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Arginine-glycine(-glycine) (RG/RGG) regions are highly abundant in RNA-binding proteins
and involved in numerous physiological processes. Aberrant liquid-liquid phase separation
(LLPS) and stress granule (SGs) association of RG/RGG regions in the cytoplasm have
been implicated in several neurodegenerative disorders. LLPS and SG association of these
proteins is regulated by the interaction with nuclear import receptors, such as transportin-1
(TNPO1), and by post-translational arginine methylation. Strikingly, many RG/RGG
proteins harbour potential phosphorylation sites within or close to their arginine
methylated regions, indicating a regulatory role. Here, we studied the role of
phosphorylation within RG/RGG regions on arginine methylation, TNPO1-binding and
LLPS using the cold-inducible RNA-binding protein (CIRBP) as a paradigm. We show that
the RG/RGG region of CIRBP is in vitro phosphorylated by serine-arginine protein kinase 1
(SRPK1), and discovered two novel phosphorylation sites in CIRBP. SRPK1-mediated
phosphorylation of the CIRBP RG/RGG region impairs LLPS and binding to TNPO1 in vitro
and interferes with SG association in cells. Furthermore, we uncovered that arginine
methylation of the CIRBP RG/RGG region regulates in vitro phosphorylation by SRPK1. In
conclusion, our findings indicate that LLPS and TNPO1-mediated chaperoning of RG/
RGG proteins is regulated through an intricate interplay of post-translational modifications.
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INTRODUCTION

A growing number of evidences has emerged over the last decade implicating that cells organize a
plethora of biochemical processes by means of biomolecular condensation, including the formation
of membraneless ribonucleoprotein (RNP) granules (Banani et al., 2016; Banani et al., 2017; Shin and
Brangwynne, 2017). RNP granules constitute micron-sized, condensed, dynamic assemblies of RNA
and RNA-binding proteins (RBPs), exemplified by nucleoli, Cajal bodies, paraspeckles in the nucleus
or stress granules (SGs), and P-bodies in the cytoplasm (Hyman et al., 2014; Molliex et al., 2015; Feric
et al., 2016). These membraneless organelles are proposed to form through the process of liquid-
liquid phase separation (LLPS), by which coexisting protein/RNA-depleted (dilute) and highly
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protein/RNA-enriched (condensed) phases emerge and remain
in a dynamic equilibrium with the cellular surroundings (Aguzzi
and Altmeyer, 2016; Alberti, 2017; Ditlev et al., 2018; Alberti et al.,
2019). Multivalent interactions have been recognized as a critical
factor driving the assembly of protein/RNA into the condensed
phase. They are facilitated by the modular structure of RBPs
possessing multiple RNA-binding domains and intrinsically
disordered regions with low complexity sequences of amino
acids (Li et al., 2012; Banani et al., 2017; Chong et al., 2018;
Martin and Holehouse, 2020). Importantly, RNP compartments
and missense mutations in RBPs are thought to be central to the
pathogenesis of several neuronal disorders such as amyotrophic
lateral sclerosis (ALS), frontotemporal dementia (FTD), inclusion
body myopathy (IBM) (Li et al., 2013; Ramaswami et al., 2013;
Tsang et al., 2020). These diseases are characterized by the
presence of mis-localized pathological protein aggregates
formed in the cytoplasm of neuronal cells, and till now no
effective therapies targeting them have been reported
(Harrison and Shorter, 2017).

Proteins containing RG/RGG-regions are highly abundant in
the eukaryotic proteome, and have been demonstrated to localize
to cellular RNP granules (Thandapani et al., 2013). For example,
SGs contain a large number of RG/RGG proteins, e.g. members of
FET protein family (including FUS, EWS and TAF15)
(Andersson et al., 2008; Dormann et al., 2010), TDP-43
(Bentmann et al., 2012), FMRP (Didiot et al., 2009), G3BP1
(Tourrière et al., 2003) and CAPRIN-1 (Solomon et al., 2007),
nucleoli contain nucleolin and fibrillarin (Frottin et al., 2019), the
RG-dipeptide repeats containing coilin is a marker for Cajal
bodies (Hebert et al., 2002), and Lsm14a can be found in
P-bodies (Yang et al., 2006). Purified proteins containing RG/
RGG-regions have been shown to undergo LLPS in vitro in a
reversible and concentration-dependent manner, and that
addition of RNA can enhance their propensity for phase
separation (Patel et al., 2015; Boeynaems et al., 2017; Chong
et al., 2018). Wang et al. determined a sequence-encoded
“molecular grammar” where the interactions between aromatic
and positively charged residues have been identified as critical for
phase separation of RBPs (Wang et al., 2018), and various studies
showed that arginines are necessary for LLPS of RG/RGG
regions- or RG-FG repeats-containing proteins (Elbaum-
Garfinkle et al., 2015; Nott et al., 2015; Hofweber et al., 2018;
Yang et al., 2020). Moreover, post-translational modifications
(PTMs) within RG/RGG regions provide a means of phase
separation regulation (Chong et al., 2018; Rhoads et al., 2018;
Hofweber and Dormann, 2019). For instance, methylation of
arginines in FUS, hnRNP-A2, FMRP, and DDX4 suppresses their
LLPS by reducing arginine-(pi) aromatic interactions (Nott et al.,
2015; Hofweber et al., 2018; Qamar et al., 2018; Ryan et al., 2018;
Tsang et al., 2019). In addition, arginine methylation impairs SG
association of RG/RGG proteins, such as G3BP1 (Tsai et al.,
2016), FUS (Hofweber et al., 2018), FMRP (Dolzhanskaya et al.,
2006), CIRBP (De Leeuw et al., 2007).

Another PTM frequently occurring in RBPs is
phosphorylation of serine (in mammals ∼90% of
phosphorylation events occur on serines), threonine, or
tyrosine residues, which introduces a double negative charge

via a phosphate group (Bah and Forman-Kay, 2016). In
contrast to arginine methylation, phosphorylation can regulate
LLPS of RBPs either positively or negatively (Wang et al., 2018;
Hofweber and Dormann, 2019). For example, phosphorylation of
the low-complexity domain of FUS disrupts in vitro phase
separation (Monahan et al., 2017), whereas phosphorylation
within the low-complexity region of FMRP promotes LLPS
in vitro (Tsang et al., 2019). Phosphorylation of G3BP1 on
serine-149 by casein kinase 2 (CK2) as well as dual specificity
tyrosine phosphorylation–regulated kinase 3 (DYRK3) –
mediated phosphorylation of multiple RBPs have been shown
to disassemble corresponding membraneless organelles (Wippich
et al., 2013; Reineke et al., 2018). On the contrary, SG localization
of 5′-AMP-activated protein kinase-α2 (AMPK-α2) and mTOR
(mechanistic target of rapamycin) effector kinases S6 kinase 1 and
2 (S6K1 and S6K2) are required for SG assembly (Mahboubi et al.,
2015; Sfakianos et al., 2018).

RBPs often carry a combination of multiple PTMs, in which
modifications can affect one another when located closely in the
primary sequence or 3D space (PTM cross-talk). For instance, a
recent study conducted a bioinformatic analysis focused on
SRGG motifs (overlapping SR and RGG regions, with serine
serving as a site for phosphorylation, and arginine as a site for
methylation) in the S. cerevisiae proteome (Smith et al., 2020).
The authors identified 38 yeast proteins harboring the SRGG
motif, and only three of them – Nop1p, Npl3p, and Gar1p –
possess multiple repeats of the SRGG region. They further
demonstrated for Nop1p that the presence of serine
phosphorylation within the SRGG motif blocks arginine
methylation by a yeast methyltransferase within the same and
adjacent motifs, as well as that the presence of arginine
methylation in the SRGG region decreases serine
phosphorylation. Besides arginine methylation and
phosphorylation, many other PTMs appear in RBPs and may
affect their LLPS, as exemplified by arginine-to-citrulline
conversion (Tanikawa et al., 2018), lysine acetylation (Saito
et al., 2019), or O-GlcNAcylation (Ohn et al., 2008). Thus,
further studies are needed to fill gaps in our knowledge about
the crosstalk between PTMs as well as the impact of various
modifications on LLPS.

