distributions. This is done because the compound Poisson 

(35) 
i = i 
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process plays a double role in microdosimetry. It applies equally to another step 
in the chain of random events, namely, the statistical sequence of energy losses 
of a charged particle traversing the site. This process, commonly termed energy-
loss straggling, is treated in Section V, and it wil l be seen that the same mathe
matical relations and the same numerical procedures link, on the one hand, 
f(z; D) with/ i(z) and, on the other hand, the distribution of energy lost by a 
particle along a track segment with the distribution of energy losses in individual 
collisions. 

The left panel of Fig. 9 indicates the events, i.e., the passages of charged par
ticles, merely as line segments. On the right panel one such event is selected and 
is represented as a succession of collision events, i.e., energy losses by the 
charged particle. The collisions may result in excitations, individual ionizations, 
or ö rays. 

I f the track segment within the site is much shorter than the range of the parti
cle, any variations of LET of the particle within the site can be disregarded. As 
an important consequence the collisions along the track segment can be treated 
as independent. The number /x of collisions is then again subject to the Poisson 
distribution. Its expectation value ~ß is proportional to the length of the segment 
and to the stopping power of the particle and is inversely proportional to the 
average energy imparted to the site in a collision. The Poisson fluctuations of 
the number fx of collisions are always present. But, as in the analogous case of 
fx(z) and/(z; D), their influence is far smaller than the influence of the varia
tions of energy lost by the particle, or energy imparted to the site, in individual 
collisions. 

In summary, one can state that there is remarkable similarity on the two levels 
of the hierarchy of random events. The random variables e, in Eq. (1) are 
themselves the result of a compound Poisson process: 

where the inner summation stands for the Poisson process on individual track 
segments (the energy-loss straggling) while the outer summation represents the 
Poisson process of charged particles traversing the site (the random sequence of 
events). 

B . T H E BASIC EQUATION 

At a specified absorbed dose, the energy imparted to the site and the related 
variable specific energy are, as stated in the preceding subsection, the result of 

(36) 

Accordingly the energy imparted to the site is 

(37) 
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a compound (or mixed) Poisson process. The term Poisson process refers to the 
independence of events; the term compound refers to the fact that the size of the 
individual events is variable. The spectrum of the Poisson process is the single-
event distribution/^). The solutions of the compound Poisson process are the 
dose-dependent distributions f(z; D). For brevity the term event fluctuation is 
utilized to refer to this process and its mathematical treatment. 

Although this and the following subsection refer to the distributions/,^) and 
f(z\ D) , the mathematical treatment applies equally to the energy-straggling 
problem, i.e., to the random energy loss of a charged particle along a specified 
track segment. In all subsequent relations one can, accordingly, substitute/,(z) 
by q(e), the probability density of energy e lost by the charged particle in in
dividual collisions. The solutions are then/(e; A), the probability densities of 
total energy lost along specified track segments, with expected energy loss 
e = A. These probability densities are termed straggling distributions. 

The average specific energy produced by a single event is the mean value of 
/,(z). This mean value z F , which was introduced in Section I I , F, is a funda
mental parameter because it determines the event frequency </>(0) = l / z F P e r 

unit absorbed dose [see Eq. (26) and Table I in Section I I , F]. Since events are 
by definition statistically independent, their number v in a specified site at a 
specified absorbed dose follows a Poisson distribution: 

p(y) — exp( — n)n"/v\, with n — v — D/zF (38) 

Even i f the number v of events is fixed, the specific energy in the site can vary 
widely. Its distribution is then the p-fo\d convolution of the single-event distribu
tion. This convolution is denoted by / ( z ) , and it can be defined by the recur
rence formula: 

Uz) = [ 7 i M / , - . ( z " x) dx (v = 2, 3, . . .) (39) 
Jo 

fXz) dz is the probability that the specific energy has a value between z and 
z + dz, i f exactly v events have taken place in the site. 

Accordingly one obtains the relation for the dose-dependent distributions of 
specific energy: 

oo 

f(z; D) = XI e-»^fAz), with n = ? (40) 
„ = o ^ ZF 

/0(z) equals 6(z), i.e., the delta function at z = 0. Accordingly/(z; D) contains 
always a discrete probability e~n for no event, i.e., for z = 0. 

The essence of the compound Poisson process is illustrated by the diagrams 
of Fig. 10. Individual Monte Carlo realizations of the process are represented 
for 15-MeV neutrons in the plane of the two variables D and z. Any combination 
of values D and z corresponds to a point; F(z; D) is the probability that the ran
dom path runs below the point. Those lines that run below the point pass it on 
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Fig. 10. T.vo random paths that represent the stochastic sequence of events of energy deposition 
in a 6-/xm tissue sphere exposed to 15-MeV neutrons. The two random sequences are represented 
(a) on a linear >cale of dose and specific energy, (b) on a logarithmic scale, and (c) on a square-root 
scale. The absolute deviations of specific energy from absorbed dose increase with absorbed dose, 
while the relatve deviations decrease. On the graph with the square-root scale the magnitude of the 
deviations renains on the average constant as the dose increases. 

the right; i .J . , they reach the value z at a dose exceeding D. The conclusion is 
that F(z\ D» is a sum distribution both with reference to z as random variable 
and with reference to D as random variable: 

F(z\ D) = Prob{z < z \ D] (41) 

G(D; z) = 1 - F(z\ D) = Prob{D < D \ z) (42) 

One must rote that the densities of the two sum distributions are not closely 
linked. Thefunction G(D; z) can be invoked whenever one considers a response 
with sharp hreshold of energy imparted or specific energy. An instrument with 
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a response threshold at the specific energy zc would have the dose dependence 
F(z c ; D) for no response. For a hypothetical cellular structure with a threshold 
of zc the same dose dependence would have to apply. This condition and relat
ed matters are considered in Section IV, C. 

It is informative to compare the linear and the logarithmic representations in 
Fig. 10. In the linear diagram the distances of the random paths to the line 
z = D tend to increase with increasing dose; this corresponds to the increasing 
standard deviation of z as D increases. As stated in Eq. (33) and derived in Sec
tion I I I , D , the standard deviations of z are proportional to V D . In the logarith
mic representation the distances to the diagonal tend to decrease, as they cor
respond to the relative standard deviation, which is inversely proportional to 
VZ>. The dependence of the standard deviation of z on absorbed dose is further 
illustrated in the third panel, where Vz is plotted versus V Ö . In this case the 
distances to the diagonal tend to be independent of D. 

The individual random paths in Fig. 10 illustrate the stochastic nature of ener
gy deposition in microscopic regions. However, to give the full information con
tained in dose-dependent microdosimetric distributions one would have to utilize 
suitable plots of the function F(z\ D) or its complement, the function G(D; z ) . 
Such plots have been produced [33] and Fig. 11 gives an example. Graphs of 
this type are suitable for considerations that require actual numerical values of 
the probabilities to reach or exceed certain specific energies at given values of 
absorbed dose; they also permit the construction of dose-effect relations for as
sumed threshold reactions. In the present context, however, it is helpful to 
visualize the character of the distributions in a less formalized way. To this pur
pose the analogs to Fig. 10 are given in Fig. 12 as scatter diagrams. For these 
diagrams a large number of simulated exposures of the spherical tissue region 
of 6 /xm by 15-MeV neutrons is used. Each dot represents the outcome of a simu
lated exposure. For a specified absorbed dose D a random value z of specific 

Fig. 11. A representation of the dose-
dependent distributions of specific energy in 
terms of lines of equal values of the function, 

, Q F(z; D). The parameter on the curves gives the 
value F(z\ D) or its complement 1 — F{z\ D). 

A B S O R B E D D O S E D, Gy (Redrawn from Kellerer [33].) 
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ABSORBED DOSE, Gy 

Fig. 12. Scatter diagram of the distribution of specific energy at specified absorbed doses in 
spherical tissue regions of 6-/xm diameter exposed to 15-MeV neutrons. In analogy to Fig. 10, (a) 
linear scales, (b) logarithmic scales, and (c) square-root scales of absorbed dose and specific energy 
are used. In each diagram a large number of dose values are uniformly distributed on the scale that 
is being used. Each dot represents the value of specific energy from a random simulation of the ex
posure with the specified absorbed dose. The reduction of the number of points at low doses reflects 
the increasing probability for zero events that are not visible in the graph. This and subsequent scat
ter diagrams are obtained by the algorithm described in the Appendix. 

energy is computed and is represented by the corresponding point in the D-z 
plane. Dose values are randomly selected in such a way that they are uniformly 
distributed along the abscissa that is used in the representation. The scatter dia
grams permit the visualization of the densities of specific energy as function of 
absorbed dose. Since the zero events are not represented, fewer points appear 
on the left-hand side of the graphs, where the event probabilities are substantial
ly less than unity. The essential point comes out most clearly in the logarithmic 
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plot: at sufficiently low absorbed doses the event frequencies decrease but not 
the values of specific energy. At small doses they merely represent the distribu
tion of values produced in individual energy deposition events. 

The four panels of Fig. 13 permit the comparison of the distributions for two 
different site sizes and for ^Co 7 rays and 15-MeV neutrons. The site di
ameter of 6 /xm is chosen to approximate the size of a cellular nucleus. The aver
age volume of a mammalian cell nucleus exceeds somewhat the volume of a 
6-/xm spherical site; however, i f the nucleus is a spheroid rather than a sphere 
the slightly reduced diameter is more representative for the actual geometry. 

A somewhat more complete synopsis for different radiation qualities is given 
in the various diagrams of Fig. 14 for a fixed site diameter of 1 /xm. To recog
nize the fine differences in the microdosimetric distributions one has to consult 
Fig. 8. The scatter diagrams of z, D-values are suitable for an appreciation of 

15 MeV NEUTRONS .5 M m SPHERE 15 MeV NEUTRONS 6 Mm SPHERE 

Co-y RAYS .5 Mm SPHERE Co-yRAYS 6 SPHERE 

io"
4

 10"? 1 100 io~
4

 io"
2

 1 100 

ABSORBED DOSE, Gy ABSORBED DOSE, Gy 

Fig. 13. Scatter diagrams for a comparison of z distributions in small sites and in sites that cor
respond roughly to the diameter of the nucleus of a cell (6 /xm). Results are given for 6 0 Co 7 rays 
and 15-MeV neutrons. Here and in Fig. 14 each panel contains 4000 values per decade of D, i.e., 
24,000 simulations are utilized per graph. The actual number of points is considerably less at low 
doses because the events with z = 0 are not visible. 
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Fig. 14. Scatter diagrams as in Fig. 13 but for a comparison of 140-kV x rays, ^Co 7 rays, 
0.55-MeV neutrons, and 15-MeV neutrons for a spherical tissue site of 1-̂ m diameter. 

the general features of the distributions and of their similarities for sparsely 
ionizing radiations on the one hand, and densely ionizing radiations on the other. 

In the early microdosimetric studies Eq. (40) was utilized [29] to compute the 
dose-dependent distributions. However, this approach is inconvenient because 
a large number of convolutions fu(z) is required. It is therefore more efficient 
to base numerical evaluations on another relation, fundamental to microdosime
try, which will be discussed in the next section. 

C . A N A D D I T I V I T Y RELATION A N D THE RESULTING SOLUTION 

Because the convolution operation is fundamental in probability theory, and 
because it has all the characteristics of multiplication, it is convenient to abbrevi
ate the integral. One writes 

fXz) = [7,to • / , _ , ( * - * ) & = /,(*) * / ,_ , (*) (43) 
Jo 
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or generally 

= [/.(.*) • Uz - x)dx= Uz) *f„(z) (44) 
Jo 

In a further step the repeated convolution of a distribution with itself is denoted 
by an exponent. For example, 

ff(z) = f2(z) = [~Mz ~ x) • m dx (45) 

Jo 

or 

friz) = f(z) (46) 

One can also utilize the multiplicative character of the convolution operation 
to obtain f(z) from/,(z) by a sequence of convolutions that corresponds to the 
splitting of v into integer powers of 2. For example, 

fuiz) = MZ) *MZ) *fM(z) = / ,2 | * / | 4 | * / | 6 | ( 4 7 ) 

where the symbol | v\ indicates 2" and thus the convolutions/],! (z) correspond 
to integer powers 2V of / , (z) . They can be computed by the recurrence relation 

f]0{ = / i ( z ) and fA(z) = / | * 2 - „ ( z ) (48) 

This procedure is very efficient for Monte Carlo simulations of the compound 
Poisson process. It is the basis of the algorithm for the diagrams of Figs. 12 to 
14. The numerical method is explained in the Appendix. 

The computation of the distribution / ( z ; D) for a specified dose requires a 
somewhat modified algorithm. It can, however, be based on the same principle. 
The convolution relation applies not only to distributions of z for specified num
bers v of events. It holds equally for the dose-dependent distributions. In the 
Poisson process the number and magnitude of events during two time periods, 
or due to two absorbed doses, are independent. The distribution of the sum of 
the two random variables equals the convolution of their probability distribu
tions. Hence the specific energy at absorbed dose D, + D 2 has the distribution 

f{z\ Dx + D2) = (7(z - x; D,)f(x; D2) dx = f(Z\ D,) D2) (49) 
Jo 

and specifically 

f(z;D) =f(z;D/2)*f(z;D/2) (50) 

Starting from an approximation of / (z ; D) that is valid at low doses, and gaining 
a factor of 2 in D with each convolution, one can then derive the distributions 
for arbitrary doses. The approximation of the z distribution is simple at doses 
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that correspond to very small event frequencies. At the small dose rj = ez? the 
event frequency (i.e., the expected number of events) is e, and with e « 1 one 
has 

f(z; v) = (1 " e)d(z) + eUz) (51) 

i f the terms with higher powers of e are omitted. In the next subsection it will 
be seen that the resulting error of the standard deviation of the computed distri
bution of z is less than the factor (1 — e). In practice a value e < 10 ~ 2 is ade
quate to provide a precision of the numerical results that is considerably better 
than the accuracy of any input data/i(z). One can set 

rj = D/2N (52) 

and can choose N so that e < 10 ~ 2 . With N successive convolutions one 
reaches the desired distribution for the absorbed dose D: 

f(z\ 2ri) = f{z\ V) * f(z\ V) 

f(z\ 4ij) = f(z\ 277) * / ( * ; 2ri) (53) 

f(z; D) = / ( z ; D / 2 ) * / ( z ; D/2) 

Formally this procedure of xV successive convolutions can also be expressed as 

f(z\ D) = f(z; /z)*2N (54) 

The process requires relatively few convolutions. For example, a total of 14 
convolutions are required to reach distributions that correspond to average event 
numbers around n = 100. The distributions in Figs. 6 and 7 exemplify the 
procedure. 

