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Background: Leptin receptor overlapping transcript (LEPROT) is reported to be involved
in metabolism regulation and energy balance as well as molecular signaling of breast
cancer and osteosarcoma. LEPROT is expressed in various tissue and is suggested to be
involved in cancer developments but with contradictory roles. The comprehensive
knowledge of the effects of LEPROT on cancer development and progression across
pan-cancer is still missing.

Methods: The expressions of LEPROT in cancers were compared with corresponding
normal tissues across pan-cancer types. The relationships between expression and
methylation of LEPROT were then demonstrated. The correlations of LEPROT with the
tumor microenvironment (TME), including immune checkpoints, tumor immune cells
infiltration (TII), and cancer-associated fibroblasts (CAFs), were also investigated. Co-
expression analyses and functional enrichments were conducted to suggest the most
relevant genes and the mechanisms of the effects in cancers for LEPROT. Finally, the
correlations of LEPROT with patient survival and immunotherapy response were explored.

Results: LEPROT expression was found to be significantly aberrant in 15/19 (78.9%)
cancers compared with corresponding normal tissues; LEPROT was downregulated in 12
cancers and upregulated in three cancers. LEPROT expressions were overall negatively
correlated with its methylation alterations. Moreover, LEPROT was profoundly correlated
with the TME, including immune checkpoints, TIIs, and CAFs. According to co-expression
analyses and functional enrichments, the interactions of LEPROT with the TME may be
mediated by the interleukin six signal transducer/the Janus kinase/signal transducers and
activators of the transcription signaling pathway. Prognostic values may exist for LEPROT
to predict patient survival and immunotherapy response in a context-dependent way.

Conclusions: LEPROT affects cancer development by interfering with the TME and
regulating inflammatory or immune signals. LEPROT may also serve as a potential
prognostic marker or a target in cancer therapy. This is the first study to investigate
the roles of LEPROT across pan-cancer.
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INTRODUCTION:

Cancer is one of the leading causes of death, and the incidence
and mortality are rapidly growing worldwide (Bray et al., 2018;
Siegel et al., 20192019; Sung et al., 2021). A better understanding
of the complex molecular signals of cancer initiation and
progression will facilitate the identification of targeted
therapeutic approaches.

Cancer cells are avid fans of making more copies of
themselves, but this aberrant proliferation is accompanied
by an extreme environment for cells, for instance, hypoxia
and an inadequate blood supply due to abnormal
vascularization. Therefore, the molecular “survival of the
fittest” scenario plays out in cancer cells. In order to
survive, they acquire a number of characteristic alterations,
such as maintaining certain genetic variants that confer
advantages on clones, altering the pathways in cellular
metabolism, and developing unique ways of interacting with
the microenvironment (Weinberg, 2007). To achieve these
changes, cancer cells hijack and reprogram the existing
signaling circuitry, which is the foremost system of
communication among cells, rather than demolishing the
entire system. Thus, signaling pathways might generate
different outcomes in normal and cancer cells or even
different cell types; the activation of signaling molecules
may also have different consequences, depending on the
cellular environment (Weinberg, 2007). Therefore, pan-
cancer studies of signaling pathways and signaling
molecules could provide a better overall understanding of
their roles in cancer initiation and progression and be
helpful for identifying potential therapeutic targets.

Leptin signaling is key in regulating energy balance and
metabolic homeostasis in normal cells (Myers et al., 2008; Stern
et al., 2016). It is suggested to be also involved in cancer
development by mediating the Janus kinase/signal transducers
and activators of transcription (JAK/STAT) cascade pathway
(Mullen and Gonzalez-Perez, 2016), which induces proliferation
and angiogenesis of cancer cells (Mullen andGonzalez-Perez, 2016;
Wang et al., 2018) and regulates the immune responses to tumors
(Zhang et al., 2020a). Leptin exerts its biological action majorly
through binding to and activating the leptin receptors (LEPR)
(Garofalo and Surmacz, 2006; Ghasemi et al., 2019), and the gene
encoding LEPR overlapping transcript (LEPROT), which is shown
to negatively regulate leptin signaling by reducing expressions of
LEPR on the cell membrane, is considered as an anticancer factor
in cancer progression. However, a more recent study paradoxically
reported that LEPROT could activate the JAK/STAT signaling (Li
et al., 2019), which may theoretically facilitate cancer development
(Mullen and Gonzalez-Perez, 2016). Therefore, the role of
LEPROT in tumors may not be limited to the previous
cognition that it only serves as a negative regulator of leptin
signaling.

Because of conflicting reports on the impacts of LEPROT
on downstream signaling and cancer progression, and the lack
of investigation on it, we aimed to illustrate the role of
LEPROT in tumor initiation and tumor progression across

multiple cancer types by bioinformatic analysis. In the current
study, we first provide a full description of the LEPROT
expression in pan-cancer and their molecular subtypes as
well as the correlation between LEPROT and the tumor
microenvironment (TME), in particular, the immune cells
infiltration and cancer-associated fibroblasts (CAFs). In
addition, to better understand the molecular mechanisms
of LEPROT, the most relevant molecules and signaling
pathways of LEPROT were identified.