In addition to aberrant arginine methylation, defective
nucleocytoplasmic transport of RBPs is a crucial pathological
factor driving the onset of ALS/FTD disorders (Dormann et al.,
2010). We and others have previously reported that the nuclear
import receptor Transportin-1 (TNPO1)/Karyopherin-β2
(Kapβ2) acts as a chaperone for the RBP FUS, and reduces
both its phase separation and SG recruitment via direct
interaction with the RGG3-PY (proline-tyrosine) region of
FUS (Guo et al., 2018; Hofweber et al., 2018; Qamar et al.,
2018; Yoshizawa et al., 2018). Nucleocytoplasmic shuttling and
chaperoning activity of importins are believed to be dependent on
the specific interaction between an importin and a nuclear
localization signal (NLS) within its cargo protein (Chook and
Blobel, 2001; Soniat and Chook, 2015; Frey et al., 2018). Recently,
we have identified the RG/RGG region and an arginine-serine-
tyrosine (RSY)–rich region in cold-inducible RNA-binding
protein (CIRBP) to serve as NLSs for transportin-1 and
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transportin-3 (Bourgeois et al., 2020). CIRBP is a member of the
family of cold shock proteins. In response to different cellular
stresses, such as mild cold shock, ultraviolet irradiation, osmotic
shock, or hypoxia, CIRBP relocalizes from the nucleus to the
cytoplasm where it partitions into SGs (Aoki et al., 2002; Pan
et al., 2004; De Leeuw et al., 2007). CIRBP plays anti-apoptotic
and anti-senescent roles in cells (Sakurai et al., 2006; Lee et al.,
2015a), and its mis-regulation is associated with numerous
pathologies. CIRBP is involved in the development of brain
ischemia (Zhou et al., 2014), and extracellular CIRBP triggers
inflammation and tissue injury in sepsis by inducing the
formation of neutrophil extracellular traps in patients lungs
(Ode et al., 2018; Ode et al., 2019). Furthermore, CIRBP
constitutes a promising target for anticancer therapy, as its
downregulation was found to inhibit cancer cell survival in
patients suffering from liver, breast, brain, and prostate
cancers (Zeng et al., 2009; Lujan et al., 2018).

Despite our growing understanding of liquid-liquid phase
transition phenomena in living cells, we still lack of a full
comprehension of their regulation, for example how LLPS of
RBPs is regulated. In this study, we show that the RG/RGG region
of CIRBP (CIRBP-RGG) is phosphorylated in cell lysate and
identified serine-arginine protein kinase-1 (SRPK1) as a relevant
kinase in vitro. Phosphorylation of CIRBP-RGG inhibited
methylation of adjacent arginines and vice versa. In vitro,
SRPK1-mediated phosphorylation of CIRBP-RGG suppresses
phase separation, and in semi-permeabilized cells, it suppresses
SG recruitment of CIRBP. Our study furthermore reveals that
phosphorylation of CIRBP-RGG impairs binding to the nuclear
import receptor Transportin-1 (TNPO1). Summarizing, our study
sheds light on the regulation of membraneless organelles and
nuclear translocation of RG/RGG region-containing proteins via
an intricate interplay of PTMs.

MATERIALS AND METHODS

Recombinant Protein Expression and
Purification
Recombinant His6-protein A-tagged CIRBP-RGG (amino acids
68–137) containing a Tobacco Etch Virus (TEV) protease
cleavage site after protein A was expressed from a codon
optimized synthetic gene inserted into a pETM11-based vector
(Genscript). A 10 mL overnight preculture of freshly transformed
Escherichia coli BL21(DE3) Star competent cells was transferred
to 1L standard lysogeny broth (LB) media containing kanamycin
and grown to an OD600 of 0.6–0.8 at 37°C before induction with
1 mM isopropyl β-D-1-thiogalactopyranoside (IPTG), and
further expressed for 16 h at 20°C and 160 rpm. For NMR
experiments, 10 mL overnight precultures were transferred to
minimal media (100 mM KH2PO4, 50 mM K2HPO4, 60 mM
Na2HPO4, 14 mM K2SO4, 5 mM MgCl2; pH 7.2 adjusted with
HCl and NaOH with 0.1 dilution of trace element solution
(41 mM CaCl2, 22 mM FeSO4, 6 mM MnCl2, 3 mM CoCl2,
1 mM ZnSO4, 0.1 mM CuCl2, 0.2 mM (NH4)6Mo7O24, 17 mM
EDTA)) supplemented with 1 g of 15NH4Cl (Sigma), and either
with 6 g of 12C6H12O6 or 2 g of 13C6H12O6 (Cambridge Isotope

Laboratories), followed by a growth as described for unlabeled
protein. Cells were harvested (6,000 rpm for 10 min at 4°C),
transferred to a denaturing lysis buffer (50 mM Tris-HCl pH
7.5, 150 mM NaCl, 20 mM imidazole, 6M urea), and sonicated
(70% amplitude, 1 s pulse for 12 min on ice bath with Qsonica
MC-18 sonicator). His6-protein A-tagged CIRBP-RGG was
purified using nickel-nitrilotriacetic (Ni-NTA) agarose resin
(Qiagen) and eluted in buffer containing 50 mM Tris-HCl pH
7.5, 1 M NaCl, 500 mM imidazole, 2 mM tris(2-carboxyethyl)
phosphine (TCEP), 0.04% NaN3. The eluted protein was desalted
to buffer 50 mM Tris-HCl pH 7.5, 150 mM NaCl, 20 mM
imidazole, 2 mM TCEP, 0.04% NaN3, and subjected to
overnight TEV treatment at 4°C. Cleaved CIRBP-RGG was
loaded onto a HiTrap Heparin HP column (GE Healthcare),
and eluted with a linear gradient of 0–100% high salt buffer
(50 mM Tris-HCl pH 7.5, 1 M NaCl, 20 mM imidazole, 2 mM
TCEP, 0.04% NaN3) over 10 column volumes (CVs). A final size
exclusion chromatography purification step was performed in the
buffer of interest on a Superdex 75 Increase 10/300 GL column
(GE Healthcare) at room temperature.

Codon optimized synthetic His6-protein A-tagged MBP-
CIRBP-EGFP gene was inserted into a pETM11-based vector
containing a TEV protease cleavage site after protein A
(Genscript). For expression of recombinant protein, the
construct was transformed into E. coli BL21(DE3) Star cells,
and grown in LB medium at 37°C. At an OD600 of 0.8, cells
were induced with 1 mM IPTG and grown for 16 h at 20°C. Cells
were harvested and lysed by sonication in a non-denaturing lysis
buffer (50 mM Tris-HCl pH 7.5, 150 mMNaCl, 20mM imidazole,
2 mMTCEP, 10% (v/v) glycerol). Following sonication, 0.1 mg/mL
RNase A and MgCl2 (to a final concentration 20mM) were added
to the mixture and incubated in the dark for 30 min before
centrifugation (13,000 g for 45 min at 4°C). His6-protein
A-tagged MBP-CIRBP-EGFP was purified using Ni-NTA beads
(Qiagen), and the eluted protein was desalted to buffer 50mM
Tris-HCl pH 7.5, 150 mM NaCl, 20mM imidazole, 2 mM TCEP,
0.04% NaN3, and subsequently subjected to overnight TEV
treatment at 4°C. Cleaved MBP-CIRBP-EGFP was then isolated
by a second affinity purification using Ni-NTA beads. The eluted
protein was then buffer exchanged to a phosphorylation buffer
(50 mM Tris-HCl pH 6.7, 150 mM NaCl, 20 mM MgCl2, 2 mM
TCEP, 0.04% NaN3) using HiPrep 26/10 Sephadex G-25 desalting
column (GE Healthcare).

Recombinant His6-protein A-tagged SRPK1 containing a TEV
protease cleavage site after protein A was expressed from a codon
optimized synthetic gene inserted into a pETM11-based vector
(Genscript). 10 mL of overnight precultures of freshly
transformed E. coli BL21(DE3) Star cells were added to and
grown in 1L LB media at 37°C until an OD600 reached ∼0.6–0.8,
and the expression was induced with 1 mM IPTG for 16 h at 20°C.
Cells were harvested at 6,000 rpm for 10 min at 4°C, and lysed by
sonication in the non-denaturing lysis buffer. His6-protein
A-tagged SRPK1 was applied on Ni-NTA beads (Qiagen),
eluted to buffer 50 mM Tris-HCl pH 7.5, 1 M NaCl, 500 mM
imidazole, 2 mM TCEP, 0.04% NaN3, desalted to buffer 50 mM
Tris-HCl pH 7.5, 150 mM NaCl, 20 mM imidazole, 2 mM TCEP,
0.04% NaN3 at 4°C, and subjected to overnight TEV treatment at
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4°C. Cleaved SRPK1 was applied on a Superdex 200 Increase 10/
300 GL (GE Healthcare) size exclusion chromatography column
and eluted into the phosphorylation buffer. Fractions
corresponding to untagged SRPK1 were identified by SDS
PAGE gel, and used immediately for experiments.

Recombinant rat His6-PRMT1 (amino acids 11–353) was
inserted into a pET28b-His6 vector (Novagen) and the
expression has been previously described in (Zhang and
Cheng, 2003). The expression construct was transformed into
E. coli BL21(DE3) Star cells, and 1L expression culture was grown
in LB medium at 37°C. Cells were induced at an OD600 of 0.6–0.8
with 1 mM IPTG followed by protein expression for 16 h at 20°C.
Cell pellets were harvested and sonicated in the non-denaturing
lysis buffer. His6PRMT1 was purified using 5 mL HisTrap HP
column (GE Healthcare) at 4°C and eluted over 10 CVs into
buffer containing 50 mM Tris-HCl pH 7.5, 1 M NaCl, 500 mM
imidazole, 2 mM TCEP, 0.04% NaN3. As a final polishing step
size exclusion chromatography purification step was performed
in a methylation buffer (50 mM Na2HPO4/NaH2PO4 pH 8.0,
150 mM NaCl, 2 mM dithiothreitol (DTT), 0.04% NaN3) using
Superdex 200 Increase 10/300 GL column (GEHealthcare) at 4°C.
Fractions corresponding to PRMT1 were identified by SDS PAGE
gel, and used immediately for experiments.