The Appendix contains the computer algorithm for the solution of the Poisson 
process in terms of successive convolutions. Because the spectrum of the process 
[i.e., the distribution fx(z)} can span several orders of magnitude of the random 
variable, the convolution has to be executed on a suitable scale; a logarithmic 
scale of z is chosen for the purpose. 

D . RELATIONS FOR THE MOMENTS 

Frequently the explicit dose-dependent distributions of specific energy are not 
required. The moments of the distributions or related parameters are of far 
greater pragmatic importance. They can be expressed in terms of the moments 
of the single-event distribution. The second moment and the variance of z play 
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the greatest role in various applications; they are therefore derived first. The 
more complicated relations for the higher moments are given subsequently. 
They are less relevant to radiobiological applications of microdosimetry, but 
they can be useful tools in any quantitative assessment of experimental or com
puted microdosimetric data and of their interrelations. 

1. Second Moment and Variance 

The expectation of specific energy is, as pointed out in Sections I I , E and I I , 
F, equal to absorbed dose:* 

z = nzx = D (55) 

The variance o\(D) of the specific energy z at absorbed dose D is readily ob
tained. One utilizes the fact that the variance of the sum of two independent ran
dom variables is equal to the sum of their variances, i.e., that the variances are 
additive in the convolution of two distributions. It follows that the variance of 
z at dose D, + D2 is equal to the sum of the variances at dose D, and at dose 
D2. The variance must, accordingly, be proportional to absorbed dose: 

a 2 = cD (56) 

As a next step one can derive the constant c. The variance of a random variable 
is equal to the second moment minus the square of the expectation value: 

o\ = (z - z)2 = z 2 - z 2 = z 2 - D 2 (57) 

The second moment can be expressed in terms of Eq. (40): 
00 00 

? = s *-n^ r z i u z ) d z = e ~ n s ( 5 8 > 
, = o v\ Jo 7T\I v\ 

where z], is the_second moment of the *>-event distribution/,^); in contrast to 
z 2 , the values z 2 are not dependent of dose. 

The power expansion of Eq. (58) is 

Z2 = (1 - n + i n 2 - • • • ) • (nz2 + 4-/22?j + • • •) 

= z]n + (zj - z])n2 + • • • 

= tf/zJD + M - z])/z\] • D2 + • • • (59) 

_ *ln the context of this and the following subsection it is practical to utilize the notation T{ and 
z], rather than the notation z^. and z2

F, which is employed whenever the discrimination of the 
frequency distributions (index F) from the dose-weighted distributions (index D) is essential. For the 
expectation values at a specified absorbed dose no indexjs used and the argument Djs omitted when
ever the meaning is clear from the context. Thus z, z2, and a. stand for z(D), z2(D), and o:(D), 
respectively. 
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Accordingly, one has 

c = o\/D = 7\lzx + M - z])/z]] • £ > + • - (60) 

Since c is a constant, one can obtain its value from the limit D 0: 

c = l im c = ^ (61) 

D — 0 z l 

Thus one obtains the essential relations 

tf? = * D and ? = fej/z,) - D + D2 (62) 
that were cited without derivation in Section I I . F. 

Injview of important radiobiological applications (see Section IV. C), the 
term z]/zx has been given a special symbol: 

f = All, (63) 

As pointed out in Section I I , F, this is the mean value of the dose-weighted 
single-event distribution dx{z). 

2. Utilization of the Relation for the Variance 

Section IV deals with various applications of microdosimetry and Eq. (62) 
plays a prominent role in these applications. Two specific applications are of in
terest already in the immediate context of the present section. 

Equation (62) can be utilized to assess the error that is caused by the omission 
of the multiple-event terms in the low-dose approximation in Eq. (51). The mean 
value of this approximation is correct: 

z = e j zfi(z) dz = ezx = rj (64) 

However, the second moment is somewhat smaller than the exact value 
£rj + j)2. It is instead 

T1 = e j z2f(z) dz = ft (65) 

For o\ one has therefore fr; — rj2 instead of the correct value £77. The standard 
deviation of the approximation used in Eq. (51) is, accordingly, too small by the 
factor 

/ = (1 + ez , / f ) , / 2 (66) 

The dose average f of the single-event distribution is always larger than the fre
quency average z, , and the error factor is therefore substantially closer to unity 
than (1 — e/2). Hence the condition e < 10 ~ 2 ensures adequate precision of 
the iterative convolution algorithm described in the preceding subsection. 
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The second consideration relates to the relative role of the fluctuations of the 
event number and the event size in the compound Poisson process. In Section 
I I I , A the statement has been made that the variations of event size are the 
dominant factor. To quantify this statement it is practical to consider the relative 
variance Vz = o\(D)/D2 of the distr ibution/^; D) and express it in terms of 
the relative variance K, = a\/z\ of the single-event spectrum: 

K = (V] + l)/n (67) 

Let n = D/z\ be the mean event number at dose D; for simplicity D may be 
assumed to be an integer multiple of Z\. Without fluctuations of the event num
ber one would obtain the distribution ffn(z) instead of/(z; D). The variance of 
this distribution is 

o\(n) = no] (68) 

The relative variance is 

VI = o\(n)/D2 = Vjn (69) 

where l/n is the relative variance Vv of the number of events. Therefore, Vz is 
the sum of the term Vjn, due to the fluctuations of event size, and the term 
l/n, due to the variations of event number. For the single-event spectra V{ is 
commonly considerably larger than one; the fluctuations of event size are, there
fore, more important than the variations of event number. The same statement 
applies to the energy-loss straggling problem that is treated in Section V. 

3. General Relations for the Moments 

The remainder of this subsection has a somewhat more mathematical charac
ter. It deals with the higher moments for the compound Poisson process. The 
results—although applicable to a variety of problems—are not required in the 
subsequent sections. 

The higher moments could be obtained by a method largely analogous to the 
considerations in the preceding section. The subsequent, less elementary treat
ment has, however, the advantage that it uses concepts and relations that are also 
of interest and utility in themselves. There is particular relevance to the energy-
loss straggling problem that is considered in Section V. 

The first step in the derivation is the introduction of certain combinations of 
the moments that are termed semi-invariants and that are additive in convolu
tions. Let 0(0 be the characteristic function, i.e., the Fourier transform, of the 
probability density/(z): 

0(0 = T e'Kfiz) dz 
Jo 

(70) 
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The power expansion of 0(f) is 

*0> = S ( " T T z x / ( z ) dz 
X = 0 " 0 A-

= t mM (71) 
X = 0 A ! 

where mx are the moments of the distribution/(z). 
A different representation of 0(f) can be obtained by expanding the logarithm 

of 0(f) into a power series: 

In 0(f) = S (72) 
x = i A ! 

The resulting coefficients kx are termed semi-invariants. In the convolution of 
two distributions the logarithms of the characteristic functions are additive, and 
so are the semi-invariants. 

To express the semi-invariants in terms of the moments mx one can juxta
pose the expressions from Eqs. (71) and (72): 

x = o A ! ; = l J! 

M = o \j• = l y • 

= 1 + *,(&) + (k2 + k]){^-

+ (*3 + 3/:t/r2 + * * ) ^ + . . . 

The comparison of the coefficients and resolution for the k, yields 

- m, 

<:2 = m 2 - mj = <T2 

ky = mi — 3m2ml + 2m] = a3 

k4 = mA — Amymx — 3m\ + \2m2m\ — 6m\ = aA — 3a\ 

where ax are the central moments: 

(73) 

(74) 

<7X = P (x - x ) x / ( z ) & 
Jo 

(75) 
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The relations between the central moments ax and the noncentral moments mx 

that are used in Eq. (74) are readily verified. Equation (74) shows that, next to 
the mean and the variance, the third central moment is additive in a convolution 
and generally in a Poisson process. 

It remains to express the semi-invariants in terms of the moments of the 
single-event spectrum. The relations for k] and k2 have already been obtained 
in the preceding subsection: 

k] = nz\ — D 
- - (76) 

k2 = nz] = (z}/zx)D 

The general relation is of the same form: 

K = n7) = (7Vz})D (77) 

This result could be derived in analogy to Eqs. (58)-(61); i.e., one could utilize 
the limit o f / (z ; D) as D goes to zero. Instead, a derivation will be used that 
is instructive because it demonstrates also the solution of the compound Poisson 
process in terms of the Fourier transform. 

For the Fourier transforms the convolution reduces to a multiplication. Ac
cordingly one can write the equation for the compound Poisson process in terms 
of the transforms: 

00 

0(r; D) = Y\ e~n—6\(t) = e'^U) ~ " (78) 
fTo "! 

or 

ln0(r ; D) = «[</>, (0 - 1] (79) 

where <t>(t\D) and <£,(/) are the Fourier transforms of / (z ; D) and / , (z) . 
Inserting the relation from Eq. (71) 

into Eq. (79) one has 

l n 0 ( * ; D ) = S n z \ { ^ (81) 

From the identity of the coefficients one obtains the result of Eq. (77). The semi-
invariants of the compound Poisson process are proportional to the noncentral 
moments of the spectrum /,(z), of the Poisson process. 

Equation (78) is of interest in itself, since it gives the solution of the Poisson 
process in terms of the Fourier transforms. The use of this solution and the fast 
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Fourier-transform algorithm might appear to be the most efficient method of 
computing the solutions of the compound Poisson process. However, the 
microdosimetric distributions / , (z)—and the same applies to the collision spec
tra fc(e), which will be considered in Section V—cover such a broad range of 
the random variable that the Fourier transform requires impractically large ar
rays or, alternatively, necessitates a splitting of the spectrum into sections that 
are separately processed. The method of the Fourier transform is therefore not 
superior to the direct convolution that can be executed on a suitable logarithmic 
scale with arrays of moderate size (see Appendix). 

IV . Determination and Utilization of the Microdosimetric Parameters 

Most microdosimetric measurements are performed with proportional coun
ters filled with tissue-equivalent gas. The instruments are either wall-less or 
have tissue-equivalent walls. These Rossi counters can be utilized under a wide 
variety of experimental conditions and for a multiplicity of purposes. It is not 
the objective of this chapter to deal with the experimental methods and with the 
scientific or practical applications of the microdosimetric data. A brief consider
ation of certain aspects of the measurements and of some principles of utilization 
of the results wi l l , however, facilitate the comprehension of the fundamentals 
of microdosimetry. 

The microdosimetric spectra, and particularly the important single-event 
spectra, cover broad ranges of values of lineal energy or specific energy. It is 
evident that such spectra cannot, without loss of information, be characterized 
by their first two moments only. Nevertheless, the majority of the applications 
of microdosimetry utilize merely these first moments, or the equivalent 
parameters frequency average and dose average of event size. There are, of 
course, radiations—and the most important and interesting case is that of heavy 
ions, which are not treated in this chapter—where the pairs of values y F and 
yD or zF and zD ( = f) are grossly inadequate. But these are exceptions and i f 
one does not deal with particles of extremely high LET, such as heavy ions, or 
with particles of very short ranges, such as the low-energy electrons released 
by ultrasoft x rays, the two mean values of the single-event spectra are of fun
damental importance. This is the justification for the detailed treatment given to 
the moments of the microdosimetric spectra in the preceding section. For the 
same reason these parameters will be considered further from a more practical 
point of view. 

A. ASPECTS OF DOSIMETRIC A N D MICRODOSIMETRIC MEASUREMENTS 

1. Inherent Imprecision of Dose Determinations 

The statistical fluctuations of energy deposition set an absolute limit to the 
precision of dose determinations. The physical size of the sensitive volume of 
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an instrument determines the expected number of events and its standard devia
tion. It also determines the expectation value of the energy imparted or specific 
energy and the standard deviation of these quantities. Even an ideal instrument 
cannot attain a precision beyond that determined by these standard deviations. 

Consider a spherical, gas-filled proportional counter. For simplicity it is as
sumed that it is tissue equivalent. Let p be the density of the counting gas in 
grams per cubic centimeter. The value p then is also the ratio of the density of 
the counting gas to the density of tissue, which is assumed to be 1 g/cm 3. I f the 
counter has the diameter d*, the diameter of the equivalent tissue region is 
d — pd*. Neglecting density effects and possible wall effects in the measure
ment, the single-event spectrum in the counter equals the spectrum in the cor
responding tissue site. The mass of the counting gas exceeds the mass of the 
corresponding tissue site by the factor 1/p2. The event frequency is higher, by 
the same factor, in the gas cavity than in the tissue site. The expected number 
of events in the gas is 

n = <t> • D/p1 (82) 

where </> is the event frequency per unit absorbed dose in the tissue region of 
diameter d. 

The actual number of events follows the Poisson distribution. The relative 
standard deviation of the number of events is therefore 

ojn = \j4n = p/^D (83) 

A numerical example can illustrate the relation. Consider a spherical detector 
with a diameter of 1 cm that is filled with tissue-equivalent gas at atmospheric 
pressure (p — 10 ~ 3 g/cm 3) and is exposed to a field of 15-MeV neutrons. The 
corresponding tissue site has a diameter of 10 fxm and the event frequency for 
15-MeV neutrons is roughly 50/Gy (see Table I , Section II) . The relative stan
dard deviation in the determination of 1 mGy is then 

ojn = 10- 3 /V50 • 10 ~ 3 = 0.0045 (84) 

This means that even an ideal instrument with the specified size and gas pressure 
cannot reach a precision of better than 0.5% in determining a dose of 1 mGy 
of 15-MeV neutrons. Utilization of the detector in the counting mode is, of 
course, a procedure that requires previous knowledge of the event frequency for 
the radiation in question. Event frequencies are sensitive to minor modifications 
of radiation quality. To measure energy imparted is therefore, in general, more 
appropriate than counting pulses. The relation for the inherent imprecision of 
a measurement of energy imparted, or of specific energy, is accordingly of main 
pragmatic interest. It wil l be considered next. 