MATERIALS AND METHODS

Data Sources and Processing
The gene expression data of LEPROT and clinical follow-up
information in pan-cancer atlas studies were extracted from
The Cancer Genome Atlas (TCGA) database (Tomczak et al.,
2015) using the cBio cancer genomics portal (cBioPortal)
cBioPortal server (https://www.cbioportal.org/) for further
analysis (Cerami et al., 2012; Gao et al., 2013). Apart from
the expression profiles of TCGA, the Genotype-Tissue
Expression (GTEx) database, which builds on molecular
profiling of nondiseased tissue sites; the NCBI’s Gene
Expression Omnibus (GEO), which stores curated gene
expression data sets and might serve as a complement of
TCGA data sets; and the European Genome-phenome
Archive (EGA) are also included in the current study. The
abbreviations of the types of cancers examined in our analyses
are as follows: ACC: adrenocortical carcinoma; BLCA: bladder
urothelial carcinoma; BRCA: breast invasive carcinoma; CESC:
cervical squamous cell carcinoma; CHOL:
cholangiocarcinoma; COAD: colon adenocarcinoma; CRC:
colorectal carcinoma; DLBC: lymphoid neoplasm diffuse
large B cell lymphoma; ESCA: esophageal carcinoma; GBM:
glioblastoma multiforme; LGG: brain lower grade glioma;
HNSC: head and neck squamous cell carcinoma; KICH:
kidney chromophobe; KIRC: kidney renal clear cell
carcinoma; KIRP: kidney renal papillary cell carcinoma;
LAML: acute myeloid leukemia; LIHC: liver hepatocellular
carcinoma; LUAD: lung adenocarcinoma; LUSC: lung
squamous cell carcinoma; MESO: mesothelioma; OV:
ovarian serous cystadenocarcinoma; PAAD: pancreatic
adenocarcinoma; PCPG: pheochromocytoma and
paraganglioma; PRAD: prostate adenocarcinoma; READ:
rectum adenocarcinoma; SARC: sarcoma; SKCM: skin
cutaneous melanoma; STAD: stomach adenocarcinoma;
TGCT: testicular germ cell tumors; THCA: thyroid
carcinoma; THYM: thymoma; UCEC: uterine corpus
endometrial carcinoma; UCS: uterine carcinosarcoma; and
UVM: uveal melanoma; STES: stomach and esophageal
carcinoma cohort; KIPAN, Pan-kidney cohort (KICH +
KIRC + KIRP). Plots in the study were conducted in
Graphpad Prism 9.0, R version 4.0.5, or downloaded from
online servers and then compiled and edited by Affinity
Designer 1.8.5. All data or analyses are in accordance with
the latest version in July 2021.
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LEPROT Expression in Tumor and Normal
Tissue or Among Different Cancer
Molecular Subtypes
The Human Protein Atlas (HPA, https://www.proteinatlas.org/) is a
comprehensive resource for the exploration of the human proteome,
and it contains information ofmRNAexpression and protein level in
cells, tissues, and organs (Uhlén et al., 2015). The LEPROT
expression level in normal tissues was achieved from HPA based
on the GTEx database. An overview plot to compare LEPROT
mRNA expressions in tumor tissues and corresponding normal
tissues across TCGA cancer types was achieved by the “Cancer
Exploration” > “Gene_DE” module of TIMER2.0 (http://timer.
comp-genomics.org/) (Li et al., 2020). TIMER is currently using
the expression data of tumor tissues and the corresponding normal
tissues in TCGA of the latest version. Differences in LEPROT
mRNA expression between the tumor and the corresponding
normal tissues were also shown by boxplots generated by the
UALCAN (http://ualcan.path.uab.edu/analysis.html), a web portal
for analyses, including expression distributions according to data
from the TCGA and Clinical Proteomic Tumor Analysis
Consortium (CPTAC) data set (Chandrashekar et al., 2017; Chen
et al., 2019a). Expression of LEPROT (presented as log2 [counts per
million (CPM)]) among molecular subtypes across pan-cancer were
checked by the “Subtype”> “Molecular subtypes”module of TISIDB
portal (http://cis.hku.hk/TISIDB/index.php) (Ru et al., 2019) with all
17 available cancer types analyzed, including ACC, BRCA, COAD,
ESCA, GBM, HNSC, KIRP, LGG, LIHC, LUSC, OV, PCPG, PRAD,
READ, SKCM, STAD, and UCEC, and those significant ones
presented (p-value < .05). Mutation features of LEPROT in the
TCGA pan-cancer samples were analyzed using the cBioPortal.
“TCGA Pan Cancer Atlas Studies” was selected before
“LEPROT” was queried in “Query by gene” to get the results of
the gene alteration patterns across pan-cancer types in the “Cancer
Types Summary” module.

Correlations of LEPROT Expression and
Methylation
LinkedOmics (http://www.linkedomics.org/) is a web portal for
comprehensive multigroup data analysis for multiple cancer
types (Vasaikar et al., 2018). The relationship of LEPROT
DNA methylation (methylation preprocessor, presented as
beta values (value-0.5) with its mRNA expression (presented
as RNA-Seq by Expectation-Maximization (RSEM), Log2
(value + 1)) across cancer types was analyzed using the
LinkedOmics with Methylation450 and high-output RNA
sequencing (HiSeq) data. Pearson correlation was conducted
for a correlation coefficient R and a p-value for each cancer type.

Gene Expression Correlation Analysis
Partial correlation analysis between LEPROT and expression or
mutation status of certain genes was conducted using the
“Exploration” > “Gene_Corr”/“Gene_Mutation” module of
TIMER2.0. The heatmap of the correlations shows the
coefficient of Spearman correlation with red indicating a
statistically significant positive association and blue indicating

a statistically significant negative association (significant when
p < .05); gray denotes a nonsignificant result. The scatterplots
were based on log2 [TPM]. The cBioportal was used to identify
the top 500 LEPROT-correlated genes and to generate
scatterplots of the correlations of LEPROT and genes of
interest across cancer types, via selecting each “PanCancer
Atlas” study before “LEPROT” was queried in “Query by
gene” to obtain the top correlated genes with LEPROT in the
“coexpression”module. The intersection of the top 500 correlated
genes among different cancer types was obtained and visualized
using the Upset tool by R package “UpSetR” (Lex et al., 2014).