For expression of recombinant unlabeledHis6-protein A-tagged
TNPO1 containing a TEV protease cleavage site after protein A, a
codon optimized synthetic gene was inserted into a pETM11-based
vector (Genscript). E.coli BL21(DE3) Star strain cells were
transformed with the expression vector, and picked one colony
was grown in 20mL LB medium for 16 h at 37°C. 1 mL of pre-
culture was grown for 3 days in 1Lminimalmedium supplemented
with 6 g of 12C6H12O6 (Cambridge Isotope Laboratories) and 3 g of
14NH4Cl (Sigma) at 30°C. Cells were diluted to an OD600 of 0.8 and
induced with 0.5 mM IPTG followed by TNPO1 expression for 6 h
at 30°C. Cells pellets corresponding to protein expression of the
unlabeled folded protein TNPO1 were harvested and sonicated in
the non-denaturing lysis buffer. ZZ-His6 TNPO1 were then
purified using Ni-NTA agarose beads (Qiagen) in 50mM Tris
pH 7.5, 150 mMNaCl, 20mM imidazole, 2 mMTCEP. The eluted
ZZ-His6 TNPO1was subjected to TEV protease cleavage overnight
at 4°C. TEV-cleaved recombinant protein was separated from the
His6-tag using a second step of Ni-NTA purification. A final size
exclusion chromatography purification step was performed in
buffer containing 50mM Tris·HCl pH 7.5, 150 mM NaCl,
2 mM TCEP, 0.04% NaN3 on a Hiload 16/600 Superdex 200 pg
(GE Healthcare) column.

For expression of recombinant His6-TEV protease, E. coli
BL21(DE3) Star cells were transformed with the pLIC-His6
expression plasmid (Cabrita et al., 2007) and grown in standard
LB medium. Protein expression was induced at OD600 of 0.8 with
1 mM IPTG and left overnight at 20°C to grow. Cells were lysed in
TEV lysis buffer (50 mM Tris pH 8.0, 200 mM NaCl, 25mM
imidazole, 10% (v/v) glycerol, supplemented 30min prior
sonication with 2 mM MgCl2, 2 µl benzonase, and 50 µl
bacterial protease cocktail inhibitor added per 1L culture) by
sonification. Next, His6-TEV was purified using Ni-NTA beads,
washed using TEV lysis buffer containing 1.0 M NaCl, and eluted
in TEV lysis buffer (pH 8.5) containing 800 mM imidazole. His6-

TEV was subsequently buffer exchanged using HiPrep 26/10
desalting column (GE Healthcare) against storage buffer
(50 mM Tris pH 7.5, 150 mM NaCl, 20% glycerol, 2 mM DTT),
and the protein was stored at −80°C until further use.

The concentration of proteins was estimated from their
absorbance at 280 nm, using the molar extinction coefficient ε
at 280 nm predicted by ProtParam tool (Gasteiger et al., 2005),
assuming that the ε at 280 nm was equal to the theoretical ε value.

HEK293T Cell Lysate Phosphorylation
HEK293T cells were grown in Dulbecco’s modified Eagle’s
medium (DMEM) (Sigma-Aldrich) containing 10% fetal bovine
serum (FBS) (Gibco; Thermo Fisher Scientific), penicillin (100
U/mL, Gibco), streptomycin (100 µg/mL, Gibco), and
amphotericin B (1.25 µg/mL; Gibco) in a humidified incubator
(37°C, 5%CO2/95% air). HEK293T cells were lysed in 50mMTris-
HCl pH 7.5, 150 mM NaCl, 2 mM TCEP, 1% (v/v) Triton by
incubating for 30 min at 4°C with vortexing every 5 min. The
HEK293T cell lysate was then centrifuged at 13,000 rpm for 30min
at 4°C, and total protein concentration was estimated using
Bradford protein assay (Bradford, 1976). To perform
phosphorylation reaction, 13C-15N-labeled 50 µM His6-protein
A-tagged CIRBP-RGG was incubated overnight at room
temperature with 15mg/mL of total protein obtained from
HEK293T-whole-cell-lysate in the presence of a protease
inhibitor (Roche), phosphatases inhibitor (Roche), 10 mM ATP,
and 10mM MgCl2. On the following day, the His6-protein
A-tagged CIRBP-RGG sample was repurified by applying on
Ni-NTA agarose beads (Qiagen) and eluted in 50mM Tris-HCl
pH7.5, 1.0 MNaCl, 500 mM imidazole, 2 mMTCEP, 0.04%NaN3.
The eluted protein was subjected to overnight TEV treatment at
4°C, and on the next day cleaved CIRBP-RGG was desalted to
50 mM Tris-HCl pH 7.5, 150 mM NaCl, 20 mM imidazole, 2 mM
TCEP, 0.04% NaN3 and isolated by a second affinity purification
using Ni-NTA beads. As a final polishing step size exclusion
chromatography purification step was performed in 50mM
Tris-HCl pH 6.7, 150 mM NaCl, 2 mM TCEP, 0.04% NaN3

(Superdex 75 Increase 10/300 GL, GE Healthcare) at room
temperature.

In vitro Phosphorylation
Recombinant CIRBP-RGG, CIRBP-EGFP and SRPK1 were
equilibrated in the phosphorylation buffer. CIRBP-RGG and
CIRBP-EGFP were in vitro phosphorylated by incubating
overnight at room temperature with SRPK1 and 10 mM
adenosine triphosphate (ATP), added just prior the reaction
start. SRPK1 was used at a molar ratio of 1:2 for CIRBP-RGG
and CIRBP-EGFP, and phosphorylation reaction was analyzed
using 1H-15N HSQC spectra. Phosphorylated CIRBP-RGG
(pCIRBP-RGG) was then isolated from SRPK1 by heating the
sample at 95°C for 10 min and performing a size exclusion
chromatography in the buffer of interest (Superdex 75
Increase 10/300 GL, GE Healthcare).

In vitro Methylation
The respective gel filtration fractions of CIRBP-RGG and PRMT1
eluted into the methylation buffer were collected and used for

Frontiers in Molecular Biosciences | www.frontiersin.org October 2021 | Volume 8 | Article 6896874

Lenard et al. Phosphorylation-mediated CIRBP Regulation

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


in vitro methylation. CIRBP-RGG was in vitro methylated by
incubating with PRMT1 and 2 mM S-adenosyl-L-methionine
(SAM) overnight at room temperature. PRMT1 was used at a
molar ratio of 1:2 for CIRBP-RGG, and the methylation reaction
was analyzed by NMR 1H-13C HSQC spectra. To remove
PRMT1, methylated CIRBP-RGG (metCIRBP-RGG) sample
was heated for 10 min at 95°C and applied on size exclusion
chromatography column in the buffer of interest (Superdex 75
Increase 10/300 GL, GE Healthcare).

Stress Granule Association Assay in
Semi-Permeabilized Cells
The SGs association assay was performed as described in Hutten
and Dormann (2020). HeLa cells were maintained in DMEM high
glucose GlutaMAX (Invitrogen) supplemented with 10% FBS and
50 µg/mL gentamicin at 37°C, 5%CO2 in a humified incubator. For
the SG association assay, cells were grown on high precision, poly-
L-lysine (Sigma) coated 12mm coverslips and SGs induced by
10 µM MG132 treatment for 3h. Cells were then permeabilized
2 times 2 min each with 0.004–0.005% digitonin (Calbiochem) in
KPB (20mM potassium phosphate pH 7.4, 5 mMMg(OAc)2,
200 mM KOAc, 1 mM EGTA, 2 mM DTT and 1 mg/mL each
aprotinin (Roth), pepstatin (Roth) and leupeptin (Roth)). After
several washes to remove soluble proteins (4 times 4 min in KPB on
ice), nuclear pores were blocked by 15min incubation with 200 µg/
mL wheat germ agglutinin (WGA) on ice. Cells were then
incubated for 30 min at room temperature with 200 nM CIRBP-
EGFP (non- vs phosphorylated and unmethylated vs arg-
methylated, respectively) diluted in KPB buffer. For SG
association of phosphorylated CIRBP, protein samples were
normalized for concentration of ATP and thus differed only in
the presence or absence of SRPK (final conc: 100 nM). Note that
unmethylated CIRBP contained the same amount of PRMT1 as
methylated CIRBP. Subsequently, cells were washed (3 times 5 min
in KPB on ice) to remove unbound CIRBP-EGFP. SGs were
subsequently subjected to immunofluorescence for G3BP1 as a
marker of SGs. For this, cells were fixed in 3.7% formaldehyde/PBS
buffer for 7 min at RT and permeabilized in 0.5% TX-100/PBS for
5 min at room temperature. Cells were blocked for 10 min in
blocking buffer (1% donkey serum in PBS/0.1% Tween-20) and
incubated with primary antibody (rabbit anti-G3BP1, Proteintech,
cat.no.13057-2-AP) in blocking buffer for 45–60min at RT.
Secondary antibodies (Alexa 555 Donkey-anti-Rabbit; Thermo,
cat.no. A-31572) were diluted in blocking buffer and incubated for
30 min at room temperature. Washing steps after antibody
incubation were performed with PBS/0.1% Tween-20. DNA was
stained with DAPI (Sigma) at 0.5 mg/mL in PBS and cells mounted
in ProLong Diamond Antifade (Thermo). Cells were imaged by
confocal microscopy using identical settings for reactions within
the same experiment (Performed as described in Hutten and
Dormann (2020)).

