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Summary 

During embryonic development of the avian optic tec
tum, retinal and tectobulbar axons form an orthogonal 
array of nerve processes. Growing axons of both tracts 
are transiently very closely apposed to each other. De
spite this spatial proximity, axons from the two pathways 
do not intermix, but instead restrict their growth to de
fined areas, thus forming two separate plexiform layers, 
the stratum opticum and the stratum album centrale. In 
this study we present experimental evidence indicating 
that the following three mechanisms might playa role 
in segregating both axonal populations: Retinal and tec
tobulbar axons differ in their ability to use the extracellu
lar matrix protein laminin as a substrate for axonal elon
gation; the environment in the optic tectum is generally 
permissive for retinal axons, but is specifically nonper
missive for tectobulbar axons, resulting in a strong fas
ciculation of the laUer; and growth cones of temporal 
retinal axons are reversibly inhibited in their motility by 
direct contact with the tectobulbar axon's membrane. 

Introduction 

A characteristic featu re of the vertebrate's and inverte
brate's central nervous system is that axons belonging 
to the same functional dass of neurons grow as a 
fasciculated tract; thus, axons appear to prefer to fas
ciculate on neurites of their own type rather than on 
processes of a different pathway (Zipser et aL, 1989). 
As a result, tracts consisting primarily of a homoge
neous population of neurons are generated. A behav
ior similar to this in vivo phenomenon can be ob
served in vitro (Bray et aL, 1980; Kapfhammer et aL, 
1986). 

More than 100 discrete, long-distance-projecting fi
ber tracts (ci ted from Silver et aL, 1987), each con
taining from thousands to millions ofaxons, are 
formed during embryonic development. Each ofthese 
neuronal pathways is not only homogeneous in its 
composition, but is also localized within a characteris
tic and defined region of the central nervous system. 
Even axons leaving ectopically transplanted grafts 
form compact tracts at reproducible locations inside 
the host tissue (for review see Katz et al., 1980; Hankin 
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and Lund, 1987; Wictorin et aL, 1990). On the other 
hand, mechanical diversion of retinal axons out of 
their characteristic routes or destruction ofthei r natu
ral environment via enzyme digestion results in a dis
orientation ofaxonal growth and the formation of a 
chaotic fibrous net (Gold berg, 1977; Halfter and Deiss, 
1984). These and other findings indicate that at least 
some of the cues directing the orientation of growth 
cones aredisplayed only locallywithin the direct envi
ronment of their normal growth route. Thus, restricted 
axonal growth within the appropriate environment 
m ight be a necessary prerequ isite for accurate naviga
tion of growth cones. 

During normal embryonic development, pathways 
are generated within overlapping time periods, i.e., 
axons belonging to different tracts grow at the same 
time and in dose proximity to each other. Mechanical 
and/or molecular mechanisms that prevent inter
mixing of neighboring processes from different path
ways aretherefore likelyto exist. We have investigated 
the problem of separating axonal pathways du ring 
embryonic development using the avian optic tectum 
(the dorsal part of the mesencephalon) as a model 
system. On embryonic day 6 (E6) ganglion cell axons 
originating in the contralateral retina start invading 
the optic tectum in an anterior to posterior direction 
(Rager, 1980). They grow as single axons within the 
most superficial layer and at right angles to a parallel 
array of highly fasciculated tectobulbar axons (Gold
berg, 1974; Kröger and Schwarz, 1990). These tectofu
gal axons grow from dorsal to ventral within the optic 
tectum, but change to a posterior direction either 
shortly before or after having crossed the ventral mid
line (Kröger and Schwarz, 1990). Afferent retinal axons 
eventually form the stratum opticum, whereas tecto
bulbar axons contribute to the stratum album cen
trale, the main efferent layer of the optic tectum. 

Despite the ability of retinal axons to grow in re
gions of the central nervous system that do not repre
sent their normal target area (Harris, 1986; Hankin and 
Lund, 1987) and despite a transiently existing popula
tion of misrouted retinal axons in vivo (McLoon and 
Lund, 1982; O'Leary et aL, 1983; Halfter and Deiss, 
1984; Thanos and Bonhoeffer, 1984; Halfter, 1988), reti
nal axons have never been reported outside their 
characteristic lamina while invading the optic tectum. 
This indudes even those retinal axons that grow into 
a transplanted supernumerary optic tectum (Alva
rado-Mallart and Sotelo, 1984). If retinal axons are able 
to extend into ectopic regions of the central nervous 
system, what mechanisms normally restrict their 
growth to the most superficial tectal layer, resulting 
in the formation of a distinct stratum opticum, and 
what mechanisms prevent intermixing of tectobulbar 
and retinal processes? In this study we provide evi
dence that differences in the interaction of retinal and 
tectobulbar axons with the extracellular matrix pro-
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Figu re 1. Schematic Representation of the 
Development of the Optic Tectum be
tween E4 and E6 

E6 E4 

tein laminin and with their direct cellular environ
ment, as weil as selective inhibition of growth cone 
extension, might separate the axons of these two 
long-distance-projecting fiber pathways. 

Results 

The experimental system that was chosen to search 
for mechanisms wh ich might underlie the separation 
of two axonal tracts is schematically illustrated in Fig
ure 1. This "four-dimensional" (time and space) recon
struction is based on this as weil as on previous inves
tigations (LaVail and Cowan, 1971; Goldberg, 1974; 
Puelles and Bendala, 1978; Kröger and Schwarz, 1990). 
Tectobulbar axons growing in a dorsal to ventral direc
tion within the tectum form a parallel array of thick 
fascicles. During early development, these fascicles 
are located in the marginal zone subjacent to the ex
ternal limiting membrane, but separated from the 
basal lamina by the neuroepithelial cell endfeet (5. 
Kröger, unpublished data). Beginning on E 5.5, tecto
bulbar axons are displaced from the most superficial 
layer deeper into the tissue by cells migrating laterally 
out of the ventricular proliferative zone (Puelles and 
Bendala, 1978). On E6 retinal axons start to invade the 
optic tectum in a posterior direction, beginning at 
the anterio-ventral pole (Rager, 1980). They grow in the 
outermost layer at right angles to the underlying tecto
bulbar fascicles but separated from them by a thin 
layer of cells. 