The TME Estimation
The stromal and immune scores were obtained by the Estimate
algorithm (https://bioinformatics.mdanderson.org/estimate/)
(Yoshihara et al., 2013). A higher stromal or immune score
indicates a larger number of stromal or immune components;
the ESTIMATE score is the sum of the stromal and immune
scores. The relationship between stromal/immune/ESTIMATE
scores and LEPROT expression is indicated by the Pearson
correlation coefficient and visualized by R package “ggplot2”
(Wickham, 2016). The relationship between LEPROT and
infiltrating CD4+, CD8+, regulatory T cells, and CAFs are
demonstrated by the “Immune” > “Gene” module of TIMER2.
0 with results conducted by different algorithms, including
TIMER (Li et al., 2016), xCell (Aran et al., 2017), MCP-
counter (Becht et al., 2016), CIBERSORT (Newman et al.,
2015), EPIC (Racle et al., 2017), and quanTIseq (Finotello
et al., 2019). Overall correlations of LEPROT expression and
gene signatures (including signatures of specific immune cells or
CAFs) using expression data from all cancer samples were
generated by the “Correlation Analysis” module of the web
server GEPIA2 (http://gepia2.cancer-pku.cn/) (Tang et al., 2019).

Protein–Protein Interaction and Enrichment
Analysis
Gene Set Enrichment Analysis (GSEA) software (Subramanian
et al., 2005) was established to determine the statistically
significant gene sets in the comparison between different
subgroups. GSEA (Version 4.10) was obtained from the Broad
Institute (http://software.broadinstitute.org/gsea/index.jsp).
Expression profiles of cancer studies were pre-ranked
according to the Pearson correlation coefficient with LEPROT
and input with the annotation file “H: hallmark gene sets” and
“C5: gene ontology sets”. The cutoff values were predefined as
FDR<0.25. GeneMANIA (http://www.genemania.org) (Warde-
Farley et al., 2010) was used to construct protein–protein
interaction networks of certain proteins and related proteins
and enrich the co-regulated genes into functions. The proteins
were connected based on “physical interactions,” “co-
expression,” “predicted co-localization,” “genetic interactions,”
and “pathway shared” protein domains.”

Survival Analysis
Survival analysis was conducted using R package “ggplot2”
(Wickham, 2016) to get forest plots showing the hazard ratio
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and p-value for overall survival (OS) or disease-specific survival
(DSS) in patients across cancer types in TCGA, based on
LEPROT high versus low expression, in the Sangerbox tools, a
free online platform for data analysis (http://www.sangerbox.
com/tool). Kaplan–Meier analysis of OS or recurrence-free

survival (RFS) was obtained using the Kaplan–Meier plotter
(KM-plotter) (www.kmplot.com) (Nagy et al., 2021), using
“mRNA” > “Start KM Plotter for pan-cancer” module with
the setup of “split patients by auto select best cutoff” to divide
LEPROT mRNA into high and low groups.

FIGURE 1 | Aberrant expression of LEPROT gene in different tumors and its correlation with methylation enzyme genes and mismatch repair genes. (A) The
expression status of the LEPROT gene in different cancers or specific cancer subtypes was compared with corresponding normal tissues through TIMER2. *p < .05;
**p < .01; ***p < .001. (B) The violin plots of the LEPROT gene expression in different molecular subtypes of LGG, BRCA, OVA, STAD, LUSC, and PRAD (p < .05 among
the subtypes). (C) Pearson correlation analysis of LEPROT with expressions of DNA methyltransferases (upper panel), oncogenes (middle panel), and tumor-
suppressor genes (lower panel) in pan-cancer types.
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Correlations of LEPROT Expression and
Patient Responses to Immune Checkpoints
Inhibitors Therapy
Gene expression profile and corresponding clinical responses to
immune checkpoint inhibitors (CPIs) in GSE67501 and
GSE79691 data sets were downloaded from the GEO database
(https://www.ncbi.nlm.nih.gov/gds). The associations of
LEPROT expression and patient responses to CPIs were
investigated by comparing LEPROT-low (lower than the
median) and LEPROT-high (higher than the median) groups
using the Mann–Whitney U test. A simple logistic regression was
also conducted to generate a receiver operating curve (ROC).
Graphpad Prism 9.0 was used to conduct statistics.

RESULTS

LEPROT is Aberrantly Expressed in Human
Cancers
As LEPROT was expressed widely in human tissues (Uhlén et al.,
2015), we first explored the level of LEPROT in different tissues,
especially in normal and tumor tissues across organs. By
exploring the HPA and GTEx databases, LEPROT was found
to be highly expressed in female genital organs, including the
endometrium, cervix, and placenta and also in the kidney
(Supplementary Figure S1A). The mRNA level of LEPROT
was various in different tissues with relatively low tissue and
low cell-type specificity (Supplementary Figure S1A).

Moreover, a comparison between tumor tissues and adjacent
normal tissues showed the LEPROT mRNA levels were
significantly lower in the tumor tissues of BLCA, BRCA,
COAD, KICH, KIRC, KIRP, LUAD, LUSC, PRAD, READ,
THCA, and UCEC (p < .001) and higher in CHOL (p < .001),
GBM (p < .01), and HNSC (p < .05) (Figure 1A) compared with
the corresponding normal tissues. Thirteen cancers (ACC, DLBC,
LAML, LGG, MESO, OV, PCPG, SARC, SKCM, TGCT, THYM,
UCS, UVM, UCEC, and PCPG) were removed from the
comparison analysis due to a lack of corresponding normal
tissue or a normal tissue sample of less than three cases.
Similar results were also observed in the UALCAN
(Supplementary Figure S1B). Further evaluation of LEPROT
mRNA levels was performed in different molecular subtypes
across pan-cancer types. LEPROT was found to be distinctly
expressed in different molecular subtypes of LGG, BRCA, OV,
HNSC, STAD, LUSC, PRAD, and PCPG (p < .05) (Figure 1B).
Specifically, LEPROT was expressed in a significantly lower level
in the proliferative subtype of OV (p < .05) and in a significantly
higher level in the mesenchymal subtype of HNSC (p < .05)
(Figure 1B), suggesting that LEPROT might be related to more
aggressive subtypes.

