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Abstract. Neutral proteinases of neutrophilic polymorphonuclear leukocytes were followed up cytochemically in
blood smears of 12 patients submitted to regular hemodialysis treatment (RDT). Halo formation (ring-shaped area
around each neutrophil due to protein degradation) was reduced in all patients with end-stage renal disease under
RDT. Concomitant to the development of leukopenia, a maximal increase of the plasma levels of the granulocytic
elastase in complex with a,-proteinase inhibitor was observed 3 h after starting hemodialysis (+409%; p < 0.001). On
the other hand, the proteolytic activity of the plasma samples against azocasein as substrate, being significantly higher
(+244%: p < 0.001) in RDT patients compared with healthy controls, decreased permanently during therapy (=71 %;
p < 0.001; 3 h after initiation of the treatment). The mechanisms of release as well as of elimination of proteolytic

activity due to RDT are discussed.

Introduction

Hemodialysis therapy is associated with a consider-
able loss of amino acids and glucose [1, 2]. On the other
hand, hepatic gluconeogenesis is enhanced during renal
insufficiency [3-5]. Two possible causes of the reported
increase in intradialytic protein catabolism [6] would be
gluconeogenesis to replace glucose loss (during glucose-
free dialysis) and protein breakdown to replace amino
acid loss [7]. Glucose was found to be ineffective in
reducing dialysis-induced catabolism. The average intra-
dialytic urea generation was increased by 28 % with glu-
cose-free dialysis compared with 24 and 25 %, respective-
ly, in the presence of glucose in the dialysate at a level of
11 or 26 mmol/1 [7]. Furthermore, the replacement of the
loss of amino acids during dialysis by continuous amino
acid infusion did not lower intradialytic protein catabo-
lism, but appeared to increase it [6].

Several studies have shown that proteinases partici-
pate in the protein catabolism of patients with hypercata-
bolic acute renal failure [8—11]. Therefore, we evaluated
the possibility of enhanced protein breakdown by proteo-
lytic enzymes liberated or activated during hemodialysis
therapy. The rational for this is given by the high concen-
tration of proteinases in neutrophil granulocytes and the

well-known decrease of white blood cells followed by
increased enzyme liberation after initiation of hemodia-
lysis therapy — for review, see Heidland et al. [12]. The
aim of our present study was twofold: (1) the cytochemi-
cal evaluation of neutral proteinases of neutrophilic poly-
morphonuclear (PMN) leukocytes of patients subjected
to regular hemodialysis treatment (RDT), and (2) the
detection of an increased liberation of the granulocytic
proteinase elastase by measurement of the elastase-a,-
proteinase inhibitor (E-o;PI) complex in plasma samples
of RDT patients. The plasma level of this complex was
shown to be a suitable indicator of elastase liberation
from activated or desintegrated granulocytes.

Material and Methods

We report here the results obtained in 12 chronically uremic
patients (9 men), aged 47.3 + 4.0 years (mean + SEM, range 22-66),
undergoing RDT for 41.3 £ 11.6 months (range 4-124). Hemodia-
lysis was performed three times per week for 5 h with Gambro Lun-
dia Optima and a glucose-free bath containing acetate. 4 patients
suffered from diabetic glomerulosclerosis, 2 from polycystic kidney
degeneration and 6 from chronic glomerulonephritis. Blood cells
were counted by an electronic counter (Coulter-Counter-Model B).
Further blood constituents were determined as follows: creatinine
11.5 = 0.8 mg/dl (range 7.2-16.9); urea nitrogen 76.9 + 4.7 mg/dl
(range 54-105); hemoglobin 9.2 = 0.5 g/dl (range 7.4-13.2), and
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Fig. 1. Blood smear from a healthy subject. Fixation was per-
formed using formaline sublimate. The smear was incubated with
0.25 M NaCl borate buffer (pH 8.5) for 120 min at 37 °C and stained
with colloidal iron.

hematocrit 30.3 = 1.7% (range 23.7-42.5). Plasma samples were
obtained by withdrawing 4.5 ml of venous blood into plastic syringes
containing 0.5 ml of sodium citrate (2.2 g/100 ml distilled water).
Plasma was separated from blood within 30 min after sample collec-
tion 1o prevent leakage of leukocyte constituents. The plasma speci-
mens were stored at =70 °C until assayed.