To exam i ne the exact cellu lar envi ron ment of reti nal 
and tectobulbar axons as weil as the spatial relation of 
the two types of processes to each other, we prepared 
semithin sections of E5 (Figure 2A) and E7 (Figure 2B) 
optic tecta. The cell bodies of tectobulbar neurites are 
large and oval shaped and are located underneath 
their axonal processes that extend within the marginal 
zone subjacent to the external limiting membrane 
(Figure 2A). The ventricle is lined by rapidly dividing 
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The epidermis, meninges, and externallim
iting membrane (striped plane), together 
with the neuroepithelial cell endfeet, were 
partially removed. The shape of a typical 
neuroepithelial cell is shown in the front 
right corner. The tectobulbar axons grow 
as thick fascicles from dorsal (d) to ventral 
(v). Frequently small bundles shift from one 
fascicle to a neighboring fascicle. Retinal 
axons invade the optic tectum beginning 
on E6 in an anterior (a) 10 posterior (p) direc
tion. They grow in the most superficial 
layer as single, unfasciculated axons and 
at right angles to the tectobulbar fascicles. 
Retinal and tectobulbar axons are sepa
rated from each other by a thin layer 01 
cells. 

ELM, external limiting membrane; bv .. 
blood vessel. 

neuroepithelial precursor cells, radially oriented be
tween the ventricular and meningeal surface. On E7, 
tectobulbar axons form the fascicles of the stratum 
album centrale (Figure 2B) with its typical comb-like 
appearance. At this later stage, retinal axons are form
ing the stratum opticum in the anterior (developmen
tally most advanced) part of the optic tectum (Figure 
2B). The two types of processes are closely apposed, 
separated from each other only by an approximately 
20 Ilm thick single cell layer (Figure 2B, arrows). The 
cell bodies between the two processes-containing lay
ers constitute a rather loose network and do not ap
pear to form a barrier that would be impenetrable to 
either retinal or tectobulbar growth cones. I nstead, a 
number of areas without cell bodies between both 
layers can be observed (Figure 2B, arrowheads). Since 
we cou Id not observe an apparent mechanical bou nd
ary between the two axonal types, we investigated 
molecular mechanisms that might explain their sepa
ration. 

Substrate Specificities of Retinal and 
Tectobulbar Axons 
Culture systems for the growth of retinal and tecto
bulbar axons on a basal lamina substrate have recently 
become available (Halfter et al., 1987; Kröger and 
Schwarz, 1990). This basal lamina preparation is het
erogeneous in its composition, containing several dif
ferent molecules that promote axonal outgrowth (5. 
Kröger, unpublished data). Therefore, the ability of 
single purified proteins to promote outgrowth of both 
retinal and tectobulbar axons was studied. No out
growth of either type of process is observed on nitro
cellulose or glass coated with POIY-L-lysine, fibro
nectin, vitronectin (serum spreading factor), fetal calf 
serum, heparan sulfate, chondroitin sulfate, or chicken 
serum (data not shown). Retinal and tectobulbar ax · 
ons both grow slowly and are highly fasciculated on 
native collagen from rat tail tendon (data not shown, 
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Figure 2. Semithin section (4 11m) through the Wall of the ES and E7 Optic Tectum 

(A) ES tectum. (B) E7 tectum. The plane of sectioning perpendicular to the tectobulbar fascicles and parallel to the retinal axons was 
chosen. The arrows in (B) indicate cell bodies localized between the retinal axon-containing stratum opticum and the tectobulbar axon
containing stratum album centrale. Arrowheads point at spaces devoid of cell bodies between the two layers. Blood vessels penetrating 
the neural tissue from the overlying leptomeninges are marked with asterisks. 

E, epidermis; ME, meninges; MZ, mantle zone; NE, neuroepithelial cells; MF, membrane filter; 50, stratum opticum; sAC, stratum 
album centrale; SV, subventricular zone. Bars, 200 11m. 

but see Halfter et al., 1983; Kröger and Schwarz, 1990). 
A major difference between the two types ofaxons is 
observed when laminin-coated surfaces are used. In 
contrast to retinal explants, which show vigorous ex
tension of neurites with a speed of approximately 71 
± 10 Ilm/hr (mean ± SD, N = 5), tectobulbar axons 
are not able to use the same laminin-coated surfaces 
as a substrate (Figure 3). Although explant stripes from 
the tectum attach firmly to the laminin substrate, pro
cesses longer than short stumps are never observed 
even after prolonged culture periods. This is indepen
dent of the laminin concentration used for coating 
(5-150 Ilg/ml; optimal concentration for retinal axons 
is 100 Ilg/ml) and of the surface to which the laminin 
is bound (acid-washed glass, POIY-L-lysine-precoated 
glass or plastic, or nitrocellulose). The inability of tec
tobulbar axons to extend on laminin might indicate a 
lack of the appropriate receptor for this extracellular 
matrix molecule on their surface. 