To investigate whether the alterations of expression or
functional roles of LEPROT resulted from its mutations, the
mutation feature of LEPROT in TCGA pan-cancer atlas was
examined and demonstrated in Supplementary Figure S2A. The
pan-cancer mutation spectra of LEPROT indicated a low mutant
frequency of LEPROT across all cancer types with the maximal

alteration frequency of LEPROT in SARC (only 3.14%). There
was no significant difference between the expression of LEPROT
in wild-type and mutated cases except for the limited LEPROT-
mutated cases (n � 2) in COAD that had a lower level of LEPROT
compared with LEPROT wild-type cases (p < .05)
(Supplementary Figure S2B). These results indicate LEPROT
was aberrantly expressed in cancer tissues, but it did not result
from its mutations in most cancer types.

Correlations of LEPROT Expression With its
Methylation Level and DNA Methylation
Transferases Expression Across TCGA
Pan-Cancer Types
To interpret the cause of low LEPROT expression across cancer
types, DNA methylation of LEPROT, the epigenetic
modifications that altered gene expression, were investigated.
First, correlations of LEPROT expression and methylation
level were examined by LinkedOmics. It revealed LEPROT
methylation reduced its expression in most cancer types
except for ACC, BLCA, HNSC, KICH, MESO, SKCM, and
UCEC (Supplementary Figure S3). The negative correlations
between the expression of LEPROT and its methylation were
most significant in OV (Pearson R � -0.745, p � .02) and CHOL
(Pearson R � -0.523, p � .001). In addition, as key factors in
regulating DNA methylation levels (Cui and Xu, 2018), the
correlation of the DNA methyltransferase (DNMT) family
(DNMT1, DNMT2, DNMT3A, DNMT3B) and LEPROT
expression were also investigated. Unexpectedly, the expression
of LEPROT was positively correlated with that of DNMT1 and
DNMT3A but not DNMT3B in most cancers (Figure 1C) and
was consistently positive-correlated with DNMT2 in all cancers.
Therefore, we further examined the correlation between DNMTs
and methylation level of LEPROT, and the results show no
significant correlations, represented by DLBC and OV
(Supplementary Figure S3B, C). These results suggest that
the aberrant expression of LEPROT might be regulated by
DNA methylations, but the methylation level of LEPROT was
regulated independent of DNMTs.

LEPROT is Correlated With Tumor
Suppressor Genes Across TCGA
Pan-Cancer Types
Tumorigenesis is often driven by mutation or compromising of
tumor-suppressor genes, which restricted the cell cycle and
repaired DNA (Lee and Muller, 2010; van der Weyden et al.,
2012). Although, generally, mutations of tumor suppressor genes
did not result in the alteration of LEPROT expression
(Supplementary Figure S4A), the expression of tumor-
suppressor genes is shown to be highly related to LEPROT
expression. Tumor-suppressor genes BAX, CDKN2A, and
MSH5 were negatively correlated with LEPROT in multiple
cancer types, and most tumor-suppressor genes were suggested
to be positively correlated with LEPROT in a gene-consistent way
across cancer types (Figure 1C). Notably, as tumor-suppressor
genes, mismatch repair (MMR) genes constitute theMMR system
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FIGURE 2 | Correlation analysis between LEPROT expression and TME conditions. (A) Correlations between LEPROT expression and stromal, immune, and
ESTIMATE scores were conducted using Pearson correlation for each cancer type; the innermost cycle represents p-values of the Pearson correlation, and the middle
cycle represents correlation coefficient. Some representative scatterplotsare demonstrated in the right panel. (B) Correlation heatmaps using different algorithms
showing the potential correlation between the expression level of the LEPROT gene and the infiltration level of CD4+, CD8+, and regulatory T cells as well as CAFs
across all types of cancer in TCGA, analyzed by TIMER2. (C) Correlation heatmaps showing the correlation between the expression level of the LEPROT gene and TME
genes, including PD-L1, CTLA-4, PD-1, and TLR1-10 across all types of cancer in TCGA analyzed by TIMER2. (D)Correlation plots showing the correlation between the
expression level of the LEPROT gene and signatures of different infiltrated immune cells across all types of cancer in TCGA, analyzed by GEPIA2. (E) Scatter correlation
plots showing the correlation between LEPROT and PD-L1 in PAAD (upper panel) and between LEPROT and TLR5 in PRAD (lower panel) as representatives for the
heatmap in (C).
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that recognizes and repairs DNA mistakes (Marti et al., 2002;
Putnam, 2016), six of which (MLH1, MLH3, MSH2, MSH3,
MSH6, and PMS2) was overall positively correlated with
LEPROT in mRNA expression. These results suggest that the
aberrant expression LEPROT may be accompanied by abnormal
tumor suppressor gene functions, especially compromised DNA
mismatch repair.

LEPROT is Positively Correlated With
Oncogenes
Oncogenes are genes that are abnormally expressed and have the
potential to drive cancer. To understand the role of the aberrantly
expressed LEPROT in cancer development, we explored the
correlation between the mRNA expression level of LEPROT
and commonly reported oncogenes across various cancer types
by TIMER2. As shown in Figure 1C, LEPROT expression was
positively correlated with most oncogenes in a broad spectrum of
cancer types, suggesting a role of LEPROT in promoting cancer
progression. However, mutations of oncogenes did not result in
the alteration of LEPROT expression (Supplementary Figure
S4B), which indicated that mutations of those oncogenes did not
drive expression alterations of LEPROT.

Correlations of LEPROT With TME
As a member of the leptin signaling pathway, LEPROT was not
only involved in the regulation of intracellular signaling pathways
but, more importantly, was involved in the interaction of tumor
cells with the extracellular TME, which played a regulatory role in
tumor progressing through reversible changes in signal
transduction or gene expression programs. Thus, we next
estimated the association of LEPROT and TME components.
Stromal score, which was calculated based on gene signature, was
a direct quantitative indicator of stromal cell infiltration in the
microenvironment. Thus, the relationship between LEPROT
expression and stromal scores was first estimated. Pearson
correlation analysis showed LEPROT expression was positively
correlated with the stromal score in 23/33 cancers (69.7%; they
were BLCA, BRCA, CESC, COAD, DLBC, ESCA, GBM, HNSC,
KICH, KIRC, LGG, LIHC, LUAD, LUSC, OV, PAAD, PCPG,
PRAD, READ, SARC, STAD, TGCT, and UCEC (p < .05))
without any significant negative correlation among TCGA
cancer types (Figure 2A).