According to the relation obtained in the preceding section [see Eqs. (62) or 
the earlier statement in Eq. (33)], the standard deviation of specific energy in 
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the tissue region is 

(85) 

where f is the dose-weighted average [see Eq. (28)] of the single-event spec
trum. In the gas cavity the number of events is increased by the factor 1/p2. 
The variance of the specific energies is proportional to the number of events and 
is therefore equal to 

Hence one obtains the relative standard deviation of the specific energy: 

In the above example f = 0.15 Gy (see Fig. 15). Accordingly, at an ab
sorbed dose of 1 mGy the inherent relative standard error is 

The specified instrument can therefore, ideally, attain a precision of 1.2% in a 
measurement of specific energy or energy imparted at an absorbed dose of 1 
mGy of 15-MeV neutrons. This inherent imprecision may appear to be insignifi
cantly low. However, in radiation protection applications, specifically in area 
monitoring, one commonly deals with very low dose rates. The dose determina
tions are then associated with correspondingly larger relative errors that may 
necessitate the utilization of considerably larger detectors. 

2. The Variance Method 

The weighted mean values yD and f of single events are fundamental pa
rameters of radiation quality. It is therefore of particular interest that they can 

a\ = f D / ( l / p 2 ) (86) 

(87) 

oJD = V0.15/10- 3 (10" 3 ) = 0.012 (88) 

1 0 0 

. 1 1 1 0 

DIAMETER d,
 H
m 

1 0 0 

Fig. 15. Weighted mean { of the specific 
energy produced in individual events by differ
ent radiations in spherical tissues sites of di
ameter d. (From Kellerer and Rossi [41].) 
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be obtained directly without determination of the explicit spectra. The direct 
measurement is important also because it is applicable to site sizes that are 
smaller than those for which the spectra themselves can be measured with 
present experimental techniques. 

A Rossi counter measures the values of energies imparted due to succes
sive single events. The average of a sufficient number of the squares of observed 
values is the second moment e2.; the average of the observed values is the 
mean e^. Accordingly one can determine both mean values and from 
averages over a sufficient number of measured pulses: 

i i K i 

Related quantities are zD = ejm and yD = ejl. 
Proportional counters cannot simulate sites with diameters less than approxi

mately 0.3 fim. I f the gas pressure in the instruments is too low, one cannot 
achieve sufficient multiplication with adequate uniformity of response through
out the sensitive region. In view of this limitation, Bengtsson [35] and Forsberg 
and Lindborg [36] have introduced an alternative method that is linked to the 
fundamental relation for the variance of specific energy. They utilize the fact 
that one can perform measurements with little or no multiplication, if the detec
tor is set to integrate the response over finite dose increments, D. Let the ob
served values of energy imparted in repeated measurements with absorbed dose 
D be denoted by the symbol ek (k = 1, . . . , K). With a sufficient number of 
measurements the moments of the distribution f(z\ D) are obtained as 

z = D = ^ (90) 

From the relation [see Eq. (62)] 

? = ol{D) 4- z2 = {D + D2 (91) 

one obtains 

D D 

ol/e S M / S f g t - (\/K) S f ek _ -k 
m m 

(92) 

This determination of f, the variance method, depends critically on the absence 
of experimental fluctuations that contribute to a: and can, therefore, lead to er
roneously large values of f. With variable or pulsed sources, such as accelera
tors, a modified method is accordingly required. A suitable approach is the 
utilization of two detectors that work independently, but in phase, in the radia-
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tion field. Wi th the twin detectors the parameter f is obtained from the variance 
of specific energy in one of the detectors minus the covariance of specific energy 
in the two- detectors [37]. The variance-covariance method exemplifies the fun
damental role of the relations between the moments of the microdosimetric dis
tributions. It makes it possible to perform microdosimetric measurements in 
accelerator-produced radiation fields that are often too intense during pulses to 
permit the resolution of individual events in microdosimetric detectors. 

B. A P P L I C A T I O N OF MICRODOSIMETRIC D A T A I N RADIATION PROTECTION 

There are a variety of uses for microdosimetric data. A brief survey exempli
fies first some applications to radiation protection. Biophysical implications wil l 
be considered subsequently. 

Perhaps the most important application of microdosimetric techniques and 
data is the exploration of unknown or inadequately known radiation fields, or 
the monitoring for changes in radiation quality. The need for such procedures 
arises in radiation protection but also in applications of ionizing radiation, such 
as radiation therapy. For most fields of high-energy photons or neutrons, con
ventional, walled counters can be utilized to obtain the microdosimetric spectra 
or their mean values. Only in exceptional situations, for example, with high-
energy charged particles, must wall-less counters be used. 

For purposes of radiation protection one can derive adequately precise values 
of the quality factor by substituting spectra of lineal energy for the unknown and 
often unmeasurable LET spectra, which enter the strict definition of the quality 
factor. Instead of the relation ([38]; see Section I I . B for the notation) 

where the dependence of the quality factor on LET and on lineal energy is taken 
to be the same, i.e., Q(y) = Q(Q for y = L . The numerical differences caused 
by the use of y spectra instead of LET spectra are of little concern in radiation 
protection applications. It is therefore feasible to couple a Rossi counter to suita
ble electronics and to a microprocessor, and to use the device as a dose-
equivalent-rate meter. 

The deficiencies of the LET concept have been considered in Section I I , and 
it has been noted that LET is less relevant to the biological effectiveness of radia
tions than the actual energy concentrations that determine the y spectra or z spec
tra. I f one thinks merely in terms of LET, it remains unclear why the quality 

(93) 

one utilizes the equation 
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factor, according to its present definition [1 , 38], should be constant up to 3.5 
keV/ptm before it increases with LET. In terms of lineal energy, however, this 
feature of the definition is readily understood. For densely ionizing radiations 
the values of lineal energy tend to be proportional to LET. For very sparsely 
ionizing radiations the values of lineal energy do not decrease proportionally, 
but tend to be larger than LET. The reason is the energy-loss straggling, i.e., 
the clustered deposition of energy in the volume by 6 rays or groups of <5 rays. 
In the same context one may note that a definition in terms of lineal energy could 
adequately take into account any increase of biological effectiveness due to Au
ger cascades or other correlated ionizing particles. The increase cannot be ac
counted for in terms of the LET concept. 

I f the quality factor were defined in terms of lineal energy in sites of diameter 
0.3 jitm [39], the quality factor could be set to be proportional to lineal energy 
for sparsely ionizing and moderately densely ionizing radiations, and almost the 
same numerical values would be obtained as with the present definition of Q in 
terms of LET (see also [10]). Proportionality between the qualityjactor and y 
would have the practical advantage that the mean quality factor Q for a radi
ation could be obtained directly from yD without knowledge of the explicit y 
spectrum. With Q(y) = qy one obtains [see Eq. (94)] 

With the definition in terms of LET one cannot, strictly, set Q = ß ( L D ) , 
although this is often done. The preceding considerations apply, of course, only 
to sparsely ionizing radiations. For very densely ionizing radiations (L > 100 
keV//xm or y > 100 keV//xm) nonlinearities enter because of the saturation 
effect. 

Rossi has reexamined the definition of the quality factor [40] and has pro
posed a change that goes beyond a mere substitution of LET by lineal energy. 
His modified definition of the quality factors in terms of lineal energy would be 
in better agreement with radiobiological data than the present quality factors, 
which do not sufficiently account for the different effectiveness of densely ioniz
ing and sparsely ionizing radiations at low doses. 

Beyond its practical uses, microdosimetry has fundamental implications for 
radiation protection. In radiation protection one discriminates between stochas
tic effects, such as hereditary damage and radiation carcinogenesis, and non-
stochastic effects, such as skin damage, impairment of fertility, lens 
opacification, and prenatal malformations. It is an objective of radiation protec
tion to avoid nonstochastic effects entirely. One assumes that this objective can 
be reached because nonstochastic effects depend on damage to a multiplicity of 
cells in a tissue, with resultant curvilinear, or even thresholdlike, dose depen
dence. Stochastic effects, on the other hand, cannot be avoided entirely. One as
sumes that they result from damage to individual cells and that they exhibit linear 

(95) 
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dose dependences at small doses. The aim of radiation protection can therefore 
be merely to minimize radiation exposures and to reduce thereby the risk of 
stochastic effects to a level comparable to or substantially below other risks as
sociated with human activities. 

The assumption of linear depeniences for the stochastic effects of low doses 
is crucial and specific to the risk considerations for ionizing radiations. Similar 
assumptions are not common in the consideration of chemical carcinogens. 
Microdosimetric principles clarify this fundamental difference. The effects of 
ionizing radiations and their dose cependences reflect the stochastic distribution 
of energy in individual cells. Chemicals, on the other hand, affect individual 
cells according to their concentration without substantial random fluctuations. 

Knowledge of event frequencies in the nuclei of mammalian cells permits 
statements where dose dependences for effects on individual cells must be linear. 
I f the dose is smaller than zF the event frequency D/zF is less than 1. Only a 
few cell nuclei then receive multiple events of energy deposition, and the specif
ic energy is predominantly determined by the single-event spectrum; i.e., it de
pends on radiation quality and not on absorbed dose. At sufficiently low doses 
most cells receive no energy deposition; the number of affected cells is propor
tional to absorbed dose. Rossi has introduced the notion of radiation effects on 
autonomous cells [40], and implies by this term that cells are not influenced by 
radiation effects on neighboring ce.ls or by radiation effects on the tissue level. 
For effects on autonomous cells—and the mutations that cause hereditary effects 
are the main example—linear dose-effect relations must be assumed at suffi
ciently low doses. Figure 16 indicates for different types of ionizing radiations 
those combinations of doses and site diameters that correspond to event frequen
cies less than 1. 
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Fig. 16. Diagram of site diameters and of absorbed doses that correspond to mean event fre
quencies <$>D less than one. The regions with 6D < 1 are indicated for three different radiations. 
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However, it must be noted that linear dose-effect relations cannot be postulat
ed for radiation carcinogenesis, which may be codetermined by radiation-
induced alterations on the tissue level. Nonlinear dose-effect relations have been 
found for tumors induced by 400 keV neutrons. Remarkably, these dependences 
correspond to dose exponents less than 1 at neutron doses where only a minor 
fraction of all cells receive any energy deposition. One must conclude that the 
effect is not one on autonomous cells; other, more complex factors must codeter-
mine the dose-effect relation [41-43, 20]. The nature of these factors is still 
unknown; microdosimetry can serve only to exclude certain mechanisms of radi
ation action. 

C . BIOPHYSICAL IMPLICATIONS OF MICRODOSIMETRIC D A T A 

The subsequent remarks deal with the somewhat more complex problem of 
the dose-effect relations at higher doses, where multiple events occur in the 
nucleus of the cell. The classical multihit or multitarget theory had no actual va
lidity. Nevertheless, its equations were, and are still, widely used for the 
description of observed dose-effect relations. The simple target-theory models 
can also illustrate valid arguments that can be recast in the conceptual and quan
titative framework of microdosimetry. 

1. The Equations of the Multihit and Multitarget Theory 

The target theory had considerable success in explaining the single-hit inacti-
vation of microorganisms. It was, therefore, natural that an attempt was made 
[2-4] to explain also curvilinear dose-effect relations in terms of random hits 
in hypothetical targets. An evident weakness of the approach has been the un
realistic assumption of equal, statistically independent hit events and of 
hypothetical, equal targets. I f these unrealistic assumptions were to be dropped, 
the number of free parameters would be far too large for a meaningful use of 
the models. Only two highly simplified models have therefore been retained. 

In the multihit model it is assumed that the cell contains one hypothetical criti
cal target. The target can tolerate (n — 1) hits. I f n or more hits occur the cell 
is inactivated. This is a pure Poisson process. The probability for survival of the 
cell is 

For n > 1 this equation yields dose-effect relations with a shoulder in an initial 
region where S(D) decreases with dose at a less than an exponential rate. The 
slope of the shoulder increases with increasing hit number n. To reconcile the 
equation with the common observation of an initial slope of the cellular survival 
curves an additional factor e~yD is multiplied into the survival probability; it is 

- i 

(96) 
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interpreted as single-hit inactivation by the densely ionizing component of the 
radiation: 

S(D) = * - < ° + 7 > D V (97) 
, = o v\ 

The multi-hit curves have the asymptotic slope - a or — (a + 7) in the com
mon representation of the logarithm of survival versus dose. The curves do not 
(for n > 1) have an asymptotic tangent; in the terminology of radiation biology 
they are said to have an infinite extrapolation number. 

The multitarget model postulates m hypothetical, equal targets, each of which 
can be inactivated by a single hit. Equal hit probabilities are assumed and also 
statistical independence of the hits on individual targets. The resulting equation 
for the survival of the cell is 

S(D) = 1 - (1 - e~aD)m (98) 

Again one introduces, somewhat artificially, an additional exponential term to 
account for the observed initial slope of most survival curves: 

S(D) = e^D[l - (1 - e~aD)m] (99) 

The multitarget curves have similar characteristics as the multihit curves. Their 
asymptotic slope is also —a or — (a + 7), but this slope is attained sufficiently 
fast that the curves have an asymptotic tangent that intersects the ordinate at the 
finite value m. The term extrapolation number is currently used rather than the 
term target number for this value m. 

The target-theory equations are obviously crude approximations that can have 
only heuristic value. A multiplicity of assumptions could readily be modified, 
and a far more general description in terms of Markov processes contains the 
conventional equations as simple special cases [34]. The more general stochastic 
treatment presents no mathematical difficulties, but any realistic analysis 
requires an adequate consideration of the microscopic patterns of energy deposi
tion for different radiations. The micropatterns determine the striking differ
ences of the biological effectiveness of ionizing radiations, and it is evident that 
a biophysical analysis without microdosimetric data can have little value. It is, 
therefore, of interest to examine how the basic ideas of target theory can be 
translated into the language of microdosimetry. 