We next investigated growth of tectobulbar axons 
on affinity-purified G4 protein (Rathjen et al., 1987), 
since previous investigations have shown that G4 is 
expressed on tectobulbar axons in vivo and in vitro 
(Kröger and Schwarz, 1990). Retinal axons, whose abil
ity to extend on G4 has already been described (Lagen-

aur and Lemmon, 1987), were used as controls. As 
shown in Figure 4, G4 is an excellent substrate for 
both retinal and tectobulbar axons. Retinal axons ex
tend on G4 and on the basal lamina at a growth rate 
of approximately 80 ± 11 Ilm/hr (mean ± SD, N = 4), 
and tectobulbar axons grow at a speed of 40 ± 71lm/ 
hr (mean ± SD, N = 4) on both substrates. While 
retinal axons grow unfasciculated on the basal lamina 
as weil as on G4, tectobulbar axons form bundles 
on the basal lamina but grow as single axons on 
G4-coated nitrocellulose, indicating that tectobulbar 
axons might have a higher affinity for G4 than for the 
basal lamina. 

Permissive and Nonpermissive Environment for 
Retinal and Tectobulbar Axons 
in the Optic Tectum 
To study the interaction of retinal and tectobulbar 
axons with their immediate cellular and extracellular 
environment, we used a recently characterized prepa
ration of the tectal basement membrane as a su bstrate 
for the two types ofprocesses (Kröger and Niehörster, 
1990). This basement membrane separates the neural 
optic tectum from the overlying mesenchymal stroma 
and is covered after isolation on its surface bya carpet 



F, . . ure.1. ' ''fture of Tectobulbar and Retinal Explant Stripes on Coverslips Coated with Purilied Laminin 

(/\ rectobuibular explanL (B) Retinal explant. The explant stripes are located on the bottom 01 each montage. While retinal axons show 
vigorous extension 01 neurites on the substrate, tectobulbar axons are not able to grow on an identically prepared surlace even alter 
prolonged (ulture periods. For better visualization, axons were stained with the Q211 antibody and an FITC-Iabeled secondary antibody. 

Culture time: (A) 96 hr; (B) 24 hr. Bars, 400 11m. 

J'. -A B c D 
Figure 4. Growth 01 Tectobulbar and Retinal Axons on Allinity-Purilied G4 Bound to Nitrocellulose and on E8 Retinal Basal Lamina 

(A and B) Tectobulbar axons; (C and D) retinal axons. (A and C) G4 bound to nitrocellulose; (8 and D) retinal basal lamina. Note the 
difference in lasciculation 01 tectobulbar axons on G4 (A) and on the basal lamina (8). The "wavy" background in (A) and (C) is due to 
a shrinkage 01 the nitrocellulose during the lixation procedure. 

Incubation period: (A and B) 40 hr; (C and D) 18 hr. Bars, 100 11m. 
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Figure 5. Growth of Retinal and Tectobulbar Axons on the External Limiting Membrane of ES Optic Tecta 

The basement membrane with the neuroepithelial cell endfeet attached is an excellent substrate for retinal axons (A). In contrast, 
tectobulbar axons cannot grow on identical preparations (B), but can after the endfeet have been removed with detergent or hypo
osmotic shock prior to explantation (C) . 

Incubation period: (A) 20 hr; (B and C) 40 hr. Bars, 400 11m. 

of neuroepithelial cell endfeet, wh ich can be removed 
by detergent treatment or hypo-osmotic shock (Krö
ger and Niehörster, 1990). In the ES embryo the end
feet of neuroepithelial cells represent the direct envi
ronment oftectobulbar axons, whereas at stages later 
than E7, retinal axons have been shown to grow in 
direct contact with the endfeet (Vanselow et al., 1989). 
When flat-mounted on a piece of nitrocellulose, this 
basement membrane preparation, with and without 

the endfeet, is an excellent substrate for axons fram 
the central and peripheral nervous systems, as weil as 
for neural crest cell migration (Kröger and Niehörster, 
1990). We have used this preparation for culturing 
retinal and tectobulbar axons. While retinal axons 
grow excellently on the ES basement membrane prep
aration with and without the endfeet (Figure 5A), tec
tobulbar axons do not extend processes on the same 
kind of preparation (Figure SB), unless the endfeet 
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Figure 6. Coculture of Tectobulbar and Retinal Axons with Neuroepithelial Cells Isolated from E3 Optic Tecta 

Tectobulbar axons (A-C) avoid the neuroepithelial cells (arrows). The processes form a ring at a distance around the flat cells. In 
contrast, the same neuroepithelial cells represent a favorable substrate for retinal axons, indicated by several processes on top of the 
neuroepithelial cells (D and E). 

Bars, 100 11m. 

have been removed with detergent or distilled water 
prior to explantation (Figure SC). 

While the endfeet-containing basement membrane 
preparations from ES and E8 optic tecta do not promote 
outgrowth of tectobulbar axons, basement membranes 
from E12 and from older embryos have the ability to 
serve as a substrate for tectobulbar axons even with 
the endfeet still attached (data not shown). Tecto
bulbar axons growon the basal lamina prepared from 
the embryonic chick retina even when the endfeet 
have not been removed and irrespective of the embry
onic age of the basal lamina (Kröger and Schwarz, 
1990). These results suggest that the tectal neuroepi
thelial cell endfeet might render the ES and E8 tectal 
basement membrane specifically non permissive for 
tectobulbar axons, whereas the endfeet of older prep
arations have no influence on the same axons. 