The inhibitory activity of antithrombin III (AT III) against
thrombin was determined using the thrombin-specific chromogenic
substrate S-2238 (Deutsche Kabi, Munich, FRG). The inhibitory
activity of the a;-proteinase inhibitor (a;PI = a,-antitrypsin) was
measured with a commercial test system (Boehringer, Mannheim,
FRG). Plasma concentrations of a;-macroglobulin (a;M), a,PI, albu-
min as well as complement components C; and C, were evaluated by
a radial immunodiffusion technique with standardized immunodif-
fusion plates (Behringwerke AG, Marburg, FRG).

Quantitative estimation of the plasma levels of the E-a,PI com-
plex was carried out with a highly sensitive enzyme-linked immu-
noassay [13]. Proteolytic activity of the plasma samples was mea-
sured using azocasein as substrate as previously described [9, 14).
Proteinase activity of the neutrophilic PMN leukocytes was observed
with the cytochemical test of Klessen [15].

Results were expressed as mean values = SEM. Statistical evalu-
ation was performed by the Student’s t test.

Results

The cytochemical test of Klessen [15] was used to eval-
uate the activity of neutrophilic PMN leukocyte pro-
teases. These enzymes are released from the PMN neu-
trophils of healthy subjects in blood smears following
incubation with sodium chloride borate buffer. Proteo-
lytic activity is revealed by a ring-shaped area around
each neutrophil (fig. 1). This halo effect is due to erythro-

Fig. 2. Absence of halo formation in a blood smear of a RDT
patient 30 min after initiation of hemodialysis therapy. For incuba-
tion conditions see legend to figure 1.

cyte hemolysis and plasma protein degradation. Halo for-
mation was reduced in the blood smears of all patients
with end-stage renal disease undergoing RDT (fig. 2).

The effect of hemodialysis on leukocytes, plasma lev-
els of the E-a;PI complex as well as on «,PI activity and
concentration is shown in table 1. There was a decrease of
white blood cells 10 min (21.1%; n.s.) and 30 min
(41.1%; p < 0.001) after initiation of hemodialysis ther-
apy. We observed maximum levels of the plasma E-a,PI
complex after 3 h (+409%; p < 0.001). However, plasma
o, PI activity and concentration were unchanged during
hemodialysis therapy.

The plasma levels of a,M (before dialysis, 244 + 17;
after 3h of dialysis therapy, 257 + 31 mg/dl), AT III
(91.3 £ 2.5 vs. 95.2 £ 4.3%), complement components
C; (154 £ 6vs. 160 = 8mg/dl) or C4 (61.7 £ 3.8 vs.
64.6 = 3.7 mg/dl) remained also unchanged. Dialysis
therapy was performed to maintain a constant body
weight during the first 3 h. Plasma albumin concentration
(3.77 £ 1.12 vs. 3.88 £ 0.14 g/dl) or hematocrit (30.3 +
1.7 vs. 31.3 £ 2.0%) were in the same range before and
3 h after starting hemodialysis therapy.

Using azocasein as a substrate, the proteolytic activity
of the plasma samples was significantly higher (+244%; p
< 0.01) before dialysis therapy compared with plasma
samples of healthy controls (0.052 + 0.004 U/mg pro-
tein). During dialysis therapy, however, there was a per-
manent decrease of this plasma proteinase activity (0.127
+ 0.019 vs. 0.037 = 0.007 U/mg; -71%; p < 0.001;
table I).
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Table I. Effect of hemodialysis therapy on leukocyte counts, plasma E-a,PI complex, proteinase activity as well as on activity and plasma

concentration of a,PI

Time, min

0 10 30 60 120 180
Leukocytes, cells/mm? 7,133+582 5,625 +£696 4,200+ 251¢ 6,658 +441 5,950+ 607 7,192+824
E-a,Pl, ng/ml 18820 196 25 326 562 37332 602 + 84¢ 769+ 128¢
Proteinase activity, U/mg protein  0.127+0.019 0.103+£0.014 0.095+0.014 0.087%0.013 0.059+0.010® 0.037=0.007¢
aPI, U/ml 1.98+£0.11 1.89£0.11 2.07+0.10 2.06+0.09 2.01+0.09 2.08+0.11
a;PI, mg/dl 254+ 14 25713 268+13 25812 260+11 27113

Mean values = SEM from 12 experiments before and during hemodialysis therapy.

ip<0.05Y%p<0.0l;¢p < 0,001,

Discussion

It has been shown recently that glucose in the dialysate
[7] as well as continuous amino acid infusion [6] are inef-
fective in preventing the pathological catabolic events
observed during hemodialysis. The pathogenesis of he-
modialysis-induced protein catabolism remains so far
unclear. One pathogenetic factor could be the release of
granulocyte proteinases after starting hemodialysis thera-
pv. Craddock et al. [16] have demonstrated hemodialysis-
induced leukopenia and pulmonary vascular leukostasis
resulting from complement activation by dialyzer cello-
phane membranes.