2. The Threshold Model in Terms of Microdosimetry 

A dose-effect relation is the expression of several stochastic processes. The 
energy deposition in the cell varies randomly, but the response of the cell itself, 
too, must be described in probabilistic terms. The multihit or multitarget models 
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disregard the inherent stochastic response of the cell; the dose-effect relation is 
interpreted merely in terms of the statistics of energy deposition. Such an in
terpretation is obviously incomplete and even unrealistic, and the same objection 
applies to any threshold model that is formulated in terms of microdosimetry. 
Nonetheless, one can draw certain valid conclusions from the consideration of 
the threshold model that can then lead to a more realistic treatment. 

One could imagine a microscopic dosimeter that registers specific energy in 
a spherical tissue region of diameter d and responds precisely when a critical 
value zc is reached. As explained in Section I I I , B, the probability for no 
response S(D) is then 

Figure 17 represents such dependences for x rays, a spherical site of 1 ^m, and 
for various critical values z c . In spite of the assumed threshold reaction, the 
resulting dose dependence is, of course, not a step function. I f zc is comparable 
to, or smaller than, the average event size z¥ for the radiation, the dependence 
is nearly exponential; one deals then with a single-hit reaction. For larger values 
z c the dose-response relations have a shoulder; i.e., they are the result of cu
mulative damage. For a specified zc the curves come closer to the step function 
as larger site diameters d are assumed. For any observed dose-effect relation 
S(D) one can determine the values zc and d that make the function F(z; D) 
agree most closely with 5(D). The functions F(z\ D) and S(D) can be formally 
regarded as sum distributions of the dose required to produce the effect. As with 
any distribution, one can compute for the functions a mean D and a standard 
deviation (see Hug and Kellerer [34]). Since there are only two free parameters 
z c and d it is sufficient to fit the two curves in terms of these two parameters. 
The diameter d obtained in this way is not the actual size of any critical target 

Fig. 17. The probabilities 1 - F(z; D) not to exceed a critical value z of the specific energy 
versus absorbed dose in a spherical tissue site of \-fim diameter exposed to x rays. (Redrawn from 
Hug and Kellerer [34].) 
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or gross sensitive volume in the cell, it is merely a lower bound. The sensitive 
volume may be larger, or a multiplicity of small targets may be dispersed 
through a larger volume. Only part of the observed deviation from the step func
tion need then be due to the stochastics of energy deposition; the other part could 
reflect the stochastic response of the cell, even to a fixed specific energy. On 
the other hand, one can exclude any model that invokes one smaller critical tar
get or a multiplicity of critical targets contained in a region of diameter less than 
d\ even under the hypothetical assumption of a threshold reaction, the deviations 
from the step function would have to be larger than those observed. By this ar
gumentation gross sensitive volumes not smaller than 1 /xm have been inferred 
[34] from survival curves of mammalian cells exposed to x rays. For cellular 
inactivation studies this result is in agreement with the accepted belief that DNA, 
dispersed through the whole nucleus, is the target of radiation action. For more 
specific radiation effects, such as chromosome aberrations or cellular transfor
mations, this argument by exclusion can be more informative. 

3. Dependence of the Effect on Dose and on Specific Energy 

In principle it is easy to generalize the formulation. Let S(D) be the probabili
ty for no effect versus dose and let S(z) be the same probability versus specific 
energy in the nucleus. The function S(z) must be somewhat steeper than the 
function S(D). The relation between the S(D) and S(z) is 

I f the dose-effect relation were known with sufficient precision, one could uti
lize f(z\ D) to invert the equation and determine the dependence on specific 
energy. In practice this is impossible because dose-effect relations are not 
known well enough to permit the inversion of the equation. Even i f the numeri
cal procedure were possible, the dependence of the effect on specific energy in 
the nucleus may provide not much more information than the dependence of the 
effect on absorbed dose. Thus, for sparsely ionizing radiations the fluctuations 
of z relative to the entire nucleus of a mammalian cell are insignificant at doses 
of a few grays (see Fig. 13). The effects of ionizing radiations on the cell are 
influenced by energy fluctuations on a smaller scale. 

The attempt has therefore been made, in various early applications of 
microdosimetry, but also in recent studies, to search for combinations of smaller 
site sizes and of functions S(z) that would fit observed dose-effect relations. 
However, it is evident that this approach, in addition to various other limitations, 
contains too many free parameters. An infinite number of fits is possible, which 
provides no real information. A simpler and less formalistic approach is, there
fore, required. Such an approach can be illustrated in terms of the model of dual 
radiation action. 

(101) 
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4. Treatment of a Second-Order Process 

Lea (see [5]) and later Neary et al. [44] have examined the condition that cel
lular lesions result from the interaction of pairs of chromosomal lesions within 
the nucleus of the cell. They inferred a dependence of the yield of lesions on 
the square of the specific energy in certain sites, and they deduced from cur
vilinear dose dependences for sparsely ionizing radiations site sizes of a fraction 
of a micrometer or more. The microdosimetric analysis of dose dependences for 
a large variety of radiation effects and the study of RBE dose dependences for 
neutrons later led to largely similar conclusions [45], In particular, high RBE 
values for neutrons were predicted that were subsequently verified in experi
ments on radiation carcinogenesis, life shortening, and chromosome aberra
tions. Details of these studies are not the subject matter of this chapter, but the 
basic microdosimetric relations for the treatment of dual radiation action can be 
given. 

I f the yield of a particular cellular damage is proportional to the square z 2 of 
the specific energy within a certain site, the average yield will be proportional 
to the mean of the square z2 of the specific energy, i.e., to the second moment 
of f(z; D): 

E(D) = kz2 (102) 

With the fundamental relation [see Eq. (62) or Eq. (33)] 

z2 = a \ + z2 = fD + D2 (103) 

one obtains 

E(D) = k(£D + D2) (104) 

Under the assumed dependence on the square of specific energy, the effect 
is, therefore, a linear-quadratic function of absorbed dose. The magnitude of the 
linear component is proportional to the weighted average f of the specific energy 
produced in individual events, f is largest for small sites and for densely ionizing 
radiations (see Fig. 15). 

The existence of the linear component can be understood in terms of the in-
tratrack interaction of sublesions; i.e., it can be due to the fact that a substantial 
amount of energy is deposited in the site even in single events. Accordingly, the 
energy concentration, and therefore z 2 , can be large in those sites that are af
fected by an event, even i f the absorbed dose is small. The number of sites af
fected by an event is proportional to absorbed dose. 

The treatment in terms of the site concept has the advantage that the specific 
energy and its distribution can be measured for any radiation. However, it is ob
viously a simplification. Radiation products will not react with equal probability 
with all potential reaction partners within an imagined site. The probability for 
the reaction wi l l , instead, depend on the separation of the partners. In those ex-
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ceptional cases where short-range electrons or heavy recoils produce the same 
z in a site as long-range particles, the cellular effects may be markedly different. 
It has also become clear from recent radiobiological investigations that short-
distance interactions predominate in the intratrack effect while larger distances 
are involved in the cumulative cellular damage from independent charged parti
cles (see Section V I , E). 

V. The Straggling Problem and the Single-Event Spectrum 

The present section deals with essential features of the single-event spectrum 
and with the different factors that determine it. Particular attention is given to 
energy-loss straggling, a problem that is of interest not only in microdosimetry 
but also in high-energy physics. 

For sites of diameter less than roughly 300 nm no reliable methods exist for 
measuring the microdosimetric spectra. However, computations are possible. 
To refer to the case of very small sites the term nanodosimetry has sometimes 
been used. In this small region of interest, charged particles undergo few colli
sions. The fluctuations of energy loss can be computed. They are the result of 
a compound Poisson process, and the convolution algorithm of Section I I I can 
be utilized instead of the approximate solutions of the energy-loss straggling 
problem given by Landau [46], and later by Vavilov [47]. This is the topic of 
Section V, A. 

The computation of the energy imparted to submicroscopic sites is more com
plicated. When the ranges of the b rays are comparable to the site size, a substan
tial part of the energy lost by the charged particle is transported out of the site. 
Due to the complex configurations of 6 rays, i.e., secondary electrons, exact 
computations are nearly impossible. One can either apply approximate correc
tions to the solution of the straggling problem, or one can utilize Monte Carlo 
simulations. The modified solution of the straggling problem is dealt with in 
Section V, A. Technical details of Monte Carlo simulations are outside the scope 
of the present chapter, and are therefore not considered. Essentials of the sam
pling procedures and fundamental relations for the mean values of the spectra 
wi l l , however, be treated in Section V I ; some of the relations hold regardless 
of the complexities of the particle tracks. 

For larger regions with diameters exceeding several hundred nanometers the 
single-event spectra can be measured. Their calculation is also simpler, and cer
tain complicating factors that are essential for small regions can be disregarded. 
One condition of particular interest is treated in detail in Section V, B. This con
dition of short track segments requires that the ranges of the charged primaries* 

*The term charged primaries denotes—if one disregards certain special cases—all ionizing 
charged particles except the 6 rays. Electrons liberated by photons, or recoil nuclei set into motion 
by neutrons, are regarded as charged primaries. 
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are much larger than the site diameter. The change of LET of the particle while 
traversing the site can then be neglected, and one deals with a set of random fac
tors that can largely be separated. These factors are the LET of the particle, the 
chord length of the trajectory in the site, and, last but often predominantly, the 
energy-loss straggling. The case of short track segments applies to moderate- or 
high-energy electrons, to fast heavy ions, and to the proton recoils of fast neu
trons, for regions of fractions of a micrometer to several micrometers. 

Another case of considerable pragmatic interest is the condition of large track 
segments. In this case the ranges of the charged primaries are comparable to or 
smaller than the dimensions of the site. The particles then lose substantial frac
tions of their energy while traversing the site, and the change of LET during the 
traversal must be taken into account. Incomplete traversals can also occur. For 
heavy particles—but usually not for electrons—it is then possible to disregard 
energy-loss straggling and the transport of energy by 8 rays. The reason is that 
the maximum ranges of 8 rays are small compared to the particle ranges and site 
diameters (see Fig. 3). Numerous computations of this type have been per
formed for neutrons (see, e.g., [50-52]), and a detailed discussion is therefore 
not required in the present context. 

Energy-loss straggling is so commonly a dominant factor in microdosimetry 
that one can term the microdistribution of energy the result of LET plus strag
gling. The treatment of LET is relatively straightforward. The straggling 
problem demands a separate treatment that pertains also to work with particle 
detectors in nuclear physics. 

A. ENERGY-LOSS STRAGGLING 

The straggling problem will be treated for the case of short segments of parti
cle tracks. The change in the kinetic energy and LET of the particles can then 
be disregarded. In microdosimetry one is interested in the energy imparted to 
a specified region, rather than the energy lost by the charged particle. The differ
ence can be substantial whenever d rays have ranges comparable to the region 
of interest. The straggling problem wil l first be treated in terms of energy lost 
by the particle. Subsequently the modifications will be considered that are re
quired when one considers energy imparted to the site. 

1. The Collision Spectrum and Its Convolutions 

The distribution Xfc, A) of energy e lost by charged particles along a short 
track segment with average energy loss A is the result of a compound Poisson 
process. The characteristic spectrum of the process is the distribution / c(e) of 
energy losses in individual electronic collisions. As pointed out in Section I I I , 
the mathematical relation is entirely analogous to that between /(z; D) and 
/l(z). The same formulae and the same computer program apply to both 
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problems. The subsequent remarks are therefore partly a repeat of considera
tions in Section I I I . 

I f an ionizing charged particle with stopping power L traverses a short length 
/ in matter it loses on the average the energy A = IL. The energy e actually lost 
is a random variable. There are two random factors. The number of collisions 
follows a Poisson distribution; the amount of energy lost in individual collisions 
varies widely and is the more important stochastic factor. 

Let fc(e) be the probability density of energy losses in individual collisions. 
In the free electron model, which is used in the solutions of Landau [46] and 
Vavilov [47], one has 

/ c(e) = k/e\ for / 2 /e m a x < e < em a x (105) 

where / ( = 70 eV for water) is the mean excitation potential of the medium, 
and em a x is the maximum energy loss in a collision. For the case of electrons— 
where a somewhat different spectrum applies—emax is conventionally set equal 
to half the kinetic energy of the particle. For heavy charged particles em a x is 
roughly the kinetic energy of the particle multiplied by four times the ratio of 
masses of the electron and the heavy particle. 

To obtain a properly normalized spectrum one must set 

* = *n,ax/7(eLx - n ~ /V«™» (
1 0 6

) 

With Eq. (105) the average loss <5, per collision is 

Ö, = j efc(e)de = 2 ln(e m a x / / ) • e m a x / 2 / (e 2

i a x - / 2 ) 

- 2 ln(em a x/7) • / 2 / e m a x (107) 

This is, as wi l l be seen, a purely formal value, which is far smaller than the actu
al mean energy loss per collision. 

The second moment is 

e] = j e2/c(e) de = (e n M - P/emM) • P/e^ (108) 

and the weighted average, i.e., the average of the energy-weighted spectrum, 
dc(e) = e/c(e)/?F is* 

Ö2 = = (em a x - /Ve m a x ) / 2 ln(e„, a x//) 

- 6m a x/2 ln(e m a x / / ) (109) 

*The notation dc(e) for the weighted spectrum is chosen to emphasize the analogy to the dose-
weighted spectra d(L), d{y), and dl (z) of L E T , lineal energy y, and specific energy z, respective
ly. However, the simpler notation 6, and 62 is used for the frequency average and the weighted 
average of the collision spectrum. 
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This quantity is meaningful because it is not strongly influenced by the unrealis
tic low-energy part of the free electron collision spectrum. 