To better understand which stromal components were
positively associated with LEPROT, we checked the
relationship between LEPROT mRNA level and immune cell
infiltration (TII). As the most important compositions of the
stromal, the ratio of TII reflected by immune score was calculated.
It was positively correlated with LEPROT expression in COAD,
DLBC, GBM, HNSC, KICH, LGG, LIHC, LUAD, LUSC, OV,
PAAD, PCPG, PRAD, READ, STAD, and UVM and negatively
associated with LEPROT only in TGCT and KIRP (Figure 2A).
These results aroused our interest because the composition of TII
cells could serve as biomarkers for predicting patient responses to
treatment and survival in terms of chemotherapy and
immunotherapy (Zhang et al., 2019). As the immune score
reflecting TII as a whole, the composition of TII cells was

further examined, especially the distinct T cells in cancers.
TIMER2, which offers many existing algorithms (Li et al.,
2020; Aran et al., 2017; Newman et al., 2015; Racle et al.,
2017; Li et al., 2017) for estimating tumor-infiltrating immune
cell populations, showed a remarkable correlation between
LEPROT expression and CD4+, CD8+, and regulatory T cells
(Figure 2B). Generally, the correlation was presented in a type-
dependent manner and algorithm-dependent way. But the
positive relationship of LEPROT and memory CD4+ T cells
resting, and the negative relationship of LEPROT and Th1
seemed to be strong and consistent across most cancer types.
Moreover, CAFs, a prominent component of the
microenvironment in most types of solid tumors, which are
also considered to be involved in TII (Barrett and Puré, 2020),
were also shown to consistently positively correlate with LEPROT
expression regardless of the cancer types (Figure 2B). The
LEPROT mRNA level was overall positively correlated with
the signatures of effect T cells, resident memory T cells, Th1
cells, and CAFs across all cancer types using whole TCGA cancer
data sets (Figure 2D).

Considering that LEPROT was highly associated with TII, we
next investigated its association with expressions of immune
checkpoint molecules (ICMs). ICMs and the composition of
the TME are shown to influence each other intensively and
both influence the effect of immune therapy (Jiang et al., 2019;
Wang et al., 2019a; Wang et al., 2019b; Zhang et al., 2020b; Lee
et al., 2019). ICMs, including programmed death 1 (PD-1),
programmed cell death ligand 1 (PD-L1), and cytotoxic T
lymphocyte-associated antigen 4 (CTLA-4), which played key
roles in immune checkpoint inhibition, were included in the
correlation analysis. As shown in Figure 2C, PD-L1 was

TABLE 1 | Inflammation or immune response enriched in hallmark by GSEA.

Geneset TCGA studies Nes p-value

IL6 JAK STAT3 signaling BLCA 2.13 0.000
BRCA 1.80 0.000
COAD 2.12 0.000
KIRC 1.23 0.104#

STAD 2.08 0.000
Inflammatory response BLCA 1.88 0.000

BRCA 2.14 0.000
COAD 2.37 0.000
KIRC 1.39 0.004
STAD 2.34 0.000

Complement BLCA 1.99 0.000
BRCA 1.68 0.000
COAD 1.99 0.000
KIRC 1.31 0.017
STAD 1.79 0.000

TNF-a siganaling via NFKB BLCA 2.17 0.000
BRCA 1.83 0.000
COAD 1.93 0.000
KIRC 0.73 1.000#

STAD 2.13 0.000
IL2 STAT5 signaling BLCA 1.48 0.000

BRCA 1.45 0.003
COAD 1.76 0.000
KIRC 1.12 0.162#

STAD 1.72 0.000
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positively correlated with LEPROT in all cancer studies, and PD-1
and CTLA-4 were limited related to LEPROT (Figure 2C). Apart
from ICMs, cumulative evidence suggests profound and complex
roles of toll-like receptor (TLR) signals in TME (Angrini et al.,
2020). And TLR1-10 showed an overall positive correlation with
LEPROT expression (Figures 2C,E). All results above suggest
that LEPROT was involved in the interactions of tumor cells with
TME, especially with TII and CAFs.

Analysis of LEPROT Functional Enrichment
and Interaction Network
To gain mechanistic insight into LEPROT, GSEA was performed
on five TCGA studies (BLCA, BRCA, COAD, KIRC, and STAD).
Pre-ranked lists of genes according to the Pearson correlation
coefficient with LEPROT were adjusted for the investigation of
enriched genes involving hallmarks, gene ontology (GO), and
pathways. Not surprisingly, inflammatory/immune response
markers and extracellular component-related pathways were
enriched in these cancer types. Items significantly enriched in
hallmarks were inflammatory or immune response, including
IL6_JAK_STAT3 signaling, inflammatory response,
complement, TNF-alpha signaling via NFKB, and IL2_STAT5
(Table 1). Items significantly enriched in GO analysis were
extracellular matrix structural constituent, collagen binding of
molecular functions (MF), cell matrix adhesion, cell substrate
adhesion, cell substrate junction organization, and regulation of

cell substrate junction organization in biological process (BP)
(Table 2). These enrichment items once again illustrated the
interactions of LEPROT with the TME, especially with the
extracellular matrix and immune response.