Stress Granule Enrichment in Intact Cells
For generation of the CIRBP 3D and 3A constructs, synthetic
gBlocks (IDT) harboring either S-to-D or S-to-A mutations at the
positions Ser97, Ser115 and Ser130 were cloned into the KpnI and

BamHI sites of the GCR2-GFP2-CIRBP wt construct (Bourgeois
et al., 2020). HeLa cells were grown for at least two passages in
DMEM supplemented with 10% dialyzed FCS (Thermo) and
transiently transfected with GCR2-GFP2-CIRBP wt, 3D or 3A
constructs using Lipofectamine 2000 (Thermo). One day after
transfection, cytoplasmic condensates formed likely either as a
response to transfection stress or by CIRBP overexpression were
stained by G3BP1 immunostaining, and enrichment of the GCR2-
GFP2-CIRBP reporter in those cytoplasmic condensates was
analyzed.

Confocal Microscopy
For SG association of phosphorylated CIRBP in semi-permeabilized
cells, confocal microscopy was performed at the Bioimaging core
facility of the Biomedical Center, LMU Munich with an inverted
Leica SP8 microscope, equipped with lasers for 405, 488, 552 and
638 nm excitation. Images were acquired using two-fold frame
averaging with a 63x1.4 oil objective, and an image pixel size of
59 nm. The following fluorescence settings were used for detection:
DAPI: 419–442 nm, GFP: 498–563 nm, Alexa 555: 562–598 nm.
Recording was performed sequentially to avoid bleed-through using
a conventional photomultiplier tube. For SG association of
methylated CIRBP in semi-permeabilized cells and of
phosphomutants of CIRBP in intact cells, confocal microscopy
was performed at the Light Microscopy Core Facility of the
Biocenter at JGU Mainz with an inverted Leica SP5 microscope
using lasers for 405 nm, 488 nm (Argon line) and 561 nm for
excitation. Images were acquired with bidirectional scanning
using two-fold frame averaging with an 100x/1.3 Oil objective
and an image pixel size of 60.6 nm. The following fluorescence
settings were used for detection: DAPI: 419–442 nm, GFP:
498–563 nm, Alexa 555: 571–598 nm. Recording was performed
using a conventional photomultiplier tube for DAPI and Alexa 555
and a Hybrid Detector (HyD) for GFP signals.

Quantification of CIRBP-EGFP in Stress
Granules
For quantitative measurements, equal exposure times and
processing conditions for respective channels were applied to
all samples within one experiment, and acquired images were
quantified using ImageJ/Fiji. For quantification of CIRBP SG
association in semi-permeabilized cells (performed as described
in Hutten and Dormann (2020)), ROIs corresponding to SGs
were identified using the wand tool by G3BP1 staining and mean
fluorescence intensity in the EGFP channel was determined. For
each condition, at least 10 cells and at least 44 SGs were analyzed.
To determine the enrichment of CIRBP wt and phosphomutants
in intact cells, the ROI corresponding to ∼at least 200 G3BP1-
positive cytoplasmic condensates was determined by G3BP1
staining as described above, while a band of 0.98 pixels
around the condensate was used as a representative area for
the cytoplasm. Fluorescence intensity values obtained for the
band around the condensate (cytoplasmic intensity) were used as
a proxy for expression levels. All values were background
corrected and statistical analyses were performed in GraphPad
Prism 8.
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NMR Spectroscopy
All NMR experiments were conducted at 25°C on Bruker 600-
and 700-MHz spectrometers equipped with TXI or a TCI triple-
resonance cryoprobe using between 50 and 500 µM of 1H-15N or
1H-15N-13C – labeled CIRBP-RGG. All spectra were processed
using TopSpin 4.0.9. In particular, 1D 1H spectra were processed
in Mnova 11, 2D heteronuclear spectra were analyzed with the
use of NMRFAM-Sparky 3.114 (Lee et al., 2015b) and CcpNMR
3.0.3 (Skinner et al., 2016) software, and triple resonance
assignment was performed using CcpNMR 2.4.2 (Vranken
et al., 2005). For assignment of in vitro phosphorylated and
methylated residues in the CIRBP-RGG, we used the
previously deposited data corresponding to the 1H-15N
chemical shift backbone assignment of CIRBP-RGG
(Biological Magnetic Resonance Data Bank (https://www.bmrb.
wisc.edu/) entry: 28027) (Bourgeois et al., 2020). In addition, we
acquired the following experiments in order to identify the
methylated and phosphorylated residues: 1H-15N HSQC, 1H-
13C HSQC, (H)CC(CO)NH, CBCA(CO)NH, HN(CA)
NNH(N), and HN(CA)NNH(H). Except in vitro methylation,
all experiments were performed using protein samples prepared
in 50 mM Tris-HCl pH 6.7, 150 mM NaCl, 2 mM TCEP, 0.04%
NaN3 (including 20 mM MgCl2 for in vitro phosphorylation
experiments), and 10% (v/v) deuterium oxide was added for
the lock signal in all samples. Processing and analysis of time-
resolved 2D NMR spectra was performed as described in Theillet
et al. (2013), and the plotted NMR signal intensities
corresponding to modified residues were normalized by the
sum of respective signal intensities in the reference and final
spectra.

Turbidity Assay
CIRBP-RGG, pCIRBP-RGG and RNA (12 ×UG repeats) samples
were prepared in 50 mM Tris-HCl, pH 7.5, 150 mM NaCl, 2 mM
TCEP, 0.04% NaN3. Turbidity measurements were conducted at
620 nm in 96-well plates with 90-μL samples using a BioTek
Power Wave HT plate reader (BioTek).

Differential Interference Contrast
Microscopy
CIRBP-RGG, pCIRBP-RGG and RNA (12 ×UG repeats) samples
were prepared in 50 mM Tris·HCl, pH 7.5, 150 mM NaCl, 2 mM
TCEP, 0.04% NaN3.The 30-μL sample was plated on a 30-mm
No. 1 round glass coverslip and mounted on an Observer D1
microscope with 100×/1.45 oil immersion objective (Zeiss).
Protein droplets were viewed using HAL100 halogen lamp,
and images were captured with an OrcaD2 camera
(Hamamatsu) using VisiView 4.0.0.13 software (Visitron
Systems GmbH). Droplet formation was induced by the
addition of RNA for all proteins, and pictures were recorded
for 30 min after addition of RNA.

Isothermal Titration Calorimetry
All proteins samples were equilibrated in the same buffer
containing 50 mM Tris·HCl, pH 7.5, 150 mM NaCl, 5 mM
TCEP, 0.04% NaN3. Isothermal titration calorimetry (ITC)

measurements were taken with a MicroCal VP-ITC instrument
(Microcal) with 28 rounds of 8-μl injections at 25°C. Integration of
peaks corresponding to each injection, subtraction of the
contribution of protein dilution, and correction for the baseline
were performed using the Origin-based 7.0 software provided by
the manufacturer. Curve fitting was done with a standard one-site
model and gives the equilibrium binding constant (Ka) and
enthalpy of the complex formation (ΔH).

RESULTS

Serine-Arginine Protein Kinase-1
Phosphorylates Multiple Sites Within
CIRBP-RGG
Arginine methylation in the RG/RGG regions of RNA-binding
proteins (RBPs), such as FUS or CIRBP, has been previously
shown to suppress their phase separation and stress granule (SG)
recruitment, as well as to modulate binding to nuclear importins
(Hofweber et al., 2018; Qamar et al., 2018). As several RBPs have
been reported to be phosphorylated (Toyota et al., 2010; Nonaka
et al., 2016; Monahan et al., 2017; Reineke et al., 2017), we
hypothesized that phosphorylation of their low-complexity
region could also regulate their LLPS and membrane-less
organelles association.

To investigate how phosphorylation in the RG/RGG region of
RBPs regulates their LLPS and membrane-less organelles
association, we focused on the RG/RGG region of CIRBP
(CIRBP-RGG) as it contains serine residues neighboring the
low-complexity arginine/glycine-rich regions in its primary
sequence (Figure 1A). These serine residues may constitute
potential phosphorylation sites. NMR spectroscopy is well-
suited to study PTMs providing residue-resolved and kinetic
information on the post-translationally modified sites (Theillet
et al., 2012). Thus, we investigated the effects of treating
recombinant CIRBP-RGG with a cell lysate (containing
various kinases) obtained from HEK293T cells by applying
solution NMR spectroscopy (Figure 1B). As recombinant
CIRBP-RGG was purified from bacterial cells, the protein was
originally non-phosphorylated. 1H-15N heteronuclear single
quantum coherence (HSQC) spectra show that after the
incubation of the HEK293T whole-cell lysate with 13C-
15N-isotopically labeled CIRBP-RGG, downfield 1H-15N
resonance peaks appear. With the use of triple-resonance
NMR experiments, the new peaks were assigned to
phosphorylated residues Ser97 and Ser115. Both residues are
located in the proximity of the CIRBP RG/RGG region
(Figure 1A). These data indicate the presence of enzymatically
active serine kinases in the cell lysate phosphorylating serine
residues in CIRBP-RGG. We speculated that serine-arginine (SR)
protein kinase-1 (SRPK1) phosphorylates CIRBP, as it is known
to exhibit a robust phosphorylation activity of serine residues in
serine/arginine (SR)-rich protein regions (Ghosh and Adams,
2011; Bullock and Oltean, 2017; Patel et al., 2019).