To confirm the results obtained with the endfeet
containing basement membrane, we examined the 
interaction of retinal and tectobulbar axons with in
tact neuroepithelial cells by preparing cocultures of 
retinal and tectobulbar neurons with retinal and tectal 
neuroepithelial cells. Tectobulbar axons avoid neuro
epithelial cells from the tectum (Figures 6A-6C). They 
grow around these cells, leaving holes within the mat 
ofaxons. In contrast, tectobulbar axons do not avoid 
neuroepithelial cells from the retina (data not shown). 
Growth of retinal axons is not impaired by neuroepi
thelial cells of both origins; instead they seem to be 

a rather attractive surface for the axons to grow on 
(Figures 6D and 6E). Accordingly, confluent mono
layers of neuroepithelial cells from ES optic tecta sup
port axonal outgrowth from retinal explants, whereas 
no tectobulbar neurites are observed extending from 
the tectal explants (data not shown). These data again 
indicate that neuroepithelial cells from the early optic 
tectum are specifically non permissive for tectobulbar 
axons. 

In addition to intact cells, we tested the substrate 
properties of isolated tectal cell membranes. Cyto
plasmic membranes from the optic tectum of all em
bryonie ages have previously been shown to be a good 
substrate for retinal axons when bound as a carpet to 
Nuclepore filters (Walter et al., 1987). In contrast, ES 
tectal membranes do not promote outgrowth of tecto
bulbar axons, whereas membranes from E16 optic 
tecta, isolated in parallel, can serve as a substrate (data 
not shown). If membranes prepared from 5- and 16-d
old optic tecta are arranged as a carpet consisting 
of alternating stripes, then tectobulbar axons remain 
confined to the lanes of E16 membranes (Figures 7A 
and 7B). Retinal axons grow excellently on ES and E16 
membranes, and when given the choice between al
ternating membrane preparations they show only a 
slight preference for the E16 stripes (data not shown). 
This is indicated by a slightly higher density of the 
axons on the E16 membrane stripes compared with 
the ES membranes. Thus, neuroepithelial cells of the 
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Figure 7. Growth Pattern of Tectobulbar Axons on Carpets Con
sisting of Alternating Stripes of Isolated Cytoplasmic Mem
branes from ES and E16 Optic Tecta 

(A) FITC fluorescence of beads that were added to the E16 mem
branes. The ES membranes were not labeled and fill the space 
between the E16 membranes. Adding the beads to the ES mem
branes had no detectable influence on the preferred growth of 
tectobulbar axons on the E16 membranes. (B) RITC fluorescence 
01 the same fjeld as depicted in (A), showing the tectobulbar 
axons. Staining 01 the axons was achieved by placing a piece 01 
RITC-agarose on top of the optic tectum prior to explantation, 
as described in Experimental Procedures. Axonal growth is con
lined to the E16 membrane carpets. 

Culture time: 48 hr. Bars, 200 !-Im. 

optic tectum appear to be specifically non permissive 
for tectobulbar axonal extension in vitro. 

Selective Contact-Mediated Inhibition of Temporal 
Retinal Growth Cones by Tectobulbar Axons 
To study the direct interactions of retinal and tecto
bulbar axons with each other, we explanted both 
types of processes from defined regions of the retina 
and optic tectum, respectively, in dose proximity to 
each other. These cocultures show that outgrowing 
processes of both types ofaxons usually intermix or 
even cofasciculate. Onlytemporal retinal axons segre
gate from tectobulbar axons. When cocultured with 
tectobulbar axons, temporal retinal axons form dis-

tinct and apparently separate territories (data not 
shown). Video time-Iapse techniques were applied to 
examine the behavior of individual identified growth 
cones contacting different types ofaxons. Growth 
cones from a nasal retinal explant cross a tectobulbar 
axon without retardation and without a change in 
morphology (Figures 8A-8F). The same behavior is ob
served when a tectobulbar growth cone meets a nasal 
or a temporal retinal axon (data not shown). If a tecto
bulbar growth cone encounters a tectobulbar axon, it 
frequently joins the contacted neurite and fascicu
lates with it, indicating a preference of the growth 
cone forthe neural surface compared with the under
Iying basal lamina substrate. In contrast to the be
havior of nasal retinal or tectobulbar growth cones, 
temporal retinal growth cones collapse when en
countering a tectobulbar axon (Figures 8G-8l). Within 
a few minutes after direct contact, lamellipodia and 
filopodia retract and the size of the growth cone 
shrinks. Bends proximal to the growth cone are often 
observed (Figure 81, arrowheads). The growth cone of 
the contacted axon does not show any morphological 
changes. Approximately 15 min after the initial con
tact, the retinal growth cone is almost completely re
sorbed and, with the exception of a few retraction 
fibers (Figure 81, arrowheads), adhesion to the under
Iying substrate appears to be lost. After a short pause 
of 10-25 min, a new growth cone is generated at the 
point to which the main body of the axon had re
tracted (Figure 8K). This new growth cone either tries 
again to cross the tectobulbar axon or continues to 
grow at an oblique angle to the formerly contacted 
neurite (Figure 8l). Usually the second crossing at
tempt is accompanied by another collapse, but at the 
third encounter the growth cone often succeeds in 
crossing the axon. We have investigated the behavior 
of identified growth cones in all combinations of nasal 
and temporal retinal axons with each other and with 
tectobulbar axons from the anterior and posterior part 
of the optic tectum. Table 1 shows a summary of the 
results obtained. Nasal retinal growth cones do not 
collapse on encountering another nasal or temporal 
retinal axon, in agreement with data recently pub
lished (Raper and Grunewald, 1990). A collapse is ob
served only when temporal retinal growth cones en
counter tectobulbar axons. Thus, tectobulbar axons 
can selectively inhibit the motility of temporal retinal 
growth cones by a contact-mediated process. 

