Notwendiges und nützliches Messen in Anästhesie und Intensivmedizin

Herausgegeben von E. Rügheimer und T. Pasch

2. Internationales Erlanger Anästhesie-Symposion 24. bis 26. Mai 1984

Mit 237 Abbildungen und 95 Tabellen

Springer-Verlag Berlin Heidelberg New York Tokyo

Inhaltsverzeichnis

Mitarbeiterverzeichnis	XII
Gastvortrag	1
Technischer Fortschritt zur Humanisierung im Krankenhaus (K. Steinbuch)	3
Teil 1: Zentralnervensystem	
Pathophysiologische Grundlagen der klinischen Funktionsbewertung des Gehirns (A. Baethmann)	17
Neue Verfahren zur Messung von Durchblutung und Metabolismus des Gehirns (K. Herholz, WD. Heiss, G. Pawlik, K. Wienard)	35
Intraoperative Funktionsüberwachung des Zentralnervensystems mit elektrophysiologischen Methoden (B. L. Grundy)	46
Messung der Komatiefe (G. Pfurtscheller)	51
Schmerzquantifizierung durch elektrophysiologische Methoden (G. Kobal)	62
Zusammenfassung der Diskussion zu Teil 1	72
	77
Funktionsbeurteilung des respiratorischen Systems (H. Matthys)	77
Bestimmung von Ventilations-Perfusions-Beziehungen bei Beatmung (F. Lemaire)	85
Technische Möglichkeiten zur Messung von Atem- und Narkosegasen (H. Frankenberger, U. Hölscher)	92
Monitoring der Beatmung (R. Klose)	104
Spezielle Bestimmungsmethoden der pulmonalen Funktion am beatmeten Patienten (M. Baum, H. Benzer, W. Koller, M. Semsroth)	116
Messung des Lungenwassers (S. Necek)	126
Blutgasanalyse – gegenwärtiger Stand und Entwicklungstendenzen (K. Harnoncourt, G. Forche)	133
Zusammenfassung der Diskussion zu Teil 2	143
민준이라 일찍지 않아면서 하는데 마모로 그릇들이 들었다.	

Teil 3: Kardiovaskuläres System

Grundlagen zur Messung der Myokardfunktion (M. G. Gottwik, W. Schaper)	147
Funktionsbeurteilung des Kreislaufs (H. Pessenhofer, T. Kenner)	154
Die nichtinvasive Beurteilung der Myokardfunktion (W. F. List)	163
Die transösophageale 2d-Echokardiographie in Anästhesie und Intensivmedizin (H. Heinrich, F. W. Ahnefeld, P. Kremer)	170
Kardiale Funktionsdiagnostik bei Intensivpatienten mit nuklearmedizinischen Methoden (D. Scheidegger, P. Urban)	189
Invasives hämodynamisches Monitoring – meßtechnische Aspekte (N. Mendler)	196
Nichtinvasives Monitoring von Druck und Strömung im Kreislauf (T. Pasch)	208
Kontinuierliche, nichtinvasive Blutdrucküberwachung durch Servo-Manometrie am Finger (U. Pohl, K. H. Wesseling, E. Petersen, E. Bassenge)	221
Beurteilung der Effizienz der Gewebeperfusion durch kontinuierliches Monitoring der totalen Sauerstoffaufnahme (H. Neuhof)	228
Zusammenfassung der Diskussion zu Teil 3	242
Teil 4: Niere, Wasser-, Elektrolyt- und Säure-Basen-Hausha	lt
Beurteilung der Nierenfunktion und Bestimmung des Hydratationszustandes in der perioperativen Phase (U. Finsterer, A. Butz)	247
Messung des Säuren-Basen-Status, Elektrolytbestimmung und Einsatz ionenselektiver Elektroden für die Patientenüberwachung (R. Dennhardt).	263
Beurteilungsmöglichkeiten des intrazellulären Säuren-Basen-Status (K. F. Rothe)	274
Teil 5: Blut	
Pathophysiologie des Volumenmangels (K. Meßmer)	289
Bestimmungsmethoden für den Verlust von Blut und Blutbestandteilen (H. Bergmann)	295
Objektivierung des Therapieerfolges durch Blut- und Volumensubstitution (K. Peter, N. Franke)	308
Stufendiagnostik primärer und sekundärer Gerinnungsstörungen (K. T. Schricker)	317
Methoden zur Erfassung von immunologischen Defiziten bzw.	
Immun-"Atypien" (K. Steinbereithner)	322