To address our hypothesis, we established an in vitro
phosphorylation protocol where purified SRPK1 was incubated
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with recombinant CIRBP-RGG and adenosine triphosphate
(ATP) as a phosphate donor. We examined SRPK1-mediated
phosphorylation of 15N-labeled CIRBP-RGG by performing
NMR spectroscopy, and monitored the appearance of
characteristic downfield 1H-15N NMR cross peaks
corresponding to phosphoserine residues (Figure 1C). These
residues were assigned as pSer97, pSer115 and pSer130. By
monitoring the NMR signal intensity of disappearing NMR
cross peaks for Ser97, Ser115, Ser130 and appearing

resonances for the phospho-residues, we observed that the
fully phosphorylated state of serines 115 and 130 is reached
within 1 h, whereas the plateau of the maximal NMR intensity for
pSer97 is reached after approximately 5 h (Figures 1D,E). Both
serine residues 115 and 130 are located within the consensus
recognition motif for SRPK1 (dipeptide serine-arginine)
explaining their faster phosphorylation compared to serine 97,
which is separated by two glycine residues from arginine
(Figure 1A). So far, phosphorylation of serine residues 97 and

FIGURE 1 |CIRBP-RGG is phosphorylated by SRPK1 in vitro. (A) Architectural organization of CIRBP showing the RRM (RNA-recognition motif) and the sequence
of the CIRBP-RGG containing the three RGGs (blue) with adjacent serine residues (magenta). (B) Overlay of 1H-15N HSQC spectra of 15N-labeled CIRBP-RGG (black)
with repurified 13C-15N-labeled CIRBP-RGG after incubation with HEK293T whole-cell lysate (magenta). Cross peaks for phosphorylated serine residues assigned by
triple resonance experiments are labeled. (C) 1H-15N HSQC spectrum of 100 µM 15N-labelled CIRBP-RGG in the absence (black) and presence of 50 µM SRPK1
and 10 mM ATP (magenta). Resonance peaks corresponding to phosphorylated serine residues are marked. Both appearance of phosphoserines and disappearance
of the corresponding serine signal are shown at the indicated time points on a bottom right part of the spectrum. The cross peak labeled with an asterisk could not be
assigned by triple resonance experiments, and may correspond to either an intermediate phosphorylation state, or to non-assigned phosphosite (e.g. Ser132 is a
phosphosite reported in PhosphoSitePlus database, and the shift of its resonance peak was detected in NMR experiments (not shown)). (D)Change of NMR cross peak
signal intensity of both appearing phosphoserines and disappearing serines is shown over time (sample from Figure 1C). (E) The graph shows the calculated
phosphorylation level for serines 97, 115, and 130 in CIRBP-RGG after incubation with SRPK1 (sample from Figure 1C).
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115 has not been reported in databases such as iPTMnet
(Huang et al., 2018), PhosphoSitePlus (Hornbeck et al.,
2015), qPTM (Yu et al., 2019), or PTMcode (Minguez et al.,
2013) implying the discovery of two de novo phosphorylation
sites in CIRBP-RGG.

In summary, we show that the RG/RGG region of CIRBP can
be phosphorylated by SRPK1 in vitro, however the manner in
which this modification impacts RG/RGG properties on a
molecular level remains unknown. Therefore, we subsequently
sought to explore the impact of SRPK1-mediated

phosphorylation of CIRBP-RGG on its phase separation and
SG association.

Phosphorylation Suppresses in vitro Phase
Separation of CIRBP-RGG and Stress
Granules Association of CIRBP in Cells
It has been previously reported that the RG/RGG region of
CIRBP phase separates in vitro upon addition of RNA in a
concentration-dependent manner, and is essential for SG

FIGURE 2 | SRPK1-mediated phosphorylation of CIRBP-RGG impairs its phase separation and SGs recruitment. (A) Turbidity assay performed at a fixed
concentration of CIRBP-RGG and pCIRBP-RGG (both at 30 µM) with an increasing concentration of (UG)12 RNA. (B) Differential interference contrast microscopy
images illustrating CIRBP-RGG (upper panel) and pCIRBP-RGG (bottom panel) at a concentration 30 µM in the presence of 15 µM (UG)12 RNA. Images were
recorded over 30 min, scale bar is 10 µm. (C) 1H-15N HSQC spectra of 50 µM 15N-labeled CIRBP-RGG (left panel, in black) and 50 µM 15N-labeled pCIRBP-
RGG (right panel, in magenta) in the absence and presence of 50 µM (UG)12 RNA (in blue and dark-blue for CIRBP-RGG and pCIRBP-RGG, respectively). (D)
1H-NMR spectra of 50 µM 15N-labeled CIRBP-RGG (left panel, in black) and 50 µM 15N-labeled pCIRBP-RGG (right panel, in magenta) in the absence and
presence of (UG)12 RNA at a 1:1 stoichiometric ratio (in blue and dark-blue for CIRBP-RGG and pCIRBP-RGG samples, respectively). The spectra were recorded
immediately before the corresponding 1H-15N HSQC spectra in Figure 2C. (E) Association of CIRBP-EGFP (upper panel) and phosphorylated CIRBP-EGFP (lower
panel)with SGs in semi-permeabilized HeLa cells. Scale bar:10 μm. Yellow box indicates the zoomed-in images shown in Figure 2F. (F) Unmodified CIRBP completely
enters the SG as shown by a zoomed-in image of an exemplary SG and plot profiles of fluorescence intensities for G3BP1 and GFP-CIRBP along the yellow line. (G)
Quantification of the mean fluorescence intensity of CIRBP-EGFP and phosphorylated CIRBP-EGFP in SGs for three independent replicates with ≥44 SGs ± SEM. ***p <
0.0002 by an one-way ANOVA with Tukey’s multiple comparison test.
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recruitment in response to cellular stresses (Bourgeois et al.,
2020). Furthermore, we and others have shown that
asymmetric dimethylation of the RGG3 region in FUS reduces
its phase separation propensity (Hofweber et al., 2018; Qamar
et al., 2018). Here, we demonstrate that CIRBP-RGG is in vitro
phosphorylated by SRPK1, but it remains unclear whether
CIRBP-RGG phosphorylation could control biologically
relevant properties. Therefore, we aimed at deciphering
whether SRPK1-mediated in vitro phosphorylation of CIRBP-
RGG similarly regulates its ability to phase separate and to be
recruited into SGs.

In a turbidity assay measuring the optical density (OD) of
protein solution at 620 nm, we observed that titration of
increasing amounts of (UG)12 RNA to a fixed concentration of
pCIRBP-RGG yielded no increase in turbidity (Figure 2A). In
contrast and as expected, the turbidity of CIRBP-RGG in solution
increases with rising amounts of added RNA. In line with our
turbidity data, differential interference contrast (DIC)
microscopy shows the formation of small liquid-like
condensates of CIRBP-RGG in the presence of (UG)12 RNA,
whereas the ability to phase separate was reduced in pCIRBP-
RGG (Figure 2B). This demonstrates the inhibitory role of
in vitro phosphorylation on CIRBP-RGG phase separation. To
confirm the aforementioned findings, we examined the effects of
(UG)12 RNA incorporation to a 15N-labeled CIRBP-RGG or
pCIRBP-RGG in solution by means of NMR spectroscopy.
Addition of 1.0 stoichiometric equivalent of RNA caused a
substantial decrease of CIRBP-RGG NMR cross peak signal
intensity (Figure 2C). This is in line with previous data
reporting the formation of high-molecular weight RG/RGG:
RNA droplets (Bourgeois et al., 2020). Interestingly, a decrease
of NMR signal intensity in the corresponding one-dimensional
1H-NMR spectra after the addition of (UG)12 RNA to CIRBP-
RGG and pCIRBP-RGG is also observed, suggesting that
although pCIRBP-RGG has a reduced propensity to phase
separate in vitro it still can bind to RNA (Figure 2D).