Discussion 

Retinal and tectobulbar axons form an orthogonal net
work of processes that grow at the same time and 
in dose proximity to each other, thus providing an 
experimental system to investigate the mechanisms 
that might underlie the separation of two different 
long-distance-projecting fiber pathways. One mecha
nism might be a mechanical barrier. For example, in a 
different part ofthe visual system, an axonal refractory 
boundary called a "knot" (Silver, 1984) has been de-
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Figure 8. Behavior of a Nasal and a Temporal Retinal Growth Cone When Encountering a Tectobulbar Axon 

The relative time in minutes is indicated on the lower left of each picture. While the nasal growth cone crosses the tectobulbar neurite 
without any obvious change in speed or morphology (A-F), the temporal growth cone collapses and retracts reversibly (G-l). In the 
example shown, the reformed growth cone resurnes growth at an oblique angle to the former contacted neurite. In other cases it tried 
to cross the neurite several times, eventually succeeding. 

Bars, 20 ~m. 

scribed to be a barrier for growth cones. This struc
ture, composed of specialized neuroepithelial cells, 
is located at the diencephalic-telencephalic junction 
near the chiasm in mouse and chick embryos (Silver, 
1984; Silver et al., 1987). As a result of its lack of large 
extracellular spaces and the relative absence of the 
adhesion molecule N-CAM in this region, this struc
ture has been implicated in the segregation of the 
optic and the olfactory sensory tracts during embry
onic development (Silver et al., 1987). However, axons 
of the retinal and tectobulbar fiber tracts are sepa
rated from each other only by an approximately 20 11m 
wide layer of single cells. judged from their location, 
the time of their appearance, and their morphology 
these cells probably represent "freely m igrati ng type I1 

neuroblasts" (Puelles and Bendala, 1978), which have 
migrated radially from their site of origin in the ven
tricular proliferation zone. Eventually these cells will 
form the various types of interneurons of the tectal 
plate (Puelles and Bendala, 1978). The layer of cells 
separating retinal and tectobulbar axons does not ap-

Table 1. Summary of Encounters between Retinal and 
Tectobulbar Neurites 

Combination Collapse' 
------~ 

Growth Cone Axon Yes No 

T p 17 1 (5) 
T a 24 3 (6) 
N P 2 9 (3) 
N a 0 9 (2) 

P T 16 (4) 

P N 8 (2) 
a T 0 14 (5) 
a N 0 9 (2) 

a a 0 3 (2) 

P P 0 14 (4) 
T T 0 18 (7) 
N N 12 (6) 

T and N: temporal and nasal retinal neurite. a and p: anterior and 
posterior tectobulbar neurite. 
, For each observation, only the first encounter of the growth 
co ne with an axon was scored. The val ues in parentheses i nd icate 
the number of explant pairs on which these observations were 
made. 
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pear tight enough to prevent growth cone penetration 
between these two pathways. Moreover, N-CAM im
munoreactivity appears to be continuous between the 
two layers (Kröger and Schwarz, 1990). Thus, we con
clude that a mechanical barrier similar to that in the 
knot region is not likely to explain the separation of 
the two axonal pathways in the optic tectu m, although 
we cannot completely exclude mechanical influences 
of the tectal tissue. It also remains to be determined 
whether various N-CAM forms, differentially distrib
uted, might mediate separation of retinotectal and 
tectobulbar axons via a "modulated adhesivity" (Edel
mann, 1983). 

Since an obvious physical or mechanical obstacle 
between the retinotectal and tectobulbar pathway ap
pears to be absent, other mechanisms must account 
for the effective separation of these two types of pro
cesses. Evidence for three principal mechanisms, all 
based on molecular differences between the two axo
nal populations is presented in this study. 

Substrate Specificity of Retinal and 
T ectobulbar Axons 
The first mechanism is based on the substrate prefer
ences of the two axonal populations. Retinal and tec
tobulbar axons differ in their ability to extend on sur
faces coated with purified laminin. Laminin is a high 
molecular weight extracellular matrix glycoprotein 
and is assumed to be the natural substrate for several 
developing vertebrate central nervaus system axons 
(for review see Sanes, 1989). Retinal axons grow very 
weil on surfaces coated with laminin (Rogers et al., 
1983; Adler et al., 1984; Smalheiser et al., 1984; Toma
selli et al., 1988). On the other hand, tectobulbar axons 
are not able to use this protein for axonal extension, 
indicating that they da not express the appropriate 
receptor on their surface. In the avian embryonic vi
sual system, i.e., the retina, optic nerve, chiasm, optic 
tract, and tectum, as weil as in the mesencephalic 
tegmentum of embryonic mice, laminin is exclusively 
localized around the endfeet of the neuroepithelial 
cells and the overlying basement membrane (Halfter 
and Fua, 1987; Cohen et al., 1987; Letourneau et al., 
1988; Liesi and Silver, 1988; Kröger and Niehörster, 
1990). Staining of neuroepithelial cells for laminin al
ways resu Its in a pu nctate appearance of the im m u no
reactivity on the endfeet, but not on the rest of these 
palisade-like cells. Evidence from several studies sug
gests that growing axons can detect substrates of dif
fering adhesivity and, when given the choice, will. 
preferentially grow on the more adhesive substrate 
(see, for example, Letourneau, 1975). Thus, a restricted 
distribution of an adhesive molecule might guide an 
axon to grow on a particular course. In the optic tec
tum laminin could define a preformed substrate path
way (Katz et al., 1980) favorable for retinal axons but 
not supportive for tectobulbar axons, which would 
accordingly be confined to deeper layers of the optic 
tectum. 