Analysis of LEPROT-Related Genes
To further identify the key genes that interacted with LEPROT in
tumorigenesis and tumor progression, LEPROT co-regulated
genes were examined using the cBioportal. Intersection
analyses were performed among 28 non-germ cell solid
cancers with the top 500 LEPROT-related genes
(Supplementary Table S1, Figure 3A), from which IL6ST
turned out to be the only intersected gene. Pearson correlation
analysis was performed on the level of LEPROT and the top 10
intersected genes. The genes JAK1, JAK2, and STAT3 were also
included in the analysis as they were the downstreammolecules of
IL6ST (Sanz-Moreno et al., 2011; Looyenga et al., 2012; Pilati and
Zucman-Rossi, 2015) (Figure 3B). Results show that the level of
LEPROT was consistently positively correlated with that of JAK1,
JAK2, and STAT3 (Figure 3B), which suggested that JAK1/2/
STAT3 might be the downstream LEPROT and mediate cancer
cell proliferation and TME alterations. Moreover, to better
understand the way they interacted with each other,
GeneMANIA was used to construct protein–protein
interaction networks of proteins encoded by LEPROT, genes
highly co-regulated with IL6ST and their correlated proteins
(Figure 3C). Functional enrichment analysis for these proteins

TABLE 2 | Extracellular matrix enriched in GO analysis by GSEA.

Geneset TCGA studies Nes p-value

GOMF: EXTRACELLULAR MATRIX STRUCTURAL CONSTITUENT BLCA 2.66 0.000
BRCA 2.49 0.000
COAD 2.22 0.000
KIRC 0.41 1.000#

STAD 3.10 0.000
GOBP: CELL MATRIX ADHESION BLCA 2.61 0.000

BRCA 0.51 0.000
COAD 1.81 0.000
KIRC 1.93 0.000
STAD 2.73 0.000

GOMF: COLLAGEN BINDING BLCA 2.60 0.000
BRCA 2.29 0.000
COAD 2.12 0.000
KIRC 1.15 0.188#

STAD 2.57 0.000
GOBP: CELL SUBSTRATE ADHESION BLCA 2.59 0.000

BRCA 2.25 0.000
COAD 1.78 0.000
KIRC 1.79 0.000
STAD 2.73 0.000

GOBP: CELL SUBSTRATE JUNCTION ORGANIZATION BLCA 2.52 0.000
BRCA 2.45 0.000
COAD 1.66 0.000
KIRC 2.00 0.000
STAD 2.60 0.000

GOBP: REGULATION OF CELL SUBSTRATE JUNCTION ORGANIZATION BLCA 2.48 0.000
BRCA 2.50 0.000
COAD 1.85 0.000
KIRC 2.15 0.000
STAD 2.46 0.000
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FIGURE 3 | LEPROT-related gene enrichment analysis. (A) The interaction of top-500 related genes of LEPROT in each of 28 non-germ-cell solid cancers is shown
in the upset plot, showing that genes with top-10 appearing times were IL6ST, HIPK3, MAP3K2, FAM73A, RRAGC, LNPEP, IPP, UEVLD, MAN2A1, and TAOK1. (B)
Correlation heatmaps showing the correlation between the expression level of the LEPROT gene and those 10 genes (upper panel), and between the expression level of
the LEPROT gene and IL6ST, JAK1/2, and STAT3 (lower panel). (C) Protein–protein interaction plot of LEPROT and IL6ST, along with their functional correlated
proteins, with the enriched functions demonstrated in different colors.
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FIGURE 4 | Correlation between LEPROT gene expression and survival of patients with different cancer types by best cutoff point. (A) Cox analyses for OS and
DSS of LEPROT across pan-cancer types (left and right panels, respectively). (B) Kaplan–Meier curves of LEPROT gene for OS analysis with significance according to
KM-Plotter. (C) Kaplan–Meier curves of LEPROT gene for progression-free survival analysis with significance according to KM-Plotter. (D) Kaplan–Meier curves of
LEPROT methylation level across cancer types. (E) The response rates to the PD-1 inhibitor in low and high groups stratified by median LEPROT expression in the
GSE67501 data set (left panel) and the ROC for LEPROT expression to distinguish between responders versus nonresponders to the PD-1 inhibitor in GSE67501with its
AUC, which is 0.857 (right panel), “*” represents significance (p < .05) between two groups. (F) The response rates to the PD-1 inhibitor in low and high groups stratified
by median LEPROT expression in the GSE79691 data set (left panel), and the ROC for LEPROT expression to distinguish between responder versus nonresponder to
the PD-1 inhibitor in GSE79691 with its AUC of 0.857 (right panel), “ns” represents not significant (p > .05) between two groups.
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suggest they were enriched in functions involving “functions
cytokine receptor binding,” “cellular response to interleukin-
6,” “tyrosine phosphorylation of STAT protein,” “receptor
signaling pathway via JAK-STAT,” and “receptor signaling
pathway via STAT.” These correlation analyses suggest that
the interactions of LEPROT with the TME might be mediated
by inflammatory signaling pathway IL6ST/JAK1/2/STAT3
(Figure 3C).

Prognostic Values of the LEPROT
Expression Across Cancer-Types
Prognostic markers were biomarkers that were
heterogeneously expressed in cancer samples with distinct
patient outcomes. Identifying prognostic markers would
help to group patients and guide precise drug discovery.
Common prognostic markers were tumor suppressor, proto-
oncogene, and TME components. Considering LEPROT was
highly correlated with these common prognostic markers, we
were curious if LEPROT could also provide prognostic value in
patients. Thus, Cox analyses were performed for OS and DSS
of LEPROT across pan-cancer types. The forest plots indicate
that higher LEPROT was linked to worse OS and DSS in
PAAD, CESC, LGG (p < .0001), and KICH (p < .05), worse
OS in STAD (p < .05), worse DSS in BLCA (p < .05), and longer
OS and DSS in SKCM (p < .05) and KIRC (p < .0001) (Figures
4A,B). Kaplan–Meier analysis showed an association of high
LEPROT expression with better prognosis (both OS and PFS)
in HNSC (p < .01), PAAD (p < .05), and STAD (p < .01), longer
OS in KIRC (median OS HR � 0.54, p � 6e-5) and THCA (p <
.05), and longer DFS in UCEC (p < .01) (Figures 4C,D). These
indicate LEPROT might serve as potential prognostic markers
for several cancer types.

