We investigate the computational complexity of several decision problems in hedonic coalition formation games and demonstrate that attaining stability in such games remains NP-hard even when they are additive. Precisely, we prove that when either core stability or strict core stability is under consideration, the existence problem of a stable coalition structure is NP-hard in the strong sense. Furthermore, the corresponding decision problems with respect to the existence of a Nash stable coalition structure and of an individually stable coalition structure turn out to be NP-complete in the strong sense. |
English |