Influence of Neuroepithelial Cells on Retinal and 
T ectobulbar Axons 
A second mechanism dealing with the segregation of 
retinal and tectobulbar axons involves the interaction 
of the two types of processes with cells of their imme
diate tectal environment. Three independent lines of 
evidence indicate that neuroepithelial cells in the op
tic tectum are selectively not favorable for tectobulbar 
axons: neuroepithelial cells are avoided by tectobul
bar axons in cocultures; the tectal external limiting 
membrane, which is covered on its surface by a carpet 
of endfeet from the same neu roepithel ial cells (Kröger 
and Niehörster, 1990), cannot serve as a substrate for 
tectobulbar axonal growth unless the endfeet have 
been removed prior to explantation; and tectobulbar 
axons cannot grow on a carpet of cytoplasmic mem
branes prepared from E5 optic tectum. We consider 
this nonpermissiveness specific, since retinal axons 
are never influenced in any ofthese experiments, i.e., 
retinal axons da not avoid tectal neuroepithelial cells 
in cocultures, they can grow on the external limiting 
membrane even when the endfeet are still attached 
(Kröger and Niehörster, 1990), and they are able to 
extend processes on a carpet of E5 tectal membranes 
(Walter et al., 1987). Furthermore, neuroepithelial 
endfeet, wh ich cover the retinal basal lamina (Halfter 
et al., 1987), da not influence growth of tectobulbar 
axons (Kröger and Schwarz, 1990). An additional indi
cation of specificity is the fact that the nonpermis
siveness is lost at later stages of development, i.e., 
the externallimiting membrane and cell membranes 
prepared from developmentally older optic tecta (E16) 
both represent a good substrate for tectobulbar ax
ons. The transition of non permissive to permissive 
occurs around E10, coinciding with the period when 
primitive neuroepithelial cells differentiate into glia 
cells. This differentiation process is accompanied by 
a change in the size and density of the endfeet 
(Vanselow et al., 1989; Kröger and Niehörster, 1990) 
and by the appearance of R-5 immunoreactivity (de
tecting a vimentin-like protein in these cells; Vanse
low et al., 1989) and other biochemical glial cell mark
ers like glutamine synthetase (Linser and Perkins, 
1987). It is conceivable that these changes reflect the 
differentiation of neuroepithelial cells to radial glial 
cells and that this differentiation might be accompa
nied by a lass of the nonpermissiveness. 

Attempts to distinguish clearly between passive 
lack of growth-permissive molecules, inhibition, and 
active repulsion oftectobulbar axons by neuroepithe
lial cells have not been successful and await further 
experimental work. At the moment we cannot decide, 
for example, whether tectobulbar axons da not grow 
on the E5 tectal basement membrane because the 
endfeet physically block the access of growth cones 
to the extracellular matrix substrate in the basement 
membrane, or whether the endfeet actively inhibit 
axonal extension. In any ca se, retinal axons da not 
appear to be influenced by tectal neuroepithelial 
cells, hence the effect is specific for tectobulbar ax-
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ons. Therefore, the latter are selectively forced to 
grow on themselves as a consequence of the non per
missiveness of the ce"s in their environment. This 
might explain the formation of the prominent fascicu
lated array of tectobulbar axons, their most character
istic feature observed in the optic tectum (Kröger and 
Schwarz, 1990). The nonpermissiveness of the direct 
environment would also prevent tectobulbar axons 
from leaving their fascicles and mixing with retinal 
axons growing in the overlying stratum opticum. 

Preferential growth oftectobulbar axons along each 
other requires the expression of a substrate molecule 
on the surface of the axons. One possible candidate 
is G4, which has been shown to be present on tecto
bulbar axons in vivo and in vitro (Kröger and Schwarz, 
1990) and which can be used as a substrate for elonga
tion by tectobulbar axons. When tectobulbar axons 
grow on G4-coated nitroce"ulose they do so as unfas
ciculated single axons. This shows the high substrate 
quality of G4 and indicates a strong adhesion in vitro 
of the axon to this substrate compared with the sur
face of homologous axons. 

Since outgrowth of tectobulbar axons is also ob
served on the ce"-free basal lamina prepared from 
the embryonic retina (Halfter et al., 1987) or the optic 
tectum (Kröger and Niehörster, 1990), neither of which 
contains G4, it is necessary to postulate the existence 
of an additional substrate molecule from the extracel
lular matrix. This extrace"ular component could also 
be the substrate for the first "pioneering" tectobulbar 
axons that appear in the optic tectum, since they grow 
as single processes without direct contact to other 
neurites (Kröger and Schwarz, 1990). The presence of 
multiple receptors for different substrate molecules 
on one axon is in agreement with previous investiga
tions which have shown that more than one compo
nent has to be blocked to inhibit outgrowth com
pletely on complex physiological substrates (Bixby et 
al., 1987, 1988; Tomaselli et al., 1988). 

Inhibition of Retinal Growth Cone Motility by 
Tectobulbar Axons 
The third mechanism that might be involved in the 
separation of the retinotectal and tectobulbar path
ways is the reversible contact-mediated growth inhibi
tion of temporal retinal growth cones by tectobulbar 
axons. The short distance between the retinal and 
tectobulbar pathway is in the range of the filopodial 
length, making physical contact between both axon 
types at least possible. If temporal retinal axons invad
i ng the optic tectu m leave the most su perficial stratu m 
opticum and penetrate deeper into the tissue, their 
growth cones would necessarily encounter the tecto
bulbar fascicles. This would result in a reversible col
lapse of the growth cone and thus force the growth 
cone to continue axonal elongation in a more superfi
cial layer. The spatial and temporal morphological 
changes ofthe co"apse observed in this study are very 
much reminiscent ofthose described by Kapfhammer 

and Raper (1987a, 1987b), who investigated the inter
action between growth cones and neurites from sym
pathetic, ciliary, and dorsal root ganglia as weil as from 
retina and diencephalon. The similarity suggests that 
a related mechanism might account for the co"apse 
in ours and their investigation. Since the inhibitory 
component remains to be identified, it is not known 
whether the effectors in both systems share character
istics. We could not detect a co"apse prior to contact 
of the growth cone with the neurite; growth cones 
passing very near an axon showed no morphological 
changes. Thus, it seems likely that the active agent is 
membrane associated and not a diffusible substance 
like, for example, a neurotransmitter, as has been 
shown in several other studies (Haydon et al., 1984; 
McCobb et al., 1988; Mattson et al., 1988). 