Predictive Values of the LEPROT
Expression in Immune Checkpoint
Inhibition Therapy
Considering that the LEPROT expression correlated with TII
and immune checkpoints, we investigated whether it could
imply patient responses to immune checkpoint inhibitors
(CPIs). In KIRC (GSE67501), patients with higher LEPROT
(above the median expression) had a significant (p � .022)
lower response rate (0%, 0 in 5) to the PD-1 inhibitor
nivolumab than those with low LEPROT (67%, 4 in 6)
(Figure 4E, left panel). Although in SKCM (GSE79691),
patients with higher LEPROT had a response rate of 80%
(4 in 5) compared with a response rate of 40% (2 in 5) for
patients with low LEPROT (Figure 4F, left panel), there was
no significance between the two groups. The predictive role of
LEPROT expression in CPI therapy was shown by ROC
curves, and the area under the curve (AUC) was 0.875 in
GSE67501 (Figure 4E, right panel) and 0.708 in GSE79691
(Figure 4F, right panel). These indicate that the LEPROT
may influence CPI therapy response in different directions
and has the potential to predict patient responses to CPI
therapy.

DISCUSSION

In cancer cells, the molecular signaling processes were always
aberrantly up/downregulated and/or functionally modified (Li
et al., 2019) (Yang et al., 2020a; Barrett and Puré, 2020). As a
result of conflicting reports on the impact of LEPROT on
downstream signaling and cancer progression, and the lack of
investigation on it, a bioinformatic analysis on LEPROT among
multiple cancer types was, therefore, conducted for a broader
understanding of the roles of LEPROT in cancers.

In line with previous reports (Rothzerg et al., 2020), LEPROT
was widely expressed in human tissues and was downregulated in
tumor tissues. Our study highlights the LEPROT expression as
being significantly decreased in 12 cancer types, indicating that
loss or downregulation of LEPROT expression could be
associated with tumorigenesis in these cancers (Narrandes
et al., 2018). As one of the effective mechanisms of gene
modification, DNA methylation, whose abnormalities are
related to abnormal expression of various genes, can activate
or inhibit multiple signal transduction pathways, leading to
oncogene or TSG alterations, thus inducing abnormal cell
proliferation or apoptosis and promoting tumorigenesis
(Huang et al., 2015) (Jin and Robertson, 2013). The negative
correlations between the expression of LEPROT and its
methylation indicate a regulation of LEPROT by DNA
methylation in cancers. However, the DNMT family, which
are currently thought to maintain (DNMT1) and induce DNA
(DNMT3) or tRNA (DNMT2) methylation (Goll et al., 2006),
were generally positively correlated with LEPROT expression.
Thus, the function of DNMTs in this context cannot be simply
concluded as catalyzing the transfer of methyl groups to DNA
through their C-terminal catalytic domain and to subsequently
suppress gene transcription (Espada et al., 2011; Jeltsch and
Jurkowska, 2016). The regulation of LEPROT methylation
levels might be performed by other factors, which are
independent of the level of DNMTs. The reason for these
rather contradictory results are still not entirely clear, but
there are several possibilities: 1) DNMT1 and DNMT3a/b may
also directly influence gene expression in a way that does not
require the C-terminal catalytic domain (Espada et al., 2011) or
by interacting with recruit histone deacetylases and histone
methyltransferase (Milutinovic et al., 2004). 2) DNMT2, which
is also known as transfer RNA (tRNA) aspartic acid
methyltransferase 1 (TRDMT1) is suggested to have more
activity on tRNA than DNA (Kaiser et al., 2017; Li et al.,
2021), which may serve to stabilize specific tRNAs and
conduct positive post-transcription regulation of aspartic acid-
rich proteins instead of gene silencing. 3) DNMTs are suggested
to be involved in many methylation-independent functions, for
instance, the DNA damage repair (DDR) system, which are
crucial for cancer cell survival. Both DNMT1 and DNMT2
were involved in DDRs by binding to DNA damage sites and
re-repairing DDR molecules (Jin and Robertson, 2013).
Therefore, the level of DNMTs is, to some extent, independent
of the methylation level. 4) The DNA methylation pattern is
suggested to be regulated by not only DNMTs, but also histone
modifications (Moore et al., 2013; Hervouet et al., 2018), and
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translocation (Tet) enzymes (Kale et al., 2020). Thus, more
factors should be taken into consideration when discussing the
regulation of LEPROT methylation. However, due to the
limitations of the study, the present study was only able to
reflect a correlation rather than causation, and future causal
studies are, therefore, required for full understanding of the
relationships among LEPROT, DNA methylations, and DNMTs.

We noticed that the level of LEPROT was positively associated
with both oncogenes and TSG. There are several possible
explanations for these findings. First, the effects of oncogenes
and TSGs are dynamic during tumor development. For instance,
in tumor initiation, the activating mutation/overexpression of
oncogenes or the inactivating mutation/decreased expression of
TSGs yield tumorigenesis. During tumor progression, oncogenes
confer to tumor growth and, at the same time, bring high
oncogenic stress to tumor cells, characterized by replication
overload and oxidative stress resulting in DNA damage, and
ultimately lead to premature senescence. This process further
activates the DDR system, which is exploited by tumor cells for
escaping senescence. These DDR genes are majorly considered as
TSG. Thus, during this period, LEPROT may be highly positively
correlated with both oncogenes and some TSGs, especially those
associated with DNA repair system. Second, it is shown that,
regardless of whether a gene is recognized as an oncogene and
TSG, its role and function depend not only on its own properties,
but also on the cytogenetic background and signaling network
under certain conditions (Stepanenko et al., 2013). Therefore, the
correlation of LEPROT with oncogenes and TSGs may be related
to the specific context and signaling networks, respectively.