To further confirm our findings in the cellular context, we
conducted a SG recruitment assay in cells semi-permeabilized by
digitonin (Hutten and Dormann, 2020). We have previously
reported that after adding recombinantly purified GFP- and
maltose-binding protein (MBP)-tagged full-length CIRBP to
semi-permeabilized cells, CIRBP accumulates in G3BP1-
positive SGs (Bourgeois et al., 2020). Here, after addition of
in vitro phosphorylated recombinant CIRBP-EGFP to semi-
permeabilized cells, we observed that SG association is
significantly reduced compared to the non-phosphorylated
protein (Figures 2E,G). To analyze localization of CIRBP to
cellular, cytoplasmic condensates in dependence of RG/RGG-
region phosphorylation in intact cells, we made use of our
previously described cytoplasmically anchored CIRBP reporter
(GCR2-GFP2-CIRBP, (Bourgeois et al., 2020)). In this reporter,
CIRBP localizes mainly in the cytoplasm due to fusion with the
hormone-binding domain of the glucocorticoid receptor (GCR).
When we compared enrichment of a phosphomimetic mutant
form of CIRBP, in which Ser 97, 115 and 130 were replaced by
aspartate; (CIRBP 3D) with CIRBP wt, we noticed a mild, but

significant reduction of the enrichment for the 3D mutant to
cytoplasmic condensates that stained positive for the SG protein
G3BP1 (Figure 3A). Importantly, mutation of the same serines to
alanines (CIRBP 3A) did not significantly affect this recruitment
compared to the wildtype. While the mean expression levels of
the reporters were relatively similar, we noted however, that in
some replicates the 3D mutant exhibited a slightly reduced
expression level compared to CIRBP wt and 3A, which could
also influence the level of SG localization to some extent.
Therefore, we binned data with similar expression levels to
allow for a direct comparison of cells with comparable
expression levels (Figure 3B) and confirmed a significant
reduction of the enrichment for the 3D mutant to cytoplasmic
condensates. These findings suggest that phosphorylation of the
RG/RGG region also lessens recruitment of CIRBP to
membraneless organelles in intact cells. We cannot exclude
that other potential SRPK1 phosphorylation sites contribute to
the observed SGs association impairment in the context of full-
length CIRBP in our semi-permeabilized cell assay, yet our
previous data demonstrated that the RG/RGG region of
CIRBP, and not its C-terminal RSY regions, drives SGs
association in cells (Bourgeois et al., 2020).

Furthermore, considering our results demonstrating the
inhibitory effects of serine phosphorylation of CIRBP-RGG on
its phase separation and SGs recruitment, we proceeded to
investigate how PRMT1-mediated arginine methylation of
CIRBP affects its SGs association. We observe that SG
recruitment of in vitro methylated CIRBP-EGFP in semi-
permeabilized cells is substantially reduced compared to the
non-methylated protein (Figure 4). Hence, our data remain in
agreement with a previous study showing reduction of LLPS and
SGs recruitment of methylated FUS, another RG/RGG-region
containing protein (Hofweber et al., 2018), and imply that both
serine phosphorylation and arginine methylation of CIRBP-RGG
weaken its ability to associate with SGs.

Collectively, our data reveal that SRPK1-mediated serine
phosphorylation of CIRBP-RGG reduces RNA-driven phase
separation in vitro and suppresses SGs recruitment of CIRBP.
Lastly, we uncover that arginine methylation, similarly to serine
phosphorylation, reduces SG recruitment of CIRBP-EGFP, hence
the biological implications of the co-existence of these two PTMs
and their mutual modulation in CIRBP and other RG/RGG-
region containing proteins remains yet to be discovered.

SRPK1-mediated Phosphorylation of
CIRBP-RGG Impairs its Binding to the
Nuclear Import Receptor Transportin-1
The nuclear import receptor Transportin-1 (TNPO1) binds its
cargoes through a proline tyrosine (PY)-NLS and an RG/RGG
region tomediate nuclear import (Lee et al., 2006; Dormann et al.,
2010; Bourgeois et al., 2020). We and others have shown that
TNPO1 binding to RG/RGG proteins, such as FUS or CIRBP, can
reduce their phase separation in vitro and SGs recruitment in
cells, thus exerting a chaperone-like function (Guo et al., 2018;
Hofweber et al., 2018; Qamar et al., 2018; Yoshizawa et al., 2018).
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Furthermore, arginine methylation of the RG/RGG region in
CIRBP weakens its interaction with TNPO1 (Hofweber et al.,
2018), but it is still unknown whether and how phosphorylation
of CIRBP-RGG affects transportin-1 binding.

To address this question, we utilized isothermal titration
calorimetry (ITC) to characterize binding between TNPO1
and pCIRBP-RGG. ITC analysis revealed that in vitro
phosphorylation of CIRBP-RGG precluded the binding of
TNPO1, whereas non-phosphorylated CIRBP-RGG bound
TNPO1 with an ITC-derived dissociation constant (Kd) of

124.4 ± 14.8 nM (Supplementary Figures S1A,B). These
results demonstrate that phosphorylation of CIRBP-RGG
substantially reduces binding to TNPO1.

RS/SR Phosphorylation Sites are Found
Next to RG/RGG Regions in a Variety of
Human Proteins
Given that the primary sequence of CIRBP-RGG contains serine
residues located in the proximity to the RG/RGG region with

FIGURE 3 | Recruitment of CIRBP into G3BP1-positive condensates in intact cells depends on phosphorylation of the RG/RGG region. (A) Association of GCR2-
GFP2-CIRBP (upper panel), GCR2-GFP2-CIRBP 3D mutant (middle panel), and GCR2-GFP2-CIRBP 3A mutant (bottom panel) with cytoplasmic condensates
positive for G3BP1 in HeLa cells. Scale bar: 20 μm. (B)Quantification of enrichment of GCR2-GFP2-CIRBPwt, 3D or 3Amutant in G3BP1-positive condensates over the
cytoplasm (foci/cyt ratio) as a mean of 4 independent replicates ± SEM depending on the cellular expression levels represented in bins of fluorescence intensity
units, adjusted p-values by 2-way ANOVA with Tukey’s multiple comparisons test; ns, non-significant.

FIGURE 4 | PRMT1-mediated arginine methylation of CIRBP-RGG reduces its SGs recruitment. (A) Association of CIRBP-EGFP (upper panel) and methylated
CIRBP-EGFP (metCIRBP; lower panel) with SGs in semi-permeabilized HeLa cells. Scale bar: 10 μm. Yellow box indicates the zoomed-in images shown in
Figure 4B. (B) Unmodified CIRBP completely enters the SG as shown by a zoomed-in image of an exemplary SG and plot profiles of fluorescence intensities for G3BP1
and GFP-CIRBP along the yellow line. (C)Quantification of themean fluorescence intensity of CIRBP-EGFP andmethylated CIRBP-EGFP in SGs for 4 independent
experiments using CIRBP from 2 independent methylation reactions with ≥44 SGs ± SEM, adjusted p-value: ****p < 0.0001 by one-way ANOVA with Tukey’s multiple
comparisons test; ns, non-significant.
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arginine residues serving as methylation sites (Figure 1A), we
performed a bioinformatic analysis to address the question of
how commonly RS/SR phosphorylation sites can be found within
or next to RG/RGG regions in the human proteome. We discovered
that 338 out of 1449 proteins containing a di-RG motif possess RS/
SR sites located within a distance of 5 residues (Figure 5A).
Subsequently, we examined whether serine residues that are
situated within or near RG/RGG regions can be phosphorylated,
and we uncovered that these serines can be modified in a similar
manner as in CIRBP-RGG (Supplementary Datasets S1, S2). Of
interest, we discovered that a number of the identified proteins can
carry both arginine methylation and serine phosphorylation sites in
their adjacent RG/RGG and RS/SR regions (examples given in
Supplementary Dataset S2; Figure 5B). Taken together, our
findings indicate the co-occurrence of RG/RGG and RS/SR
regions in a variety of human proteins and the possible crosstalk
between phosphorylation and arginine methylation within these
regions. We next sought to investigate the interplay between serine
phosphorylation and arginine methylation in CIRBP-RGG.

Arginine Methylation of CIRBP-RGG Inhibits
its SRPK1-mediated Phosphorylation and
vice versa
To dissect whether phosphorylation of CIRBP-RGG regulates
its arginine methylation and vice versa, we recorded a series
of 1H-15N-HSQC or 1H-13C-HSQC spectra over time to

follow in vitro phosphorylation and methylation reactions,
respectively, with measurements starting immediately after
reconstitution of the in vitro system. To analyze in vitro
methylation of phosphorylated CIRBP-RGG (pCIRBP-RGG),
recombinant 13C,15N-labeled pCIRBP-RGG was applied on a
gel filtration column to remove SRPK1 and transfer the
protein into methylation buffer. pCIRBP-RGG was then
in vitro methylated by addition of protein arginine
methyltransferase-1 (PRMT1) and S-adenosyl-L-
methionine (SAM) as a methyl group donor. Immediately
after preparing the in vitro methylation reaction, 1H-13C-
HSQC and 1H-15N-HSQC spectra were recorded and
examined for the appearance of a cross peak indicative for
arginine methylation (1Hδ 3.084 ppm,13Cδ 41.554 ppm)
(Figures 6A,B). The signal intensity of a 1H-13C NMR
cross peak corresponding to methylated arginine residues
in pCIRBP-RGG reached a plateau within approximately 9 h
after the reaction start, whereas for non-phosphorylated
CIRBP-RGG the plateau was achieved within 7 h
(Figure 6C). Consistent with reported methylarginines in
iPTM/PhosphoSitePlus, our analysis of 1H-13C-HSQC and
HCC(CO)NH spectra revealed that arginine residues 94, 101,
105, 112 and 116 are methylated in non-phosphorylated
CIRBP-RGG (Supplementary Figure S2). Based on triple
resonance assignment of methylated pCIRBP-RGG, the
presence of an attached methyl group was detected in
arginine residues 101, 105, 108, and 110 (Supplementary