Teil 6: Leber und Stoffwechsel

Perioperative Funktionsbeurteilung der Leber (KH. Meyer zum Büschenfelde)	337
Hormonbestimmungen in der perioperativen Phase (W. Seeling, KH. Altemeyer, W. Dirks, H. L. Fehm, E. J. Schmitz)	345
Verfahren zur Erfassung des Ernährungszustandes (J. M. Müller, H. W. Keller, M. Walter)	362
Methodische Probleme der indirekten Kalorimetrie (M. Adolph, J. Eckart)	374
Zusammenfassung der Diskussion zu Teil 6	388
Teil 7: Anästhesiewirkungen	
Möglichkeiten zur Quantifizierung der Wirkung intravenöser Anästhetika (H. Schwilden, H. Stoeckel, J. Schüttler, P. M. Lauven)	393
Der praktische Wert des MAC-Konzepts für die Steuerung der Inhalationsanästhesie (R. Dudziak)	403
Relaxometrie (J. F. Crul)	411
Erfahrungen mit einem neuen Anästhesieüberwachungssystem: ABM-Datex (D. Heuser, J. Ebeling, H. Guggenberger)	421
Perioperative Psychometrie (W. Tolksdorf)	425
Zusammenfassung der Diskussion zu Teil 7	436
Teil 8: Technische und forensische Konsequenzen	
Was ist zu tun, um Messen technisch sicher zu machen? (A. Obermayer) .	439
Medikolegale Konsequenzen für den Kliniker (H. W. Opderbecke)	449
Sicherheit durch Messen – Konsequenzen für das Fachgebiet (F. W. Ahnefeld)	454
Zusammenfassung der Diskussion zu Teil 8	
Poster	
Mundokklusionsdruck p ₁₀₀ und ventilatorische CO ₂ -Antwort. Parameter zur Beurteilung der medikamentösen Atemdepression (W. Seitz, N. Lübbe, G. Sybrecht, E. Kirchner)	465
Die getrenntseitige Erfassung des Gasaustausches zur Verbesserung der Respiratortherapie (J. Zander, P. Reinhold)	467
Verhalten des extravaskulären Lungenwassers bei akuter respiratorischer Insuffizienz (M. Knoch, H. Lennartz, H. v. Rechenberg)	468

Zur Bedeutung von Hämodynamik und Lungenwassermessung bei der Therapie der Sepsis (HG. Pfeiffer, H. Bartels, E. Kolb) 469
Ist Temperaturkorrektur bei der Blutgasanalyse erforderlich? (T. Klöss, E. Voigt)
Laktat-Pyruvat-Verhalten unter verschiedenen Narkoseverfahren bei aorto-(bi-)femoralen Bypassoperationen (U. Föhring, K. Reinhart, R. Dennhardt, M. Schäfer, T. Kersting, K. Eyrich)
Gewebe-pO ₂ -Messung mit neuartigen Stahlnadelstichsonden als Meßmethode in der Klinik: Der Einfluß von Dopamin auf den pO ₂ im Muskel (T. Kersting, K. Reinhardt, W. Fleckenstein, R. Dennhard, K. Eyrich, C. Weiss)
Die lokale Gewebe-pO ₂ -Messung zur klinischen Therapiekontrolle (H. U. Spiegel, J. Hauss, K. Schönleben)
Vergleich von O ₂ -Sättigung in A. pulmonalis and V. cava superior während und nach aorto-(bi-)femoralen Bypassoperationen (K. Reinhart, T. Kersting, U. Föhring, M. Schäfer, K. Eyrich)
Ultraschall-Doppler-Sonographie: Ein nützliches Hilfsmittel zur Punktion der V. jugularis interna (W. Schregel)
Kontinuierliche akustische Anzeige des arteriellen Blutdrucks und der Herzfrequenz (A. Schabert, G. Kraus, T. Pasch)
Echokardiographie als Entscheidungshilfe bei Akutinterventionen auf einer internistischen Intensivstation (C. Stöllberger, E. Sehnal, J. Slany) 485
Pulmonale Druck-Fluß-Beziehung statt Widerstandsberechnung zur Beurteilung des Pulmonalarterienwiderstands (T. Klöss)
Beziehungen zwischen linksventrikulärer Kraft (LVF) und linksventrikulärem Druck (LVP) bei Herzoperationen zu Beginn der extrakorporalen Zirkulation (E. Hohenberger, W. Wedekind, F. Klinke, P. P. Lunkenheimer, H. Dittrich)
Hämodynamisches Monitoring während des Lufttransports bei Herztransplantationskandidaten im Endstatium der Herzinsuffizienz (N. Roewer, A. Hinrichs, W. Thier, E. Jungck, W. Bleifeld) 489
Hämodynamik bei extremer Hämodilution mit Hydroxyäthylstärke (HES) verschiedener Typen und unterschiedlicher Substitution (450/07, 450/05, 450/03, 300/04, 200/07, 200/05) (H. P. Ferber, G. Klein, H. Förster) 490
Überwachung der Relaxierung – Anforderungen an einen Nervenstimulator (W. Friesdorf, M. Schultz, HH. Mehrkens) 492
Bestimmung von Aprotinin (Trasylol) im Plasma – ein Weg zur Optimierung der therapeutischen Proteinaseinhibition? (M. Jochum, V. Jonáková, H. Fritz)
Veränderungen des Arzneimittelmetabolismus bei Intensivpatienten (H. J. Gramm, G. Heinemeyer, R. Dennhardt, I. Roots) 496