According to the fundamental relation for the compound Poisson process [see 
Eq. (62)] the weighted average 52 determines the standard deviation of the 
straggling distribution/(e; A): 

cr(A) = Vö^Ä = V W L (110) 

and with Eq. (105), i.e., the free electron model, one obtains 

a(A) ~ V e m a x • Ll/2 l n ( e m a x / / ) (111) 

where L is the collision stopping power and / is the length of the track segment. 
For simplicity bremsstrahlung and nuclear interactions are here disregarded. 

The free electron model applies to knock-on collisions, i.e., to collisions with 
e large compared to the binding energies of the electrons. For glancing colli
sions, i.e., energy losses e comparable to lor less than / , Eq. (105) is unrealistic. 
The extension of the 1/e2 spectrum down to the energy em i n = / 2 /e m a x serves 
merely to make the spectrum agree with the actual stopping power. 

It is evident that the 1/e2 spectrum cannot lead to valid results for very short 
track segments where only few collisions occur. In microdosimetry, however— 
and not only in microdosimetry—this is a case of considerable interest, and it 
is therefore useful to deal with the exact solution by the method of Section I I I , 
which can replace the familiar approximate solutions of the straggling problem. 

For a realistic treatment of the glancing collisions various quantum-
mechanical approximations can be used, or measured data can be employed. A 
discussion of these approaches and an examination of the actual shape of the col
lision spectra are beyond the scope of this chapter. For the present discussion 
it is sufficient to consider the principles of the straggling problem. Figure 18 in
dicates the general nature of the difference between the 1/e2 spectra and the ac-
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Fig. 18. Energy-weighted density of energy loss per collision relative to a logarithmic scale for 
a 10-MeV proton in water. The box-shaped distribution corresponds to the 1/e2 spectrum. The 
heavier line indicates a possible dependence that accounts for glancing collisions. The curves repre
sent the fraction of energy lost by the particle per unit logarithmic interval of e. 
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tual distributions for heavy ions of 10 MeV/nucleon. As earlier in Fig. 8 the 
weighted spectra relative to a logarithmic scale in e are plotted as 

These spectra represent the fraction of energy loss, i.e., stopping power, in 
specified logarithmic intervals of e. For the free electron model one has a cons
tant density on the logarithmic scale: 

i.e., equal logarithmic intervals of e contribute equally to the stopping power. 
For large values of e this simple rule is reasonably accurate even for realistic 
spectra. In many microdosimetric considerations, particularly with high-energy 
charged particles, it permits adequate estimates of basic features of track 
structure. 

The parts of the spectra corresponding to glancing collisions are not well 
known and, as stated, they will not be considered quantitatively. The heavy 
curve Fig. 18 merely illustrates a possible dependence at small values of e. The 
subsequent considerations and the resulting solution of the straggling problem 
apply regardless of the form of the collision spectrum. 

Analytical solutions of the energy-loss straggling problem have been derived 
by Landau [46] and Vavilov [47] (see also [48]) on the basis of the 1/e2 spec
trum. Landau's solution disregards both the upper and lower limits of the spec
trum. It is applicable to those cases where the number of collisions is large, but 
it requires also that the number is sufficiently small that the probability for colli
sions near e i n a x can be disregarded. Vavilov has given an improved solution that 
accounts for the upper limit of energy loss in individual collisions. However, 
his solution, too, is restricted to the case of many collisions and is linked to the 
1/e2 spectrum and certain other analytical expressions. 

The solution of the compound Poisson process in Section I I I is equally ap
plicable to the straggling problem. One can use the method of successive convo
lutions to obtain from any specified collision spectrum the straggling distribution 
/ s(e; A) for a specified mean energy loss A. In analogy to the procedure in Sec
tion I I I , a very short track segment with a mean collision number r < 10 " 3 is 
considered first. The number r is taken to be smaller by an integer power of 2 
than the actual mean collision number A/5,. The approximation of the solution 
for the very short segment is, in analogy to Eq. (51), 

ecUe) = e 2 ^ ( e ) A (112) 

edc(e) = l / l n ( e m a x / e m i n ) = 1/2 ln(e m a x /7) (113) 

fs(e; i/) = ( l - 7)5(e) + r/ s(e) (114) 

with 7] = 2~ N A and r = 2 - N A / 6 , . 
The solution/(e; A) is then, in the same way as in Section I I I , obtained by 
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/V successive convolutions: 

/R(e; 2T?) = / 8 ( e ; r?) */,(e; v) 

/ s(e; 4r7) = / s ( e ; 2rj) */ s(e; 2iy) 

(115) 

/ s(e; A) = / s ( € ; A/2) */ s(e; A/2) 

As in the application to/,(z) and / (z ; D ) , it is essential to execute the convolu
tions on a logarithmic scale of e. The algorithm described in the Appendix can 
therefore be used. A linear scale would require awkwardly big arrays for the 
representations of fc(e) and the straggling distributions, and the inconvenient 
lengths of the arrays make it equally impractical to use the solution in terms of 
Fourier transforms. 

Figure 19 gives solutions for the 10 MeV/nucleon heavy ion obtained with 
the spectra in Fig. 18. The inadequacy of the simple 1/e2 spectrum at small 
mean energy losses A is evident. At larger values the shape of the solutions is 
mainly determined by the weighted mean <52 of the collision spectrum. The 
value 1.81 keV for the realistic spectrum is not substantially larger than the 
value e m a x /2 ln(e m a x/7) = 1.77 keV for the simple spectrum. Accordingly, the 
solutions for the two spectra are similar at larger energy losses. 

To further illustrate the identity of the problem of Section I I I and the energy-
loss straggling problem, scatter diagrams are given in Fig. 20 that correspond 
to the curves in Fig. 19. These diagrams are entirely analogous to the D-z dia
grams in Section I I I (see Figs. 13 and 14). 

2. Correction for the Difference between Energy Lost and Energy Imparted 

In microdosimetry, as in work with particle detectors, the relevant quantity 
is the energy imparted to a reference region, rather than the energy lost by the 
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Fig. 19. Distributions of energy lost by a 
10-MeV proton in a foil of thickness cor
responding to the specified mean energy loss A. 
Densities e • / s(e; A) relative to the logarithmic 
scale of e are plotted. The solid lines correspond 
to the heavier lines in Fig. 18. The dashed lines 
correspond to the free electron spectrum, i.e., 
the box-shaped distribution in Fig. 18. At suffi
ciently large mean energy losses both sets of dis
tributions are in agreement; the classical 
solutions are then adequate. 
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Fig. 20. Scatter diagrams corresponding to the solutions in Fig. 19. The right panel corresponds 
to the free electron model. 

particle. The mean energy lost by a particle in a thin foil is equal to the mean 
energy imparted. However, even with this special geometry, the two straggling 
distributions differ. The reason is that high-energy ö rays transport energy out 
of the site and into it. The net effect is a reduction of the frequency of high values 
of energy lost due to individual collisions. This can significantly cut the tail, and 
therefore the second moment, of the collision spectrum. The width of the strag
gling distribution is correspondingly reduced. 

A quantitative treatment would have to account for the complexities of the 
energy transport by 6 rays. However, an approximation can at least illustrate the 
method to account for the difference between the two straggling distributions. 

Figure 21 exemplifies the problem for heavy ions of 10 MeV/nucleon, i.e., 
for the same case that has been treated in the preceding subsection. In Fig. 18 
an approximate modification of the 1/e2 spectrum at low values of e has been 
included. This same modification is also given in Fig. 21. As stated earlier, this 
correction has little influence on 62 and on the variance of the straggling distri
butions. In contrast, the variance of the distributions is substantially affected by 
any modification of the high-energy part of tne collision spectrum fc(e). A 
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Fig. 21. The spectrum shown in Fig. 18 with a modification (dashed line) that accounts for 6 
ray efflux from a 1 -/xm-diameter site. 
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modification of the spectrum that may, for a l-fim site, account very roughly 
for the efflux of some of the energy of d rays is indicated by the broken line. 
The distributions of energy lost by a proton of 10 MeV and the energy trans
ferred to the site, according to the modified spectrum, are compared in Fig. 22. 
The difference is considerable; the weighted average of energy per collision is 
<52 = 550 eV for the modified spectrum instead of the value of 52

 = 1-8 keV 
for the energy-loss spectrum. The straggling distributions for energy imparted 
have a substantially smaller tail than the distributions of energy lost. 

It is evident that complex calculations are required to obtain the modifications 
of the collision spectrum with adequate precision. I f rough approximations are 
not sufficient, Monte Carlo simulations are more appropriate. An example for 
such computations is the work by Berger [18] for electrons and for spherical 
sites with diameters of 1 /xm or more. 

B. COMPARISON OF THE VARIOUS RANDOM FACTORS 

The complexity of microdosimetric distributions makes it difficult to establish 
general rules for the experimental determination or the computation of these dis
tributions. Different site sizes and different radiations require different treat
ment. It is nevertheless possible to derive certain guidelines to identify those 
random factors that are most essential in a given situation, and to discriminate 
them from other factors that play a minor role and may be disregarded under 
some conditions. The subsequent considerations are aimed at such a comparative 
assessment. 

1. The Chain of Random Factors 

I f the medium is exposed to an absorbed dose D the energy imparted to a 
specified region is determined by a chain of random factors, as indicated in the 
diagram of Fig. 23. This diagram refers to the condition of small sites, i.e., of 
particle ranges considerably larger than the site diameter. 

The first arrow indicates the random variable v, i.e., the number of events 
or, in a simplified statement, the number of independent charged particles 

5 10 1! 

ENERGY LOSS keV 

Fig. 22. Comparison of the distributions of 
energy lost and energy imparted for a 10-MeV 
proton traversing the i-fim diameter of a spheri
cal tissue site. The distributions are based on the 
spectra in Fig. 21. 
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Fig. 23. Diagram of the chain of random factors that determine energy deposition in a site. 

traversing the region. As stated earlier, this random variable follows a Poisson 
distribution. 

The second random variable is the stopping power L of the ionizing particle. 
The LET distribution is designated by f(L) (see Section I I , B), i . e . , / (L) dL is 
the probability that a particle traversing the site has an LET between L and 
L + dL. Whenever the range of the most energetic <5 rays is comparable to the 
size of the region, the LET is, in effect, reduced. 

The expected energy imparted by an event is the product of the LET of the 
particle and the chord length in the site. The third arrow in the diagram refers 
to this random factor. The distribution/(/) of the chord length / depends on the 
geometry of the exposed region. Spheres of diameter d have the triangular distri
bution / ( / ) = 2l/d2, with 0 < / < d. For other regions, such as cylinders or 
spheroids, the chord-length distributions are more complex [31, 68]. 

Due to the energy-loss straggling the energy actually imparted to the region 
of interest may deviate considerably from the product of chord length and (res
tricted) stopping power, / • L . A fourth random factor is therefore the number 
/x of collisions along the chord, and the fifth, and more important, factor is the 
energy lost in each collision. 

The last two arrows refer to factors that enter only into measured spectra. 
They are the Fano fluctuations of the number of ions produced for specified 
energy transfer, and the multiplication statistics, i.e., the stochastic fluctuation 
of pulse heights produced by a specified number of ions. The influence of these 
factors is, as will be seen, small. 

2. The Formula for the Relative Variance 

The influence of the different random factors on the single-event distribution 
can be assessed in terms of the relative variance, i.e., the variance divided by 
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the square of the mean. Utilization of a relative, i.e., dimensionless, quantity 
has the advantage that the resulting quantity is largely independent of particulari
ties in the definitions of the quantities. Thus, K,, the relative variance of the 
single-event spectrum, has the same value for the distributions f(z), /,(e), or 
f(y) [see Eq. (31)]. 

Under the condition of small sites and considerably longer particle ranges the 
relative variance of the single-event spectra can be expressed in terms of the 
relative variance of the LET distribution K 7 , the chord-length distribution Vh 

and the straggling distributions K s. The additional terms added in brackets 
represent Fano fluctuations Vv and the multiplication statistics Vm and apply 
only to the measured spectra: 

^ = VL + V, + VlVl + Ks + (K F + VJ (116) 

The formula is here cited without derivation [see Kellerer (33, 49)]. Its simplici
ty makes it a practical tool for assessing the role of the different random factors. 
The relative variances are additive, apart from the additional term VLVl that en
hances the joint effect of the LET and chord-length variations. In effect, one 
need merely compare the relative variances for the individual random factors to 
establish their respective importance. The magnitudes of the relative variances 
are, therefore, examined next. 

3. Magnitudes of the Relative Variances 

a. Linear Energy Transfer. VL is the relative variance of the LET distribu
tion t(L) (see Section II ,B): 

VL = ( L D / L F ) - 1 (117) 

where L D is the dose average LET, and L v is the track average LET. Both 
quantities require a suitable cutoff, if the maximum b ray range exceeds the 
dimensions of the reference region. Whenever one deals with sites of the order 
of fractions of 1 jum or more, the cutoff has little effect on the numerical values 
of L D and L r . For the mixed radiation fields produced by uncharged primaries 
VL is usually larger than 1. Small values of VL apply only in the track-segment 
experiments where microorganisms are exposed to monoenergetic heavy ions. 

b. Chord-Length Distributions. The relative variance V, of the chord-
length distribution / ( / ) is given by 

vi = C"D//~F) - 1 (for the sphere: V, = i) (118) 

where I D is the weighted average of the chord length (3d/4 for the sphere of 
diameter d)y and / F the unweighted average (2d/3 for the sphere). The mean 
chord length / F is for isotropic radiation fields, or for isotropic orientation of 
the sites, equal to 4V/S, where V is the volume and S the surface of the (convex) 
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site. Figure 24 gives the values Vt for spheroids, which are often good approxi
mations for a cell or a cell nucleus. 

From the data for spheroids one concludes that V{ can be comparable to VL 

only for the case of the track-segment irradiations or for sites that deviate very 
substantially from the spherical shape. Except in these cases the chord-length 
variations are of minor importance. 

c. Straggling. The quantity Ks is the relative variance of the straggling dis
tribution 

and comprises, as shown in Section I I I .D , the term (<52 - <5,)/A due to the 
fluctuations of energy loss per collision and the considerably smaller term 6,/A 
due to the fluctuations of the number of collisions. 