FIGURE 5 | Analysis of distribution of coexisting RG/RGG and RS/SR regions in human proteome. (A) Venn diagram corresponding to the PROSITE analysis
(https://prosite.expasy.org/scanprosite/) of two motifs from protein sequences database filtered for human proteins (taxid:9606) harboring either 1) a di-RG motif (pink)
each spaced by zero to five amino acids [R-G-x(0-5)-R-G] or 2) a di-RGmotif in the presence of RS or SR in themiddle, after or before di-RGmotif(blue) spaced by zero to
five residues [R-G-x(0,5)-R-G-x(0,5)-R/S], [R/S-x(0,5)-R-G-x(0,5)-R-G] and [R-G-x(0,5)-R/S-x(0,5)-R-G]. These two groups of proteins were compared with each
other in the Venn diagram. (B) Domain organization of five putative human proteins possessing RS/SR motifs within or next to the RG/RGG region; architectural
representation was performed according to InterPro (https://www.ebi.ac.uk/interpro/protein/) and Uniprot (https://www.uniprot.org/) databases. RS/SR motifs located
in the proximity to RG/RGG regions are shown in orange, and serine residues that are reported to carry phosphorylation (according to iPTM and PhosphoSitePlus) are
illustrated in bold (red). Abbreviations used: hnRNP A0 - heterogeneous nuclear ribonucleoprotein A0; RRM – RNA recognition motif; LARP1B- La ribonucleoprotein
domain family member 1B; RBD - HTH La-type RNA-binding domain; RBM33 - RNA-binding protein 33 (drawn not in a scale); RBMX - RNA-binding motif protein, X
chromosome; RBM1CTR - C-terminal region present in RBM1-like RNA binding hnRNPs; RB- region necessary for RNA-binding; PAIRBP1 - plasminogen activator
inhibitor 1 RNA-binding protein; IHABP4_N - Intracellular hyaluronan-binding protein 4, N-terminal domain; mRBD - Hyaluronan/mRNA binding family domain.
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Figure S2). Resonance peaks allowing to assess the
methylation status of arginine 108 and 110 appeared only
in the spectrum of methylated pCIRBP-RGG, therefore we

cannot draw conclusions about their methylation status in
the context of the non-phosphorylated protein. Hence, the
presence of a phosphate group on serine residues 97 and 115

FIGURE 6 | Arginine methylation of CIRBP-RGG modulates its SRPK1-mediated phosphorylation and vice versa. (A) Overlay of 1H-13C HSQC spectra of 50 µM
13C-15N-labeled CIRBP-RGG in the absence (black) and presence of 10 µM PRMT1 and 2 mM SAM (orange). The region containing a peak corresponding to
methylated arginines is indicated by a dotted box, and the rising intensity of methylated arginine cross peak can be followed at the three exemplary time points shown in a
bottom right part of the spectrum. (B)Overlay of 1H-13C HSQC spectra of 13C-15N-labeled 50 µMmetCIRBP-RGG (sample as in Figure 6A; in orange) and 100 µM
pCIRBP-RGG in the presence of 40 µM PRMT1 and 2 mM SAM (in magenta). The region containing a peak corresponding to methylated arginines is indicated by a
dotted box. (C) Change of NMR signal intensities of cross peaks corresponding to methylated and non-methylated arginines in metCIRBP-RGG (in orange and black,
respectively) and pCIRBP-RGG (in magenta and dark-blue, respectively) over time (samples from Figure 6B). (D) 1H-15N HSQC spectrum of 50 µM 13C-15N-labeled
in vitromethylated CIRBP-RGG in the absence (orange) and presence of 25 µM SRPK1 (magenta) (E) Change of NMR signal intensity corresponding to cross peaks of
SRPK1-phosphorylated metCIRBP-RGG serine residues (sample from Figure 6D). (F)Comparison of the calculated phosphorylation level of serines 97, 115 and 130 in
pCIRBP-RGG (as in Figure 1E) with the only phosphoresidue (pSer130) in metCIRBP-RGG after the incubation with SRPK1 (sample from Figure 6D).
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prevented methylation of arginines 94, 112 and 116 located in
the proximity to the phosphoresidues.

Moreover, we examined how arginine methylation of CIRBP-
RGG affected the capacity of SRPK1 to in vitro phosphorylate
serine residues in CIRBP. To this end, purified 13C-15N-labeled
CIRBP-RGG was in vitro methylated and subjected to gel
filtration to remove PRMT1 (metCIRBP-RGG). After the
addition of SRPK1 and ATP to the solution of metCIRBP-
RGG, a 1H-15N NMR cross peak (1Hδ 8.620 ppm, 15Nδ
117.318 ppm) assigned to pSer130 was detected 1 h after the
reaction start (Figures 6D,E). For pCIRBP-RGG the final
phosphorylation level of pSer130 was estimated to 90%, while
in the case of metCIRBP-RGG this value equaled around 60%
(Figure 6F) and the signal of non-phosphorylated Ser130 could
still be detected (Figures 6D,E). Resonance peaks for
phosphoserines pSer97 and pSer115 were not observed in
phosphorylated metCIRBP-RGG (Figure 6D), and the
intensity of the peaks corresponding to the non-
phosphorylated species remained constant during the
experiment (Figure 6E). Compared to in vitro
phosphorylation of non-methylated CIRBP-RGG where the
maximal signal intensity of the pSer130 resonance peak was
achieved within approximately 1 h after the reaction start, for
metCIRBP-RGG the pSer130 signal intensity did not reach a
plateau after 12 h (Figures 6E,F). As serines Ser97 and Ser115 are
located in the direct vicinity of arginine residues in the RG/RGG
region, we suggest that the presence of methyl groups on these
arginines precludes the addition of a phosphate group to a
proximal serine presumably via steric effects.

In conclusion, our data show that phosphorylation of CIRBP-
RGG precludes methylation of arginine residues in direct
proximity to phosphoserines. Our results also indicate that
arginine methylation of CIRBP-RGG prevents SRPK1-
mediated phosphorylation of serines 97 and 115, and affects
kinetics of phosphorylation of serine 130, which is located more
distant to the RG/RGG region.

DISCUSSION

Here we show that CIRBP-RGG is a substrate for SRPK1-
mediated phosphorylation (Figure 1). By applying NMR
spectroscopy, we identified two novel phosphorylation sites in
CIRBP at positions Ser97 and Ser115, where Ser97 is located
outside of the consensus serine-arginine dipeptide recognition
motif. Furthermore, we demonstrated that arginine methylation
in the RG/RGG region of CIRBP suppresses phosphorylation of
serine residues 97 and 115 by SRPK1, and the phosphorylation
kinetics of phosphoserine 130 is slower compared to non-
methylated CIRBP-RGG (Figures 6D–F). The presence of
methyl groups on arginines might introduce a sterical
hindrance that precludes SRPK1 binding and in turn inhibits
phosphorylation of serines 97 and 115. We also found that
SRPK1-mediated phosphorylation of CIRBP-RGG prevented
methylation of arginines 94, 112 and 116 located in the
proximity to phosphoserines (Figures 6B,C, Supplementary
Figure S2). Aside from steric effects, the negatively charged

phosphate group could interfere via electrostatic repulsion
with the acidic region found in the enzymatic site of PRMTs
(Zhang and Cheng, 2003). Thus, we suggest the vicinity of
negatively charged phosphate groups to target arginines
prevents binding to PRMT1 active site and methylation of
arginines 94, 112, and 116 due to the electrostatic repulsion.
This is in line with the observation that negatively charged amino
acids next to the arginine disfavour methylation (Hamey et al.,
2018). Hence, our findings indicate that arginine methylation and
serine phosphorylation of CIRBP-RGG directly modulate each
other (Figure 7).

To our knowledge, the crosstalk between arginine methylation
and phosphorylation in the RG/RGG region has not been
previously reported for CIRBP. It has been shown that
arginine methylation within the RG/RGG region of yeast
hnRNP protein Npl3p prevents phosphorylation of Npl3p by
Sky1p, which is a yeast orthologue of SRPK1 (Yun and Fu, 2000;
Lukasiewicz et al., 2007). Smith et al. recently demonstrated that
Sky1p-mediated phosphorylation of the SRGG regions in
Saccharomyces cerevisiae fibrillarin (Nop1p) blocks arginine
methylation by Hmt1p (Smith et al., 2020). The authors also
reported that a loss of these PTMs results in an atypical nucleolar
localization. Of note, authors found that the presence of acidic
residues/phosphoserine in Nop1p at positions -1, -2, (and to a
smaller extent at -5 and +3) with respect to arginine in the SRGG
motif negatively affects Hmt1p-mediated methylation. In
contrast, we observed that phosphorylation of CIRBP-RGG
did not inhibit PRMT1-methylation of Arg101 (at position +4
from pSer97) and Arg110 (at position -5 from pSer115)
suggesting phosphorylation might exert more local inhibiting
effects on methylation in human RG/RGG proteins. Moreover,
the RG/RGG region of the herpes simplex virus 1 protein ICP27
has been demonstrated to interact with SRPK1 resulting in its
translocation from the cytoplasm to the nucleus, and this
interaction was decreased when arginine methylation was
blocked as demonstrated by co-immunoprecipitation and co-
localization studies (Souki and Sandri-Goldin, 2009).
Considering the aforementioned examples of the crosstalk
between arginine methylation and phosphorylation in RG/
RGG proteins, by conducting a bioinformatic analysis we
identified 338 di-RG motif-containing proteins that possess
RS/SR sites within a five residues distance and some of them
were reported to harbour simultaneously arginine methylation
and phosphorylation sites. Taken together, these findings
corroborate that the interplay between phosphorylation and
arginine methylation in RG/RGG regions of proteins may play
important roles across the RG/RGG proteome, and remains
largely understudied. In this respect, it would be interesting to
examine the effects of serine phosphorylation and arginine
methylation crosstalk on phase separation, SG recruitment,
and the binding to nuclear transport receptors for other
(identified) RG/RGG proteins.