Flüssigkeitsvolumen (EZF) in der peroperativen Phase (K. Kletter, R. Khosropour, F. Lackner, M. Zimpfer, H. Frischauf, C. Hlozanek)	500
Kontinuierliche Messung des intragastralen pH-Wertes zur Streßulkusprophylaxe bei Intensivpatienten (P. Reinhold, J. Zander, O. Ruland)	502
Reversibilität des Phase-II-Blocks nach Dauerrelaxierung mittels Suxamethoniuminfusion (M. Schultz, W. Friesdorf, H. H. Mehrkens)	503
Die klinische Bedeutung der rechnererstellten Fieberkurve in der Intensivtherapie (W. Heipertz, E. Epple, H. Junger, R. Weinmann)	505
Integration von Datenpräsentation und Dateneingabe während der Operation auf nur einem Bildschirm – Vorteile und Konsequenzen (H. Klocke, S. Trispel, G. Rau, R. Schlimgen)	506
Physiologisches Monitoring in einem Tertiary Care Center (P. J. Poppers, J. F. Dyro)	508
Erfahrungen mit einem neuen EEG-Spektralanalysator in der Herzanästhesie (E. Göb, A. Barankay, P. Späth, W. Dietrich, R. Kunkel, J. A. Richter)	510
Somatosensorisch evozierte Potentiale unter Anästhesie mit Etomidat und Lachgas (E. Kochs, J. Schulte am Esch)	511
Komaprognose durch Kombination elektrophysiologischer und biochemischer Meßmethoden (H. Schoeppner, L. Rolf, M. Hoke)	513
Akustisch evozierte Hirnstammpotentiale (AEHP) – computergestütztes Meßverfahren auf der Intensivstation (G. Schwarz, G. Pfurtscheller, W. List)	515
Routinemäßige elektroenzephalographische Überwachung von Sedierungstiefe und zerebraler Funktion bei dauerbeatmeten Intensivpatienten (P. Lehmkuhl, U. Lips, I. Pichlmayr)	516
Die Beeinflussung somatosensorisch evozierter Potentiale (SEP) durch μ - und κ -selektive Opioide (E. Freye, E. Hartung, R. Buhl)	519
Rechnergesteuerte Low-cost-Apparatur zur Durchführung und Auswertung algesimetrischer Untersuchungen (W. Klement, E. David, J. Berlin, W. Erdmann)	521
Morphinmetabolismus unter bedarfsgesteuerter, periduraler Morphininfusion zur postoperativen Schmerzbehandlung (J. Chrubasik, G. Friedrich)	522
Psychometrie/Psychopathometrie und ihr Stellenwert in der Anästhesiologie (G. Müller, M. Brandl, G. Kraus)	524
Lösung von Atelektasen mit intrapulmonaler Perkussion (IPUP) (C. Wolf, A. Luger, H. Mayr, H. K. Stummvoll)	526
Untersuchungen zur Variabilität der CO ₂ -Antwort (HD. Kamp, H. Reiß)	527

Bestimmung von Aprotinin (Trasylol) im Plasma – ein Weg zur Optimierung

der therapeutischen Proteinaseinhibition?

M. Jochum, V. Jonáková, H. Fritz

Einleitung

Die therapeutische Anwendung des polyvalenten Proteinaseinhibitors Aprotinin (Trasylol) in der Intensivmedizin wird schon seit Jahren bei Erkrankungen empfohlen, bei denen der unkontrollierten Freisetzung proteolytischer Enzyme (Plasmin, Trypsin, Kallikrein etc.) ein hoher pathogenetischer Stellenwert eingeräumt wird [1]. Allerdings zeigen die vorgeschlagenen Dosierungen sowie die Applikationsformen (Bolusinjektion, Dauerinfusion) ein sehr heterogenes Spektrum, weshalb sich Versuche, die klinische Wirksamkeit einer Aprotinintherapie in prospektiven, kontrollierten Studien eindeutig zu belegen, als sehr schwierig erweisen. Einer der Gründe hierfür mag der sein, daß eine in vitro durchaus hinreichende Hemmkonzentration in vivo aufgrund der raschen Eliminierung des Inhibitors

aus der Zirkulation kaum oder nicht lange genug erreicht wird. Wir stellen deshalb ein Testsystem vor, das zukünftig eine rasche, präzise und spezifische Kontrolle der Aprotininhemmkapazität im Plasma unter Bedingungen der klinischen Routinediagnostik ermöglicht.