As shown in the preceding section, <52, the weighted average of the energy 
imparted per collision, depends not only on the velocity of the particle but, due 
to the <5-ray efflux, also on the geometry of the site. This influence of the geome
try is, on the one hand, a complication but, on the other hand, a simplification. 
For sufficiently fast particles, i.e., particles with ranges substantially exceeding 
the site diameter, the maximum 5 ray ranges tend to be larger than the site di
ameter. The geometric cutoff determines the weighted energy imparted per col
lision <52 and it is (to a first approximation) merely a function of the site 
diameter. Thus for the example of the preceding section a value of -550 eV 
was deduced for a l-/*m spherical site. As a rough approximation one may as
sume the value EJ2 ln (E d / / ) , where £ d is the energy of the electron with 
range somewhat smaller than the diameter of the site. 

The comparison of the relations for VL and Vs shows that LET is the 
dominant random factor for mixed fields of heavy particles, such as neutron 
recoils, and site sizes of fractions of 1 jxm or more. Straggling can nevertheless 
have a substantial influence on the shape of the spectra for sufficiently fast heavy 
ions. For slower heavy recoils with ranges comparable to the site diameter, 
straggling becomes insignificant. It is, therefore, justified that Caswell and 

K = d2/A (119) 

\ 
Fig. 24. Relative variance of chord length 

in prolate and oblate spheroids. 
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Coyne have disregarded straggling in computations of microdosimetric spectra 
for neutrons [50-52]. For much smaller sites straggling is, of course, the 
dominant factor. 

d. Fano Fluctuations and Multiplication Statistics. For a given energy im
parted, Vp is the relative variance of the number of ions produced. The relative 
variance of the pulse heights generated by the proportional counter for a given 
number of ions is denoted by Vm. 

The Fano factor is smaller than the term w/A that would result i f Poisson 
statistics were applicable. The symbol A is the energy imparted, and w is the 
mean energy per ionization. An approximation is 

KF = w/2A (120) 

The influence of the multiplication statistics is somewhat larger. Under near op
timal conditions a proportional counter responds with an exponential distribution 
of pulse heights to single electrons. One obtains then 

Vm = w/A (121) 

Since w is always much smaller than 52, the two terms KF and Vm are insignifi
cant in microdosimetry. It follows that microdosimetric spectra are not greatly 
affected i f one measures ionizations only, instead of all energy transfers. Com
putations with simulated tracks have shown [53] that, at least for electrons up 
to 10 keV, the differences between the exact spectra and spectra based on ioniza
tion counts are indiscernible. With adequate performance of microdosimetric in
struments, measured spectra should be nearly identical to correctly computed 
spectra. 

To summarize the comparison of the various random factors, one can give 
the entire formula for the relative variance of the single-event spectrum / ( y ) or 
fi(z). The case of a spherical site is assumed; the modification for a different 
geometry with V{ > y is straightforward. The value 34 eV is inserted for w: 

(122) 

=

 9-bi - i + h + ( 5 0 t V \ 
8 L T A V A ) 

This is equivalent to a relation for the weighted mean of the single-event spec
trum. Substituting Vx = (yD/yF) — 1 and y^ = A / / F one obtains for the 
spherical site of diameter d 

9 j - , 3 5 2 / 3 • 50 e V \ 
*> = 8 L d + ^ + ( 2d~ ) ° 2 3 ) 

8 8 A \ A / 
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with analogous expressions for and f. The term in parentheses applies as 
stated, only to experimental determinations. 

Finally, one has, according to Eq. (65), the relation for the dose-dependent 
distributions / (z ; D): 

K = (z F/D)(l + Vx) = ( l / / i ) ( l + Vx) (124) 

where n is the mean event number. The first term represents the (usually insig
nificant) influence of the Poisson fluctuations of the event numbers; the second 
term represents the fluctuations of event size. 

VI . Geometric Aspects of the Inchoate Distribution 

The computational simulation of charged particle tracks—initiated by the 
electron transport studies of Berger [18, 54] and first realized in full detail in 
the computer code of Paretzke [17, 55]—has become an important and common 
tool of microdosimetry (see also [19, 56-60]) and has stimulated its recent 
development. The method permits the assessment of the microdistribution of 
energy in small regions that are not, at present, accessible to experimental 
investigations. 

The simulation of charged particle tracks is more than a substitute for defi
ciencies in the experimental techniques. Its theoretical implications have been 
equally important and have led to various new concepts and quantities in 
microdosimetry. These developments would require a separate treatment. Even 
a summary is, at present, difficult, because the mathematical foundations for 
some of the essential results are still inadequate; few rigorous derivations have 
yet been given. However, in spite of their insufficiently developed foundations, 
the new concepts are extensively used, and any survey of the fundamentals of 
microdosimetry without their consideration would remain incomplete. A brief 
synopsis of essentials is therefore given in this final section. Some of the new 
ideas have arisen from problems of sampling of simulated tracks [62]. A con
sideration of sampling procedures is therefore a suitable starting point. 

A . UNIFORM AND WEIGHTED RANDOM SAMPLING 

Simulated charged particle tracks can be utilized to derive the distributions 
f(y) or fi(z) and the corresponding mean values. In analogy to microdosimet
ric measurements one may envisage a fixed site surrounded by randomly posi
tioned tracks. Each interception of the site by a track determines then the size 
of an energy-deposition event. In the computations a reversed point of view is 
far more suitable. One can envision a fixed particle track surrounded by random
ly positioned equal sites (probes), which are usually spheres. Each interception 
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of the track by a site determines then the size of an energy-deposition event. The 
resulting distributions and parameters are the same, provided correct sampling 
procedures are applied. There are several different sampling procedures that are 
equally correct but not equally efficient or convenient. 

It is assumed that simulated charged particle tracks are specified by the spatial 
coordinates of the transfer points T{ and by their associated energy transfers e,. 
The sampling procedure wil l be explained with reference to individual tracks. 
Actual computations require a set of tracks, i.e., repeated random realizations. 
Energies and types of the particles wil l vary for mixed radiation fields. I f one 
considers track-segment experiments, one deals with partial tracks. For simplic
ity the subsequent explanations will refer to entire tracks. 

1. Associated Volume and Event Frequency 

One can begin the discussion with the seemingly simple problem of determin
ing from a simulated track the mean specific energy z¥ per event in a spherical 
region of radius r. 

To deal with the problem one needs first the notion of the associated volume 
A of the track.* This is the union of all spheres of radius r that are centered at 
transfer points. The specific energy z in a sphere of radius r differs from zero 
i f and only i f the sphere is centered within the associated volume. It is con
venient to assign the value z for a sphere to the center C of the sphere; i.e., to 
treat z as a point function although its value depends, of course, on the energy 
transfers within the spherical neighborhood of C. With this formal convention 
one can say that the associated volume is that region where the specific energy 
is larger than zero. 

The notion of the associated volume was introduced by Lea [5] for the specif
ic purpose of computing event frequencies. It is, however, merely a special case 
of one of the basic concepts of geometric probability, namely, the Minkowsky 
product (or direct product) of two geometrical configurations [63, 64]. In the 
general definition the two geometric configurations can be arbitrary. In Lea's 
definition they are the spherical site S and the set T of transfer points forming 
the track, i.e., the inchoate distribution of energy transfers. A spherical site will 
be assumed in the subsequent considerations, too, but it will be evident how the 
results can be generalized. 

A site incurs an event i f it is centered within the associated volume of a track. 
Accordingly the event frequency equals the associated volume per unit volume 
of the exposed medium. Let E be the fixed initial energy of charged particles 
and A the mean associated volume per particle. The number of particles per unit 
volume and unit dose is then p/E, and the associated volume per unit volume 

*To avoid complicated terminology the expression associated volume and the symbol A are used 
both for the domain itself and for its measure, the volume. 
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and unit dose is pA/E. As stated, this equals the event frequency </>(0) per unit 
dose: 

</>(0) = pA/E and zF = E/pA (p = density of the medium) (125) 

To determine 0(0) or zF one need therefore merely compute the associated 
volume of simulated tracks of specified energy. This may seem a simple proce
dure, but even the two-dimensional analog in Figure 25 demonstrates that an ex
act computation is nearly impossible. There is no practical algorithm to obtain 
the volumes of multiple intersections. 

To derive the distribution of specific energy, or even the volume of the as
sociated region, one must therefore use random sampling. The naive approach 
would be to define a box or a cylindrical region of volume B that contains the 
associated volume and then to choose uniformly distributed random points with
in this region. With a sufficiently large number of trials the associated volume 
is then 

where / is the fraction of sampling points that are contained in the associated 
volume. 

By the same sampling procedure one can. in principle, also determine the pa
rameter zD or the distribution f\(z) or F,(z). For this purpose one must merely 
disregard those trials that lie outside the associated volume; for the sample points 
that are inside one must determine the specific energy. Then F}(z) is the frac
tion of points with specific energy up to z: 

The parameter zD is obtained in terms of the mean values over all sample 
results in the associated volume: 

A = / • B (126) 

(127) 

z2/z = ZD 
(128) 

TRANSFER POINTS 

Fig. 25. Diagram to indicate the problem of 
the computation of the associated volume for a 
given inchoate distribution. 
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The frequency mean need not be determined by Eq. (125). It could also be der
ived as the mean of all observed z-values for the sample points in the associated 
volume: 

The naive uniform sampling is correct, but it is too inconvenient and wasteful 
to be practicable. In actual computations a different method is therefore re
quired. 

2. Formulas for Weighted Sampling 

With uniform sampling any volume element dB of the sample space has equal 
probability to be selected. An alternative method is weighted sampling, i.e., 
sampling where the probability of dB to be selected is proportional to the specific 
energy at dB. The specific energy at dB is, as has been stated, the specific energy 
in a sphere centered at dB. 

Weighted sampling can be achieved as follows. In a first step one selects ran
domly an energy transfer point 7], the selection probability being proportional 
to the corresponding energy transfer e,. In a second step one chooses a random 
point in the sphere of radius r centered at the selected random point. In this way 
any point in the associated volume is reached with probability proportional to 
the specific energy at the point. 

While uniform sampling provides the density/, (z), weighted sampling pro
vides the weighted distribution dx(z) (see Section II,F). Accordingly one de
rives, from the average of values zk obtained with weighted sampling, the 
parameter zD: 

The symbol < ) denotes the average obtained with weighted sampling, and dis
criminates it from the averages obtained by uniform sampling. 

To determine the frequency average with weighted sampling one must aver
age the reciprocals of the observed values [see Eq. (27)]: 

z = (129) 

(130) 

z 1 d\{z) dz = \f(z)dz/z, (131) 

and therefore 

zP = l /<z- '> (132) 

The procedures for uniform and for weighted sampling can be formulated in 
a modified but equivalent form that applies also to nonspherical regions S of 
reference: 
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For uniform sampling one selects a random point P in a sufficiently large re
gion containing the track, and then positions the center, i.e., a fixed reference 
point, of S at P. The direction of S is distributed randomly for isotropic 
sampling. 

For weighted sampling one selects a random point on the track, i.e., a trans
fer point, and a random point in 5, and one then superimposes the two selected 
points. The direction of S is distributed randomly for isotropic sampling. 

It is readily seen that this more general formulation defines a procedure that 
is equivalent to the one specified for spherical sites. 

The procedure for weighted sampling is required in numerical evaluations of 
simulated particle tracks [62, 65]. It is also essential in considerations that lead 
to the proximity function and its applications, and it wil l be discussed in this con
text in Section VI,C. However, before these matters are treated, certain simpli
fied formulas for the event frequencies and the mean event sizes can be derived. 

With uniform sampling one obtains the distribution/, (z) directly; however, 
as stated, uniform sampling is highly inefficient. With weighted sampling one 
obtains the distribution dx (z), but the distribution fx(z) can be obtained from 

Mz) = z~%(z) I j z ( 1 3 3 ) 

B . FORMULAS FOR THE ASSOCIATED V O L U M E 

A N D FOR THE UNWEIGHTED AVERAGES 

For a complex inchoate distribution it is, as has been stated, difficult to com
pute the associated volume, and random sampling is therefore required. How
ever, for the special case of linear tracks there are simple solutions and it has 
been found [66] that the solutions apply surprisingly well even to electrons. 

1. Spherical Sites 

Consider for a particle of range R and initial energy E a track that is depicted 
as a straight line segment with the continuous slowing-down approximation. 
This will be termed a linear track. The associated volume of this track is 

A = r2irR + 4r 3/3 (134) 

Accordingly the event frequency per unit absorbed dose is [see Eq. (125)] 

0(0) = l/z¥ = p(r2irR + 4r 3 7r /3) /£ (135) 

Evidently this relation applies also for the mean range R of the particles in a 
mixed field and for the mean initial energy E and in this more general form it 
permits a convenient check for internal consistencies of experimental microdosi
metric data. 
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The frequency mean lineal energy yF is linked to 0(0) by the equation 

y^ = <t>(0)/r27rp (136) 

Utilizing the relation L F = E/R one obtains with Eq. (135) 

l/yF = R/E + 4r/3E = 1/L F + / / £ (137) 

Accordingly one obtains a straight line i f l / z F is plotted versus the mean chord 
length / = 4r/3 of the site. The event frequency or the unweighted mean event 
sizes >'F, lp, or eF are therefore determined for all site sizes if they are known 
for two sizes. The knowledge of merely two values permits also the determina
tion of the track average LET L F , the mean range and the mean initial 
energy E of the particles. 

Figure 26 indicates the application of the result to photons. 

2. Generalization of the Result to Nonspherical Sites 

The average chord length / is, for all convex bodies, equal to four times the 
volume V divided by the surface area 5. For example, one has for circular 
cylinders of radius r and height h: 

/ = 4V/S = 2rh/(r + h) (138) 

The mean intercept s of tracks with a convex site depends only on the mean 
chord length / = 4V/S of the site and the mean range R of the tracks (31): 

\/s = l/l + \/R (139) 
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Fig. 26. Diagram of frequency average event sizes yF for x rays according to Kliauga and 
Dvorak [66]. 
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With the relation for the mean energy imparted: 

eF = E(s/R) (140) 

one obtains 

l/yF = / / e F = / • R/E • s = 1 / L F + l/E (141) 

The result of this subsection applies, therefore, generally to all convex sites. 