The inhibition of neurite elongatiol) is specific for 
grawth cones from the temporal retinal half. Tempo
ral retinal axons have been shown previously to be 
intrinsica"y different in several aspects from axons of 
the nasal retina (Halfter et al., 1981; Bonhoeffer and 
Huf, 1982, 1985; Walter et al., 1987; Boxberg et al., 
1990; Raper and Grunewald, 1990). The reasons for the 
differences detected in vitra are unknown, but it is 
possible that the co"apsing behavior is modulated by 
the direct environment of the retinal growth cones in 
the optic tectum and that in this in vivo environment 
nasal growth cones might be more sensitive to a repel
lent component. In this case the differences between 
nasal and temporal retinal axons would reflect the 
limitations of the in vitro test systems. In addition, 
temporal axons topologica"y terminate in the devel
opmentally most advanced, anterior region of the op
tic tectum. Since the development of the mesenceph
alon is faster than its invasion by optic axons, by the 
time nasal axons arrive at the posterior tectal half 
(their topological projection site), a tectal plate has 
already formed. This increases the spatial distance be
tween retinotectal and tectobulbar axons, making a 
direct contact between nasal axons and tectobulbar 
fascicles less likely. 

It is likely that other (even more important) mecha
nisms contribute to the separation ofaxonal tracts, 
since almost certainly not a" of the extracellular ma
trix and cell surface molecules that might be involved 
in this process have been discovered. On the other 
hand, all three mechanisms in concert are sufficient 
to explain the separation of these two long-distance
projecting fiber pathways during embryonic develop
me nt of the avian optic tectu m. 1 n addition, the molec
ular mechanisms described in this report could also 
be applied to other areas of the central nervous sys
tem, like the spinal cord, where numerous axons from 
several different ascending or descending pathways 
have to be bundled into specific, characteristically 10-
calized tracts and have to be prevented from inter
mixing. Restricted growth of retinal and tectobulbar 
axons only within defined layers of the optic tectum 
might be a necessary prerequisite for the establish-
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me nt ofthe orthogonal d ireetional ity and the aeeu rate 
pathfinding leading to the topographie organization 
of the retinoteetal and teetobulbar projeetions. 

Experimental Procedures 

Materials 
Embryos were obtained lrom fertilized White leghorn eggs cu 1-
tured in a humidified standard egg incubator at 37°C. The age 
of the embryos was recorded by days of incubation. Exact staging 
was performed when necessary according to the criteria of Ham
burger and Hamilton (1951). The nomenclature of the six major 
laminae of the mesencephalon was adopted from laVail and 
Cowan (1971). Since the optic tectum develops in a well
characterized anterior to posterior gradient, the developmen
tally most advanced anterior part was chosen for all experiments 
unless indicated otherwise. 

Histology 
For semithin sections, tecta were dissected out of the embryo, 
fixed in 2.5% glutaraldehyde, 2% paraformaldehyde in 0.1 M 
sodium cacodylate buffer (pH 7.2), postfixed in 1% osmium tet
roxide, dehydrated in alcohol, and embedded in EPON (Roth, 
Karlsruhe, Germany). Sections were cut at 4 11m with a Pyrami
tome (lKB), mounted on POIY-l-lysine-coated slides, and stained 
with azur-li-methylene blue. 

Explant Cultures 
Explants of E6 retinas and E5 tecta were obtained as described 
previously (Halfter et al., 1983; Kröger and Schwarz, 1990). They 
were placed with the axon-bearing layer lacing the substrate. 
After an attachment time that varied between 30 min (basallam
ina) and 60 min (isolated proteins), depending on the substrate, 
medium consisting of F12 medium (GIBCO) supplemented with 
10% letal calf serum, 2% chicken serum, glutamine (2 mM), peni
cillin (10 I1g/ml), streptomycin (10 I1g/ml), and 0.4% methylcellu
lose (as described by Walter et al. [1987]) was carefully added. 
Tissues were incubated at 37°C and 4% CO,. For better visualiza
tion, axons were stained with the Q211 antibody (Rösner et al., 
1988) as described by Kröger and Schwarz (1990). 

The inner limiting membrane from E8 retinas was isolated 
according to Halfter et al. (1987). The tectal external limiting 
membrane was prepared as described by Kröger and Niehörster 
(1990). Acid-washed coverslips were coated with purified pro
teins according to Bonhoeffer and Huf (1985). Native collagen 
was isolated accordingto Eisdale and Bard (1972). Vitronectin was 
obtained from Calbiochem (Frankfurt, Germany). Fibronectin, 
heparan sulfate, chondroitin sulfate, and POIY-l-lysine were pur
chased lrom Sigma (Munich, Germany). 