Testprinzip

Im Gegensatz zu körpereigenen Plasmaproteinaseinhibitoren stellt Aprotinin einen sehr potenten Sofortinhibitor für Gewebskallikrein dar. Säurebehandeltes, aprotininhaltiges Plasma wird mit einem Überschuß an Gewebskallikrein inkubiert und die restliche, amidolytische Enzymaktivität gegenüber dem Substrat H-D-Val-Leu-Arg-pNa (S-2266) anhand der Freisetzung von p-Nitroanilin photometrisch bei 405 nm bestimmt ("initial rate method"). Durch die Säurebehandlung werden die evtl. progressiv hemmenden endogenen Plasmainhibitoren eliminiert [2].

Ergebnisse

Evaluierung des Tests

Der niedrigste, exakt meßbare Aprotininwert liegt bei ca. 20 KIU/ml Plasma. Da die Kallikreinaktivität aus bisher unbekannten Gründen in Abhängigkeit von der zugesetzten Plasmamenge erheblich gesteigert wird (durch 25 µl säurebehandeltes Plasma auf das ca. 1,23 fache; n = 90, VK 7,8%), müssen alle Verdünnungen von aprotininhaltigen Proben mit aprotininfreiem Normalplasma erfolgen. Hierdurch wird jeweils die gleiche Plasmamenge (25 µl) dem Testsystem zugesetzt. Intraund Interassayvariationen liegen zwischen 5–10%.

Klinische Anwendung

- 1. Bei einer kontinuierlichen intravenösen Infusion von 250 000 KIU Aprotinin/h in polytraumatisierten Patienten (Dr. H. Dittmer, Chirurgie Großhadern, Universität München) wurden ca. 45 KIU/ml Plasma gemessen. Dieser Spiegel entspricht etwa 1 μ M Aprotinin und liegt im Bereich der Konzentration des körpereigenen α_2 -Plasmininhibitors (1 μ M) im Normalplasma. Die durch die exogene Inhibitortherapie erreichte Aprotininhemmaktivität versursachte eine signifikante Abnahme der Fibrin-/Fibrinogenspaltprodukte D und E im Vergleich zu unbehandelten Patienten mit ähnlich schwerem Verletzungsgrad und kann als positive Beeinflussung der systemischen Fibrinolyse gewertet werden. Offensichtlich ist in der Initialphase nach Polytrauma durch vermehrten Verbrauch des α_2 -Plasmainhibitors keine ausreichende systemische Antiplasminwirkung gegeben.
- 2. Bei *Hysterektomiepatienten* (Dr. H. Harke, Anästhesiologie, Universität Kiel) mit und ohne prophylaktische Aprotiningabe wurde erstmals der intra- und postoperative Verlauf der Aprotininkonzentration bestimmt und mit der Höhe der fibrinolytischen Aktivität nach diesem gynäkologischen Eingriff in Zusammenhang gebracht. Eine $10 \text{ minütige Aprotinininfusion wurde kurz nach Narkoseeinleitung appliziert. Entsprechend der Zufallsverteilung diente die Gruppe 0 (n = 10) als Kontrolle, erhielt die Gruppe I (n = 10) 2 Mill. KIU und die Grup-$

pe II (n=10) zusätzlich 1,5 Mill. KIU Aprotinin über weitere 60 min. Als Ausdruck einer mäßig erhöhten fibrinolytischen Aktivität sank die Plasminogenkonzentration in der Kontrollgruppe (0) während des operativen Eingriffs um ca. 15% ab. Demgegenüber verblieben die Meßwerte nach einer Initialdosierung von 2 Mill. KIU Aprotinin (Gruppe I) praktisch im Ausgangsbereich und stiegen wohl infolge eines verminderten Plasminogenumsatzes nach einer Initialdosis von 3,5 Mill. KIU (Gruppe II) sogar um ca. 10% an. Diese Befunde stehen im Einklang mit der intra- und postoperativ ermittelten Aprotininkonzentration im Plasma der therapierten Patientinnen (Maximalwerte: \bar{x} von 80 bzw. 200 KIU/ml Plasma).

Zusammenfassung

Die Bestimmung der Aprotininhemmkapazität im Plasma mit der hier beschriebenen antienzymatischen Methode kann in ca. 70–80 min durchgeführt werden und eignet sich deshalb sehr gut als "bedside monitoring" zur optimalen Einstellung einer hochdosierten Aprotinintherapie.

Literatur

- 1. Fritz H, Wunderer G (1983) Biochemistry and applications of aprotinin, the kallikrein inhibitor from bovine organs. Drug Res 33:479–494
- Jochum M, Jonáková V, Dittmer H, Fritz H (1984) An enzymatic assay convenient for the control of aprotinin levels during proteinase inhibitor therapy. Fresenius Z Anal Chem 317:718-719