C . T H E RANDOM INTERCEPT OF TWO GEOMETRIC OBJECTS 

This subsection deals with a formula of considerable generality that 
permits—applied to microdosimetry—the computation of the weighted averages 
of the single-event spectra in sites of specified shape. The formula also demon
strates the important role of the proximity functions, or point-pair distance dis
tributions. Al l considerations in this subsection are given in purely geometric 
terms, but without mathematical rigor. The application to microdosimetry is 
treated in Section V I , D . 

1. Uniform and Weighted Randomness of Straight Random Lines 

Uniform isotropic sampling corresponds to uniform isotropic randomness for 
the intercept of two geometric objects S and T. Weighted isotropic sampling cor
responds to weighted randomness. The concepts are familiar, and a satisfactory 
mathematical theory exists in the special case where S is a convex body (in a 
space of arbitrary dimensions) and T is a straight random line (see, e.g., 

For uniform randomness one selects a random point in the space that contains 
S and then chooses a straight line T with random direction that passes through 
the point. Only those lines are considered that intersect 5, and the resulting dis
tribution of intercepts / is termed the chord-length distribution / ( / ) for uniform 
randomness. 

For weighted randomness one selects a random point within S and then 
chooses a straight line T with random direction that passes through the point. 
The resulting distribution of intercepts / is termed the chord-length distribution 
d{l) for weighted randomness.* 

Kingman [69] has obtained the important relation that links the densities for 
uniform and for weighted randomness: 

^Uniform randomness and weighted randomness have also been termed y-randomness and fi-
randomness, and the notation f^{l) and/,(/) has been used for the densities. The notation/(/) and 
d(l)is here used to emphasize the correspondence to the frequency distributions and weighted distri
butions / , (z) and dx (z). 

[67, 68]). 

d(l) = lf(l)/lF (142) 
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where / F is the mean chord length for uniform randomness. / F equals, as has 
been pointed out in earlier sections, 4V/S for convex bodies of volume V and 
surface S. 

Equation (142) is analogous to the relations that link other densities and 
weighted densities, such as/,(z) and d,(z) [see Eq. (27)], and as with the other 
densities one obtains the relation between the weighted mean and the first two 
moments of the unweighted distribution 

JD = [ ld(l) dl = lJ (143) 
J lp 

The variance for uniform randomness is 

°l = (/"D " h) • h (144) 

2. Uniform and Weighted Randomness of Pairs 
of General Geometric Objects 

The notion of uniform and weighted randomness can be extended to apply to 
arbitrary geometric objects, provided these objects meet certain minimum re
quirements of regularity that need not be considered in the present nonmathe-
matical context. 

Uniform isotropic randomness of the intersection of two objects S and T 
results i f S is kept in fixed position and i f a reference point, called center, of 
T is superimposed with a random point in a sufficiently large region containing 
S. Random orientation of Tis assumed. I f Tmisses 5, i.e., i f T f l S = 0, the 
trial is disregarded. 

The resulting density of the volumes* u of the intersection T f l S is termed 
the frequency distribution/(w). 

Weighted isotropic randomness of the intersection of two objects S and T 
results i f a random point is chosen in S and in 7, if S is kept in fixed position, 
and i f Tis shifted so that the two random points coincide. Again Tis randomly 
oriented. The resulting density of the volumes u of intersection is termed the 
weighted distribution d(u). 

One can show [70] that the familiar relation between densities and weighted 
densities applies also in this general case: 

d(u) = uf{ü)/üp (145) 

where wF is the mean overlap under uniform randomness. Relations for Z7F are 
obtained from the fundamental formula of Blaschke and Santalo (71, 72); for 
a simplified, nonmathematical explanation see Kellerer [73]. 

*The term volume is used in the general sense of measure, i.e., the region of overlap need not 
be three-dimensional. 
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As in the familiar case of straight random lines one obtains the relation be
tween the weighted mean intercept and the first moments of the unweighted dis
tribution: 

ÜD = [ ud(u)du = ^ (146) 
J uF 

For uniform randomness the variance of the overlap u is 

o? = ( « D ~ " F ) ' " F O
47

) 

The importance of Eqs. (145) to (147) lies in the fact that a general and fairly 
simple formula exists for the weighted averages, and therefore that the variance 
of f(u) can be obtained also. 

The formula will be considered next. It contains the proximity functions, or 
point-pair distance distributions, of the geometric objects T and S. 

3. The Formula for the Weighted Mean Intersection 
and Definition of the Proximity Functions 

One may choose pairs of independently and uniformly distributed random 
points in a geometric object and determine the density p(x), of distances x be
tween the points. The function p(x) is termed the point-pair distance distribu
tion, and p(x) dx is the probability that a pair of random points has a distance 
between x and x -\- dx. 

For some geometries it is convenient to utilize the nonnormalized densities 
that result when p(x) is multiplied by the measure of the geometric object. This 
nonnormalized distribution is called the proximity function. For convenience the 
proximity functions for the geometric objects S and T w i l l be denoted by s(x) 
and t{x), 

six) = Vs • Ps(x) and t(x) = VT • pT(x) (148) 

where Vs is the measure, i.e., volume, of S, and VT is the measure of T, and 
ps(x) and pT(x) are the distance distributions for S and T. 

A fundamental relation [70] expresses the weighted mean of the intercept in 
terms of the proximity functions 

{ v™* s(x)t(x) 
dx (in three-dimensional space) (149) 

0 4TTX2 

and 

_ f X n - S(x)t(x) 
uD = 1 — — ^ d x (in two-dimensional space) (150) 

JO 27TJC 

where xmax is the maximum point-pair distance in S or T, whichever value is 
smaller. 
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The somewhat lengthy proof of this remarkably general result is omitted; it 
has certain connections to a theorem derived by Robbins [74]. The fundamental 
formula of Blaschke and Santalö determines the unweighted average UF of the 
random intersection, for uniform isotropic randomness. Equation (149) together 
with Eq. (147) determine the second moment of the intercept for uniform ran
domness or the variance 

al = ( " D ~~ % ) * % (151) 

Proximity functions are known for regular geometric objects such as cubes 
[75], cylinders [76], or spheroids [68]. As an example one can give the familiar 
relation for a sphere of radius r, 

, w . w i - I + l ( f 0 < x < 2r (152) 

Instead of the proximity function one often uses, when one deals with com
pact geometric objects, the geometric reduction factor: 

U(x) = s(x)/4irx2 (in three-dimensional space) 
(153) 

U(x) = S(X)/2TTX (in two-dimensional space) 

For complicated structures the computation of the proximity function may re
quire complex numerical integrations or even Monte Carlo simulations, but the 
functions can always be obtained. It is striking that the variance of the overlap 
of two objects or their weighted mean overlap can be expressed by a simple in
tegration over two functions each of which depends on only one of the 
structures. 

An application of the result to microdosimetry is straightforward and will be 
considered next. 

D . APPLICATION TO MICRODOSIMETRY 

In the preceding subsection the random intercept of two configurations has 
been treated purely as a geometric problem. This has made the essential result 
more transparent. 

However, the considerations are intimately linked to the problems of energy 
deposition by ionizing radiations. The point-pair distance distributions and the 
geometric reduction factor have been introduced into dosimetric computations 
by Berger [77]; his treatment also contains the essence of later results. The equa
tion for the weighted mean intercept, too, has been derived in microdosimetric 
studies; Eq. (149) is merely a generalization of this result. 

1. Proximity Function for Charged Particle Tracks 

To apply Eq. (149) to microdosimetry one must first introduce the concept 
of the proximity function of a particle track. This concept is entirely analogous 
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to that of the geometric proximity function, with the only modification being that 
energy replaces volume. The function t(x) is the proximity function of the parti
cle track. Analogously to the (volume) proximity function, the (energy) proximi
ty function t(x) can be understood as the distance distribution of energy transfers 
(weighted by their values e,) multiplied by the total energy of the track. The 
proximity function includes a <5 function at x = 0 that is proportional to the 
weighted mean of individual energy transfers e,. 

The actual computation is best explained in terms of the integral proximity 
function 

T(x) = [ t(x') dx' (154) 
Jo 

From a simulated track, T(x) is obtained by considering all pairs of transfer 
points that are separated by a distance less than x: 

T(x) = Tieiek!J]ei (155) 
/. k j i 

where the summation runs over all / and over all transfer points k separated by 
distance up to x from the transfer point /. The value T(0) determines the b func
tion 7(0) • b(x) in t(x). It results from the pairs with / = k: 

7X0) = S^IU O
56

) 

From Eq. (155) one recognizes that T(x) equals the expected energy (on the 
same track) in a sphere centered randomly on an energy transfer. Accordingly 
t(x) dx is the expected energy within the distance interval JC to x + dx from a 
randomly selected energy transfer. 

In actual computations the proximity function is derived by sampling all pairs 
of energy transfers in a sufficiently large number of simulated particle tracks. 
I f the particle tracks have different initial energies, the proximity function is the 
energy-weighted average for the different tracks. Proximity functions have been 
computed for electrons and for track segments of heavy ions (see, e.g., [53, 62, 
78-81]). Figure 27 gives the functions for electrons up to 10 keV. 

2. The Formula for the Dose Average Event Size 

The theorem from Section (VI,C) can be applied to the overlap of a site S 
with a charged particle track T. Thus one obtains the weighted average of the 
energy imparted per event: 

eD = [ W dx = t(x)U(x) dx (157) 
Jo 4-7TX2 Jo 



Fig. 27. Proximity functions t(x) for lo v -energy electrons. (From Chmelevsky et al. [53].) 
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The right-hand expression utilizes the geometric reduction factor U(x) of the site 
rather than the proximity function s(x) of the site. 

The upper bound of integration is the maximal diameter of the site, in the case 
of the sphere its diameter. With eD one also obtains the averages zD and yD of 
specific energy or lineal energy in single events. 

The result is valid regardless of the complexity of the tracks and the structure 
of the sites. The site need be neither spherical nor convex, nor even simply con
nected. The generality of the theorem permits a great variety of applications and 
extensions. 

3. Further Considerations of the Proximity Function 

I f a particle of initial energy E were represented by a straight line segment 
of length R and constant energy transfer E/R, the proximity function would have 
the simple form 

t(x) = 2E/R{\ - x/R), 0 < x < R (158) 

A somewhat better approximation postulates straight line segments with energy 
transfer varying as a function of remaining range (continuous slowing-down ap
proximation). One obtains then [24] 

t(x) = 2 L(s)L(s - x) ds/E (159) 

where L(s) is the LET at remaining range s. At sufficiently large values x the 
approximation in terms of Eq. (159) is good for heavy ions. For electrons the 
approximation fails as shown in Fig. 28. 

From Eq. (159) one obtains t(x) = 2LD for sufficiently small x. The prox
imity function can therefore be considered as an extension of the LET concept 
that takes into account additional factors, such as the ranges of the particles. 

Equation (159) is appropriate for heavy particles for all values of x that ex
ceed the maximum range of the <5 rays. At smaller distances t(x) is codetermined 
by energy-loss straggling and the radial distribution of energy around the center 
of the track. 

For track segments the influence of straggling and radial energy distribution 
can be separated [24, 62]. The proximity function is the sum of a term, td(x), 
that is the weighted average of the proximity functions for all b rays, and a term 
that is equal to the proximity function of a continuous track with the same radial 
energy distribution as the actual track: 

t(x) = t6(x) + ta(x) • L (160) 

The index of the second term indicates the fact that it refers to an amorphous 
track that averages out b rays. This term contains the stopping power as a factor, 
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Fig. 28. Comparison of proximity functions for electrons (solid curves) with functions that re
sult from simplified models of Chmelevsky et al. [53]. The dashed curves are obtained when the 
electron tracks are treated as straight lines with continuous energy loss according to the L E T . The 
solid straight lines result if the tracks are pictured as straight lines with constant energy loss rate 
and ranges equal to y of the continuous slowing-down range. The ranges and L E T values are for 
water. The curves show that the L E T approximation is unsuitable for electrons because of straggling 
and angular scattering. 
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and the other factor, r a(x), depends only on the radial dose distribution and can 
be calculated from it. 

Examples of the proximity functions for track segments of heavy ions of 20 
MeV/nucleon and their separation into the <5 term and the term for the continu
ous track are given in Fig. 29 for short track segments of fast heavy ions. 

Equation (160) can be utilized for an alternative derivation of the weighted 
average and the variance of the single-event distribution. One obtains with the 
theorem of Eq. (157). 

yD = I J U(x)(t5(x) + ta(x) • L) dx 

= i j U(x)t6(x) dx + L • j U(x)ta(x) dx = b-j + l j (161) 

The first term contains the weighted mean energy imparted per collision. It 
represents, as stated earlier with reference to Eq. (123), the influence of strag
gling. The second term contains the parameter x\ which equals the weighted 
mean chord length whenever ta(x) is sufficiently close to 2. 

The comparison with Eq. (123) shows that the proximity functions make it 
possible to account exactly for track structure and site geometry where the earli
er considerations had to be based on relatively crude approximations (see also 
Kellerer [82]). 

DISTANCE, nm 
Fig. 29. Integral proximity functions T(x) for different heavy ions of kinetic energy of 20 MeV 

per nucleon from Chmelevsky [62]. The dotted line represents the contribution T6(x) due to 6 rays 
and the dashed line corresponds to the LET-dependent term for protons. For the other ions this term 
is shifted by a factor corresponding to the increased L E T . 
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E. A BIOPHYSICAL M O D E L 

As in Section IV, a concluding section is added here that indicates, without 
actual assessment of radiobiological findings, the applicability of some of the 
microdosimetric concepts and data. The treatment is a generalization of the con
siderations that have been given, with reference to the site concept, in Section 
IV,C. 

Assume that energy transfers produce a proportional number ket of suble-
sions. Such sublesions can be molecular alterations, for example, in DNA. They 
can also be more complex changes, such as chromosome instabilities (breaks). 
Assume further that the sublesions can interact pairwise. The formation of le
sions is then a second-order process. 