Neuroepithelial cells were obtained by triturating E2.5 eye 
anlagen (prepared according to Halfter and Deiss [1986)) and E3 
optic tectum (dissected as described by Kröger and Schwarz 
[1990)) with a fire-polished Pasteur pipette. Care was taken that 
the dissected eye anlage did not contain remnants of the optic 
stalk. In the case 01 the optic tectum, the ventral tegmentum was 
discarded so that the neuroepithelial cells were derived only 
from the dorsal part, the area that is invaded by retinal axons at 
later stages. E2.5 retinas and E3 tecta were chosen, since these 
stages represent the most homogeneous population 01 neuro
epithelial cells and should contain only minor amounts of other 
cell types (Halfter and Deiss, 1986; Kröger and Schwarz, 1990). In 
addition, the optic tectum is not vascularized at this embryonic 
age, and therefore, endothelial cells should not be present in 
the cultures. Neuroepithelial cells appear as Ilat migratory cells 
when seeded on the basement membrane and can clearly be 
distinguished morphologically from process-bearing neurons. 
In addition, they were immunoreactive lor N-CAM in culture, 
but did not stain with anti-G4 antibodies, consistent with them 
being neuroepithelial cells. To examine the interaction 01 single 
neuroepithelial cells with retinal and tectobulbar axons, explant 
stripes and cells were explanted at the same time, then cultured 

together for 36 hr and fixed in 4% paraformaldehyde. In this 
case, approximately 200 cells were seeded on every retinal basal 
lamina, which covered an area 01 about 1 cm'. To examine the 
growth behavior 01 retinal and tectobulbar axons on monolayers 
01 neuroepithelial cells, the cells were seeded at high density 
and kept in culture until they had lormed a confluent monolayer 
(usually 24 hr). Explant stripes labeled with rhodamine (3-isothio
cyanate (RITC) (see below) were placed on top of the monolayer 
and held in position with two metal bars as described by Walter 
et al. (1987). 

Explants on Coated Nitrocellulose 
Thin and transparent sheets of nitrocellulose bound to petri 
dishes were prepared under sterile conditions as described by 
lagenaur and lemmon (1987). The nitrocellulose was coated for 
2 hr with 40 111 of laminin (1 mg/mi in PBS; LY. labs, San Mateo, 
CA) or affinity-purified G4 (0.3 mg/mi in carbonate buffer; Rath
jen et al., 1987). The drops were spread until they covered a 
surface of approximately 0.5 cm'. The outline of each drop was 
marked on the bottom of the dish. The nitrocellulose was subse
quently saturated in serum-containing culture medium for 2 hr. 
Stripes of retinal and tectal tissue were explanted on the coated 
areas of the moist nitrocellulose. The tissue was pressed to the 
substrate by little metal bars (Walter et al., 1987) to ensure direct 
contact of the explant to the substrate. After incubation for 18 
hr (retinal explants) or4O hr (tectobulbar explants), the tissuewas 
fixed by adding formalin directly to the culture medium to a final 
concentration of 4%. Specimens were viewed under phase
contrast optics in an inverted microscope. 

Culture of Tectobulbar Axons on Membrane Carpets 
Membrane fragments were prepared from E5 and E16 optic tecta 
as described by Walter et al. (1987). They were immobilized on a 
Nucleopore filter as a homogeneous layer or arranged as carpets 
consisting of alternating lanes (90 11m wide) of E5 and E16 tectal 
membrane fragments. In the ca se 01 the striped carpets, one 
membrane preparation was labeled by the addition of fluores
cein isothiocyanate (FITC) beads to the preparation (0.5 11m diam
eter). These beads had no influence on the growth-supporting 
activity of the membranes (Walter et al., 1987). Tectal axons were 
labeled in vitro with RITC (Sigma, Munieh, Germany) by placing 
a piece of RITC-containing agar (0.1 % RITC suspended in Hank's 
solution with 1 % agar) on top of the meningeal side of the optic 
tectum whole mountfor 5-10 min. After staining, thetectum was 
kept for 1 hr in culture medium to remove unbound RITe. The 
whole mount was then cut into 250 11m wide strips in the ante
rior-posterior direction (Kröger and Schwarz, 1990). Two strips 
were explanted on each carpet perpendicular to the membrane 
stripes. The explants were held in position by metal bars and 
cultured 10r48 hr. Atthe end ofthe incubation, thecultures were 
fixed overnight (4% paraformaldehyde, 0.33 M sucrose), washed 
in deionized water, placed on a coverslip, and dried (Walter 
et al., 1987). FITC fluorescence showed the labeled membrane 
strips, and RITC Iluorescence evaluated outgrowth of tecto
bulbar axons. 

Cocultures of Retinal and Tectobulbar Axons 
E6 retinal explants of nasal or temporalorigin were obtained 
by cutting retinal whole mounts parallel to the optic fissure as 
described by Halfter et al. (1983). Anterior or posterior tecto
bulbar axons were prepared according to Kröger and Schwarz 
(1990). Explant pairs were placed on a retinal basal lamina at a 
distance 01 approximately 600 11m and at a slight angle to each 
other. Explants were cultured, and axonal outgrowth was re
corded by time-Iapse video-phase microscopy as described by 
Kapfhammer et al. (1986). A few criteria were defined for compari
son 01 results from different experiments: 
-Growth cones were observed at least 30 min in advance of a 
possible encounter. Only those growth cones whose speed of 
elongation was constantly at least 30 I1m/hr for tectobulbar and 
60 I1m/hr for retinal axons were selected. 
-Only single growth cones that contacted single neurites or 
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very small axon bundles were selected. Since tectobulbar axons 
in vitro grow in faseicles, F(abh fragments of anti-G4 polyclonal 
antibodies (Rathjen et al., 1987) were included in the culture 
medium (final concentration 0.25 mg/mi). This had no effect on 
the growth cone behavior and the speed ofaxonal elongation, 
but defaseiculated tectobulbar axons (Kröger and Schwarz, 
1990). 
- Only those cases in wh ich the angle between growth cone and 
contacted neurite was approximately 90°, corresponding to the 
in vivo orientation of both axon types, were observed. 
- The growth cone as weil as the contacted neurite had to be 
unambiguously identified by traeing them back to the corre
sponding explant stripe. 
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