Neutrophil granulocytes contain a broad variety of
agents that are involved in the defence and digestion of
invading microorganisms [17]. These include elastase
[17, 18], cathepsin G, cathepsin B, cathepsin D and col-
lagenase [19-24]. Lysosomal proteinases are not exclu-
sively restricted to their intracellular compartment, the
lysosomes. They may be released intra- as well as extra-
cellularly during phagocytosis, exposure to antigen-anti-
body complexes, complement components and toxic sub-
stances such as endotoxins or during cell death [25, 26].
Especially under pathological conditions massive release
of proteases and other lysosomal factors may occur. They
might cause tissue injury [27, 28] and consumption of
plasma proteins by unspecific proteolytic degradation as
soon as the levels of the controlling proteinase inhibitors
in plasma and tissues are insufficient [29].

Granulocyte elastase is the most potent candidate for
unspecific degradation because of its broad substrate
specificity and the large amount present in the PMN
granulocytes — for review, see Heidland et al. [12]. It
degrades various plasma proteins such as transferrin [Jo-

chum and Lander, unpublished data], immunoglobulins
[30, 31] and fibronectin [32]. In vitro elastase rapidly
inactivates fibrinogen [33, 34] and several other clotting
factors [35, 36]. It also causes a limited degradation of the
third and fifth factor of human complement [37, 38].

Granulocyte elastase could be released during hemo-
dialysis due to the contact of blood cells with the blood
lines and the dialyzer membrane (cuprophane). Such con-
tact may result in a so-called ‘frustrated phagocytosis’
known to be associated with an extracellular release of
lysosomal proteinases. The reduced proteolytic activity
of PMN leukocytes in blood smears obtained 30 min
after onset of hemodialysis and the concomitant increase
of E-aPI plasma levels may be regarded as possible indi-
cators of this ‘escape’ reaction. On the other hand, pro-
teinase release due to cell death must be also taken into
account. Since, however, leukopenia does not strictly par-
allel the increase of the E-a,PI levels during hemo-
dialysis, pulmonary vascular leukostasis resulting from
complement activation by dialyzer cellophane mem-
branes may be an additional source of local lysosomal
enzyme release [16]. This event could indeed be respon-
sible for the delayed release of elastase into the circula-
tion. Although plasma activity and concentration of o, PI,
the dominating elastase inhibitor [39], were unchanged
during hemodialysis therapy (table I), the liberation of
granulocytic elastase together with other lysosomal en-
zymes, primarily within the lung, might lead to a repeated
local proteinase-proteinase inhibitor imbalance [40-42]
thus favoring pulmonary disease in long-term RDT pa-
tients.

The deleterious release of granulocytic proteinases
during hemodialysis is partly counteracted by the dimi-
nution of ‘unspecific’ proteolytic (azocasein-hydrolyzing)
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activity accumulated in plasma in the dialysis-free inter-
val. The decrease of this unspecific proteolytic activity
during hemodialysis might be caused by the removal of
yet unidentified low molecular weight factors. Such fac-
tors could stimulate the activation of proenzymes (e.g.
plasma prokallikrein) or the release of lysosomal protein-
ases into the plasma of untreated patients. They might
also be responsible for the stimulation of phagocytosis
and/or increased protein breakdown within the cells.
Characterization of the azocasein-splitting activity using
more specific substrates might be a helpful tool in evalu-
ating the origin and nature of this proteolytic effect.

Summarizing our results, we could clearly demon-

strate that hemodialysis therapy is still connected with
considerable side effects probably due to the contact of
white blood cells with the dialyzer cellophane mem-
branes. Improvement of such membranes leading to re-
duced liberation of proteolytic cell constituents should,
therefore, enhance the positive effects of hemodialysis
therapy.
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