A second-order process leads, under certain conditions, to a quadratic depen
dence of the yield on the concentration of reactants (sublesions). One implied 
condition is the absence of saturation, i.e., the absence of concentrations that are 
so high that there is no further proportional increase of reactants. Another condi
tion is lack of competition between sublesions (depletion); this amounts to the 
postulate that the pairwise interactions of sublesions are independent processes. 
Lack of saturation is a realistic concept for sparsely ionizing and medium-
densely ionizing particles. However, with densely ionizing particles saturation 
plays a role on various levels toward the observable cellular damage. Lack of 
competition may well be a realistic postulate for DNA single strand breaks that 
have relatively small probabilities of combining into double strand breaks. It 
may also be realistic for chromosome instabilities that are far more numerous 
than observable chromosome aberrations. 

In a second-order process the probability of a reactant interacting is propor
tional to the concentration of neighboring reaction partners. With chemical reac
tions this is a simple situation. The reactants are uniformly distributed 
throughout the medium, and the yield depends then simply on the square of the 
concentration. With ionizing radiations the situation is characteristically differ
ent. The concentrations of energy transfers or of subsequent radiation products 
vary greatly, and with a nonlinear dependence of the yield on concentration a 
complex relation exists between microscopic patterns of energy deposition and 
the resultant yield of cellular damage. This makes microdosimetry necessary. 
However, the difficulty goes beyond the problem of variations of concentration 
in the medium. Instead, the very concept concentration of energy transfers or 
radiation products is, in a strict sense, inapplicable. Any derived value depends 
on the size of the reference volume, as demonstrated by the strong dependence 
of the microdosimetric distributions on site size. The notion of a concentration 
is therefore meaningless. However, one can invoke an effective concentration 
i f one has knowledge of the scale of potential interactions between reaction 
partners. 



2. F U N D A M E N T A L S OF MICRODOSIMETRY 153 

The microdosimetric variables e, z, and y are defined in terms of a test region, 
the site. Its dimensions determine the scale of possible interaction. According 
to this concept, an energy transfer, or the resulting reactant, has as potential 
reaction partners all transfers that happen to be located in the same region. This 
treatment has the advantage that the distributions of microdosimetric variables 
can be measured. On the other hand, it is, as stated in Section IV, an obvious 
simplification; the reactants within the site cannot, regardless of their mutual 
distances, be equally likely to interact. In many biophysical applications the 
resulting inaccuracy of the treatment may be of little concern. The principal aim 
is the derivation of a rough effective interaction distance, and this can be 
achieved in terms of the site concept. The concept is, however, grossly inade
quate i f long-range particles are compared with very short range particles. The 
long-range particles dissipate energy throughout the site; the short-range parti
cles concentrate the energy in small clusters. For an adequate comparison of 
such disparate configurations and for any investigation of distance-dependent in
teraction probabilities, one needs a modified analysis. 

The concept of the proximity function permits such an analysis. Although this 
chapter does not deal with radiobiophysical applications, the essential formulas 
can be given. An abbreviated terminology will be used in speaking of the inter
action of pairs of energy transfers. This refers to the probability that sublesions 
are formed by the two energy transfers and that they interact to form a lesion. 

It is assumed that the probability that a transfer will interact is proportional 
to the number of its neighbors multiplied by a distance-dependent interaction 
probability y(x). Evidently each transfer has to be weighted by the correspond
ing amount of energy. Accordingly the probability of interaction of an energy 
transfer e, is 

where tD(x) is a proximity function that includes the trivial dose-dependent 
term that is due to independent particle tracks: 

It is practical to normalize y(x) so that its integral over the whole space is 
unity: 

(162) 

tD(x) = t(x) + 4irx2pD (163) 

(164) 

One then obtains 

(165) 
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The yield E{D) of lesions, arbitrarily normalized to unit mass, is then 

E(D) = ko(J* t(x)y(x) dx + DJ = k(£D + D2) (166) 

The essential result is that, with the proximity concept in the same way as with 
the site concept, one obtains a linear-quadratic dose dependence. The coefficient 
£ of the linear term is, as with the site concept, a measure of an effective local 
concentration of energy transfers in the individual charged particle tracks of the 
radiation. 

One can consider the earlier result for the site concept as a special case of 
the present formula. Assume that an energy transfer has constant interaction 
probability with all transfers within the same site, and zero interaction probabili
ty with transfers outside the site. The geometric reduction factor U(x) is the 
probability that a neighboring transfer at distance x is within the site. The inter
action probability y(x) is therefore proportional to U(x). Inserting y(x) = 
U(x)/\ 4irx2pU(x) dx = U(x)/m into Eq. (166) one obtains 

E(D) = kD^j t(x)U(x) dx/m + D) (m = mass of the site) 
7 (167) 

= * ( £ D + D2) 

This is the earlier result for the site concept. 
In reality both the site and the proximity aspect may jointly play a role. The 

function y(x) is then the product of two terms representing the inherent depen
dence on distance and the influence of the geometry of the site, y(x) = 
g(x) • U(x). In an experiment it may be difficult to separate the two factors and 
the aim of a biophysical investigation is therefore to determine the compound 
function y(x). 

The above considerations can serve as a frame of reference, but it is evident 
that additional factors play a role. There can, for example, be an inherently line
ar component in the dependence of the effect on z, and it is certain that the quad
ratic term in absorbed dose is, unlike the linear intratrack term, dependent on 
dose rate. In spite of such added complexities the formulation in terms of the 
proximity function leads to definite conclusions when applied to experiments 
with correlated heavy particles [83, 84]. It is found that y(x) decreases sharply 
at small distances, but reaches out to distances of the order of several microme
ters. The result is in line with the relatively high efficiency of low-energy pho
tons [85-89], and it illustrates the need for the analysis in terms of the proximity 
concept. 

APPENDIX: Algorithm for the Compound Poisson Process 

A. SOLUTION BY SUCCESSIVE CONVOLUTIONS 

The function /,(*) is the density of the spectrum of the Poisson process. In the application of 
this section f}(x) equals the function /,(z). In the application to the energy-loss-straggling problem 
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/,(JC) stands for the collision spectrum fc(e). The symbol JC is used for the variable of the Poisson 
process to avoid the impression that the algorithm is linked to a particular application. 

The spectrumfix) can extend over several orders of magnitude of the variable*. It is therefore 
essential that the convolution is executed on a logarithmic scale. 

The solutions fix) correspond to the dose-dependent distributions f(z\ D) or to the straggling dis
tributions fie; A). The solutions have a finite component at x = 0: 

To = exp( — n) (n = mean event number) (A.l) 

The remaining density f(x) contains no zero component and its norm is (1 — / 0 ) . 
For the initial approximation a suitable, small mean event number e is chosen and the solution 

is approximated by 

f0 = (1 - €), f(x) = e -fix) (A.2) 

Each of the successive convolutions then replaces 

fo by f2

0 (A.3a) 

and 

f(x) by 2 / 0 • f{x) + fix) *fix) (A.3b) 

This is continued until the desired mean event number and, accordingly, the desired mean value 
x are reached. 

In the computer code / 0 is a scalar and / ix) is represented by an array: 

F ( L ) = f(x), L = 1 to N (A.4) 

where 

x = x0 • XiL) with XiL) = 2L/N = exp(L • U), U = ln(2)/Af, (A.5) 

and JV2 is the integer number of grid points in an interval that corresponds to a factor of two of the 
random variable. One needs then N2 ln(10)/ln(2) = 3.3N2 points per decade of the random varia
ble. A typical value for the start of the procedure is N2 = 8; common microdosimetric spectra can 
then be represented by arrays with a length N of 100 to 150. 

As the convolutions proceed insignificant tails of the array F ( L ) are cut and the parameters N 
and A 0 are adjusted. When the arrays become too short, for example if their length falls below 60, 
N2 is doubled and F ( L ) , XiL), and certain auxiliary arrays that are required in the convolution are 
recalculated. 

The convolution is the only nontrivial step in the algorithm. It is therefore considered in detail, 
and a BASIC version of the subroutine is included.* The formula for the convolution is 

fix - s)fis) ds = 2 fix - s)fis) ds (A.6) 

Changing to the new variable 

L = \nix/x0)/U, x = x0 exp(L • U) (A.7) 

*A FORTRAN listing was given in an earlier report [33] with the first description of the al
gorithm. 
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and using the functions 

H{L) = h(x) 

F(L) = f{x) I for 0 < L < N (A.8) 

X ( L ) = exp(L • U) = x/x0 

one obtains from Eq. (A.6) with ds = x0 • U • X(K) dK 

|»L - /V2 

H{L) = 2 A 0 ( / F{W)F{K)X{K)dK (A.9) 

with 

where 

W = ln[(jf - * )A 0 ] / t f 

= ln[exp(L • U) - exp(tf • J7)]/tf 

= L + ln[l - Qxp[(K - L) • £/]]/£/ 

= L - A(K - L) (A. 10) 

A(J) = - l n [ l - exp(7 • U)\/U (A. 11) is an auxiliary function. To reduce computing time in the necessary interpolation A(J) is split into 
its integer part IN(J) and its fractional part FR(J) . 

With the additional convention FX{K) = F(K) • X{K) one has the integral 

S L - N, 
' F(L - IN(L - K) - FR(L - K)) FX(K)dK (A. 12) 

for N2 < L < N + M (A. 12) 

with 

f 0 for L < N 
K0 = ) (A. 13) 

C max[0, L - /1(L — /V)] for L < N 

In the actual computation this is substituted by the sum 
L - N2 

H(L) = 2x0U XI ^ ' F(J ~ 1) + (I - ' /%/)] • FE(K) (A.14) 

with 

P = FR(L - K) J — L — IN(L - K ) (A. 15) 

Only half of the last term (K = L — K2) is included in the sum. 
The following BASIC subroutine returns the array H{L (L) with L X 1 to N. The parameter JC0 

is, accordingly, replaced by 2x0. 
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R E M SUBROUTINE *** CONVOLUTION *** 
F O R L = 1 T O N: FX(L) = F(L) * X(L): N E X T L : 

C = XO * U * 2: F(N + 1) = 0 
FOR L L = 1 T O N L = L L + N2: H = 0 KO = 1 
I F L > N T H E N KO = L - IN%(L - N) - 1 
I F KO < 1 T H E N KO = 1 

F O R K = KO TO L L : L K = L - K : P = F R ( L K ) : 
I = L - IN%(LK) 

S = (P * F(I - 1) + (1 - P) * F(D) * FX(K): 
H = H + S: NEXT K 

H(LL) = C * (H - S/2): N E X T L L : R E T U R N 

R E M SUBROUTINE *** A U X I L I A R Y FUNCTIONS *** 
L M = 2 * N: F O R L = 1 T O L M : X(L) = E X P ( L * U): 
A = L O G ( l - E X P ( - U * L)) /U: IN%(L) = INT (A): 

FR(L) = A - IN%(L) 
N E X T L : X(0) = 1: R E T U R N 

B. SIMULATION OF S P E C I F I C E N E R G Y DISTRIBUTIONS 

The method of successive convolutions permits the computation of the distribution of specific 
energy for a given dose. If, as in the computations for Figs. 12 to 14, values of specific energy are 
required for many different values of absorbed dose, simulations can be more efficient. A fast meth
od to perform such simulations is therefore described. 

As explained in the first part of this Appendix, the single-event distribution /,(z) is represented 
by an array on a logarithmic scale of z. The integral distribution is then computed on the same scale, 
but in contrast to the usual convention it is summed from the tail: 

S,(z) = Prob{z > z] = 1 - F,(z) (A. 16) 

Taking the example of 15-MeV neutrons and a 6-ßm spherical site and plotting ln(S,) versus ln(z) 
one obtains the lowest curve in Fig. 30. 

When a random variable z, with sum distribution S,(z), is to be generated, the familiar proce
dure is to choose a random value 5,, uniformly distributed between 0 and 1, and to select the cor
responding z. The simulation requires, therefore, the reciprocal of the sum distribution. For this 
purpose values of z corresponding to a logarithmic grid of the probabilities are stored in an array: 

z(L) (L = 0 to L L ) , with corresponding probabilities 5, = exp( — L/M) (A. 17) 

With L L = 200 and M = 16 one covers, in this way, the range of probabilities 1 to 3.7 x 10 ~ 6 . 
To obtain a value of specific energy for one event, one generates a random number S, uniformly 

distributed between 0 and 1, and sets L = — \n(S) • M* With proper interpolation one obtains then 
from the array z(L) the random value z. 

*Computing times can be reduced by utilizing fast algorithms to generate exponentially distribut
ed random variables without computation of a logarithm. 
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15 MeV NEUTRONS 

6 Hm SPHERE 
is 

i 

SPECIFIC ENERGY z, Gy 

Fig. 30. Sum distributions 1 — F(z) for a spherical tissue region of 6-/xm diameter exposed to 
15-MeV neutrons. Such curves are used for the fast simulation of specific energy. The event num
bers are indicated as parameters. 

Simulation of random paths, such as in Fig. 10, is the naive method to obtain random values 
of z at specified absorbed dose D. A random path is a succession of random steps of D and z. The 
random steps of dose are generated by choosing a random number S and setting AD = 
— \n(S) • %; this corresponds to the sum distribution, S = exp(- AD/zP), of doses AD to the 
next event. The random steps of z are obtained as described above. The process is continued until 
the specified dose D is reached. 

The simulation of a large number of events is, however, too uneconomical. Instead one utilizes 
sum distributions of z obtained by successive convolutions. These distributions that correspond to 
the event numbers 2N are also shown in Fig. 30. They are stored in the same way as the single-
event distribution. 

For a given absorbed dose one computes first the expected event number D/z¥. Using the 
inverse of the Poisson distribution one selects then a random event number that belongs to this mean 
value. (For large values one uses the Gauss distribution.) The resulting event number is split into 
integer powers of 2. For each of the powers a random value of specific energy is selected and the 
values are added. The result is a random value of specific energy belonging to the dose D. 
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