We demonstrated that phosphorylation of CIRBP-RGG has
profound suppressing effects on its in vitro phase separation and
SG recruitment (Figure 2 and Figure 7). Phase separation of
CIRBP-RGG is induced by the presence of negatively charged
RNA, and is driven by multivalent interactions between these
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oppositely charged biomolecules. The positively charged
guanidino group of arginine in the RG/RGG region can be
involved in the electrostatic interactions, π-stacking, and
hydrogen-bonding with RNA molecules, which promote
heterogeneous phase separation (Chong et al., 2018). We
propose that the interactions of pCIRBP-RGG with RNA, and
hence its RNA-driven LLPS in vitro, are reduced via the following
mechanisms: 1) addition of phosphate groups to serine residues
in the proximity of the RG/RGG repeats decreases the overall
charge of the RG/RGG region disfavouring its electrostatic
interactions with the phosphate backbone of RNA; 2) the
incorporation of phosphate group can alter hydrogen bond
network of arginine as phosphates can form strong hydrogen
bonds with arginines (Mandell et al., 2007). A recent study
reported that SRPK1-phosphorylation of a serine/arginine-rich
domain in the nucleocapsid protein of severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) attenuates its RNA-
induced phase separation and partitioning into RNA-rich
polymerase-containing condensates (Savastano et al., 2020).
Furthermore, Shattuck et al. revealed that activity of the yeast
kinase Sky1 is required for efficient stress granule disassembly,
partly through phosphorylation of Npl3 (Shattuck et al., 2019).
These findings suggest that SRPK1-mediated phosphorylation
may play a “chaperone-like” role in reducing LLPS of certain
substrates and the formation of biomolecular condensates for a
larger class of proteins containing low-complexity domains
enriched in glycine, serine and positively charged arginine
residues. Further investigations are required to clarify the role
of phosphorylation on the dynamics of membrane-less organelles
in cells.

Additionally, our study revealed that SRPK1-mediated
phosphorylation of CIRBP-RGG impairs its binding to
TNPO1 (Supplementary Figure S1). The effects of
phosphorylation of cargo proteins on binding to their
nuclear import receptors seem to be dependent on the
system of interest (Nardozzi et al., 2010). As examples of up-
regulation of nuclear import upon phosphorylation can serve 1)

phosphorylation of Ser385 in the NLS of Epstein-Barr virus
nuclear antigen 1 (EBNA-1) protein that increases the binding
affinity for an importin α5, which in turn recruits a receptor
importin β1 (Kitamura et al., 2006); 2) the RS region of serine/
arginine-rich protein ASF/SF2 that acts as the NLS when
phosphorylated, while in an unphosphorylated form the
protein localizes to the cytoplasm (Lai et al., 2000); or 3)
Sky1p-mediated phosphorylation of Npl3p in S. cerevisiae
which leads to efficient interaction with the nuclear import
receptor Mtr10p (Yun and Fu, 2000). Whereas as examples of
down-regulation of nuclear import upon phosphorylation can
serve: 1) nuclear factor of activated T-cells (NFAT) which
resides in the cytoplasm when its serine-rich region is
phosphorylated, and translocates to the nucleus upon
calcineurin binding that dephosphorylates certain serine
residues causing the exposure of the NLS (Ortega-Pérez
et al., 2005); or 2) S. cerevisiae transcription factor Swi6, in
which the presence of phosphoserine160 or phosphomimetic
mutation at this site substantially decreases the binding affinity
for importin α1, and the nucleocytoplasmic localization and
phosphorylation state of Swi6 are dependent on the cell-cycle
state (Harreman et al., 2004). Elucidating how nuclear import is
regulated is also crucial for a better understanding of the
mechanisms governing the onset of neurodegenerative
diseases, such as ALS and FTD (Kwiatkowski et al., 2009;
Vance et al., 2009). In this respect, arginine methylation has
been demonstrated to affect nucleocytoplasmic transport of
FUS (Dormann et al., 2012), PABPN1 (Fronz et al., 2011),
SERBP1 (Lee et al., 2012), or CIRBP (Aoki et al., 2002).
Mutations in the C-terminal NLS of FUS, consisting of a PY-
NLS and a RG/RGG region, can lead to reduced binding to
TNPO1 and impaired nuclear import (Dormann et al., 2010;
Zhang and Chook, 2012). This causes the formation of
pathological cytoplasmic FUS aggregates and motor neuron
degeneration, with the most severe TNPO1 binding-
disrupting mutations resulting in early onset ALS and a
particularly fast progression of disease (Dormann et al.,

FIGURE 7 | Proposed model depicting arginine methylation and phosphorylation crosstalk in CIRBP-RGG. Graph illustrating the suppression of CIRBP-RGG
in vitro phase separation by phosphorylation and arginine methylation, as well as the crosstalk between arginine methylation and phosphorylation within CIRBP RG/RGG
region. The formation of liquid droplets and biomolecular condensates is shown in a simplifiedmanner as blue circles. Dotted line and the question mark indicate the lack
of consensus regarding arginine de-methylation, and PPH represents protein phosphatases.
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2010). Therefore, understanding the regulation of nuclear
import of RG/RGG region-containing proteins by means of
PTMs might allow the development of effective therapies
against neurodegenerative disorders.

It is intriguing to further speculate about possible advantages
of serine phosphorylation for CIRBP and other RG/RGG
proteins. Protein phosphorylation by kinases and
dephosphorylation by phosphatases provide a dynamic
control mechanism critical for the regulation of cellular
processes, such as signal transduction, protein synthesis, cell
growth, development, division, and aging (Ardito et al., 2017;
Gelens and Saurin, 2018). Phosphorylation thus acts as a rapid
switch, quickly modulating protein function in response to
signals (Hofweber and Dormann, 2019). In contrast, transfer
of methyl groups to arginine residues catalysed by protein-
arginine methyltransferases is a much slower process (Zhang
et al., 2021), and whether this modification can be reversed (and
which enzyme catalyses demethylation reaction) remains until
now poorly understood (Guccione and Richard, 2019). Arginine
methylation is therefore significantly more stable and static
compared to serine phosphorylation (Zhang et al., 2021),
which can be erased within minutes (Gelens and Saurin,
2018). Consequently, we hypothesize that phosphorylation of
CIRBP-RGG offers a means of dynamic regulation of its phase
separation in vitro, SG association, and protein-protein
interactions (e.g. with nuclear import receptor TNPO1) in
response to cellular signals. Serine phosphorylation, by
suppressing in vitro LLPS and triggering disassembly of SGs
(i.e. exerts similar effects as arginine methylation), might be
beneficial for cells when a rapid modulation of protein function
is necessary, or when arginine methylation level is decreased,
e.g. due to methionine deprivation, aggregation of PRMTs, or in
senescent cells (Hong et al., 2012; Tang et al., 2015; Albrecht
et al., 2019). Arginine methylation could then rather serve as a
“protein quality control” mechanism regulating protein
homeostasis and phase separation, and may be especially
relevant in modulating function of neurons that require this
modification for a proper stress response (Simandi et al., 2018).

Of note, our findings reveal that CIRBP-RGG can carry both
phosphorylation and arginine methylation simultaneously
(Figure 6, Supplementary Figure S2). Considering that both
modifications play similar roles in regulating phase separation
in vitro - it remains to be clarified whether they cooperate or
interfere with each other. Our bioinformatic analysis suggest that
serine phosphorylation within RG/RGG regions might constitute
a general mechanism for the dynamic regulation of phase
separation of RG/RGG proteins. Still, the manner in which
serine phosphorylation affects protein-protein interactions and
subcellular localization can be protein specific.

In conclusion, our results imply that PTMs should be seen as
key regulators of RBPs phase separation and nucleocytoplasmic
transport, and the intricate crosstalk between multiple PTMs
serves to fine-tune to changing cellular conditions. As exemplified
here for the RG/RGG region of CIRBP, it is essential to study
intrinsically disordered regions carrying PTMs when one intends
to investigate the regulation of phase separation in vitro and the
formation of protein aggregates.
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