Furthermore, the present study reveals that higher levels of
LEPROT correlate with a worse prognosis in several cancers. It
can be suggested due to the positive correlation between LEPROT
and oncogenes, suggesting that high expression of LEPROT
corresponds to a high replication rate in tumor cells,
indicating a more aggressive cancer type and a worse
prognosis in the patient. Meanwhile, oncogenes might induce
cellular senescence (OIS) accompanied with senescence-
associated secretory phenotype (SASP), which confers tumor-
associated macrophages and CAFs to constitute an
immunosuppressive microenvironment that allows the
progression of the cancer (Toste et al., 2016; Liu et al., 2018;
Yasuda et al., 2021). Moreover, cytokines secreted by senescent
cells such as interleukin-6 (IL-6) and C-X-C pattern chemokine
ligand 1 (CXCL1) are also shown to promote tumor development
by stimulating endothelial cell proliferation, promoting
angiogenesis, facilitating tumor cell invasion, or inducing
cancer stem cell formation (Liu et al., 2018). However,
overexpression of LEPROT is also shown to be positive
correlated with patient survival and indicates favorable
responses to immunosuppressive therapy in some tumors,
such as SKCM. A possible explanation for that may be the
massive recruitment of immune cells by SASP, which
constitutes a “hot” TME, acts to eliminate tumor cells, and
also allows patients to respond well to immunosuppressive
agents (Liu et al., 2018; Kale et al., 2020).

The study reveals for the first time that there are intensive
correlations of LEPROT expression with infiltrating immune cells

and CAFs, which are the critical components in the TME (Quail
and Joyce, 2013; Kato et al., 2018; Chen and Song, 2019).
Infiltrating immune cells and CAFs interact with each other,
and both could communicate with cancer cells (Kato et al., 2018;
An et al., 2020). As determining components of conducting
tumor immune response, infiltrating immune cells were
remarkably correlated with LEPROT expression in tumor
tissues, suggesting the similar features of LEPROT in tumor
immune response. However, the effects of LEPROT on the
components of TII were not always consistent; they were
diverse regarding different types of immune cells or different
algorithms. Notably, the positive correlation of LEPROT
expression was robust and consistent with CAF levels. Recall
that CAFs were the most abundant stromal cells in the TME and
could facilitate tumor initiation, progression, and angiogenesis by
supporting tumor cell growth and extracellular matrix
remodeling and by mediating tumor-promoting inflammation
genes (Kato et al., 2018; Chen and Song, 2019). In the TME, CAFs
remodeled the extracellular matrix and increase the tissue
stiffness, which favored cancer progression and resulted in
unfavorable patient outcomes (Chen and Song, 2019). CAFs
also secreted various inflammatory cytokines and growth
factors, including interleukin-6 (IL-6), chemokine (C-X-C
motif) ligands (CXCLs), and transforming growth factor beta
(TGF-β), to activate oncogenic pathways (Inoue et al., 2019).
Complex influences of CAFs on tumor immunity and
immunotherapy responses have been revealed (Wong et al.,
2019). For instance, CAFs might increase the expression of
PD-L1 in carcinoma cells and recruit immune cells, mainly
immunosuppressive cells, into the TME (Chen and Song,
2019). As one of the ICMs, PD-L1 can be induced by
cytokines in the TME with inflammation signaling (Chen
et al., 2019b). ICMs are suggested to profoundly interact with
TME and influence the effect of immune therapy (Wang et al.,
2019a; Wang et al., 2019b; Zhang et al., 2020b), playing key roles
in immune checkpoint inhibition. In the current study, a positive
correlation between LEPROT expression and PD-L1 was
observed across all cancer types and indicates a role of
LEPROT in tumor escaping in cancers. In addition, TLRs were
shown to be intensively correlated with LEPROT in the study and
might be another factor contributing to the complex roles of
LEPROT. TLRs are shown to stimulate the adaptive immune
system and increase antitumor antigen-specific T cells in cancer
via upregulating co-stimulatory signals (Adams, 2009; Salem,
2011). Various TLR ligands are also reported to increase the
proliferation of cancer cells via cytokines such as IL-6 and
subsequent signaling (Adams, 2009). Therefore, higher TLRs,
generally accompanied with higher LEPROT, might not only
facilitate antitumor immunity, but also promote cancer cell
proliferation. To sum up, we found LEPROT had remarkably
constant correlations with the TME components, including
immune regulating molecules, tumor immune cell infiltration,
and CAFs in a context-independent way. Nevertheless, the overall
roles of LEPROT in TME and tumor immunity are
multidimensional.

The predictive value of the LEPROT expression in immune
checkpoint inhibition therapy was variate. In KIRC, the expression
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of LEPROT was significantly and positively correlated with PD-L1
and compromised the patients’ responses to the PD-1 inhibitor.
Inconsistent with this, high expression of LEPROT was beneficial
for OS and DFS in KIRC patients. These suggest that patients with
low expression of LEPROT in KIRC should be considered first for
immunotherapy. However, in SKCM, the expression of LEPROT
also had a strong correlation with PD-L1, but appeared to favor the
effect of the PD-1 inhibitor. The inconsistency among cancer types
suggests a contradictory and context-dependent role of LEPROT in
predicting the immunotherapy response and the overall outcomes.
Further investigations are required to reveal its clinical value,
including as an indicator of responses to tumor
immunotherapies in a cancer-specific way given the
multidimensional roles of LEPROT and the complex nature of
cancers.

It is reported that dysregulation of LEPROT is associated with
various bone inflammation diseases through key cytokines, such as
tumor necrosis factor alpha (TNF-α) and interleukin 6 (IL-6)
(Rothzerg et al., 2020). It is suggested to be implicated in
osteosarcoma initiation and metastasis through upregulating the
level of IL-6 and TNF-α. Generally, IL-6 signals through a cell-
surface type I cytokine receptor complex consisting of the ligand-
binding IL-6Rα chain and the signal-transducing component
gp130, which is also known as IL-6 signal transducer (IL6ST)
(Rothzerg et al., 2020). Consistent with previous studies (Sanz-
Moreno et al., 2011; Looyenga et al., 2012; Pilati and Zucman-
Rossi, 2015), the IL6ST gene, which was the top co-regulated gene,
conducted its function via activation of the JAK1/2/STAT3
pathway in our study, and the mRNA levels of IL6ST
companioned with its targets JAK1/2 and STAT3 were
positively related with LEPROT mRNA levels in not only SARC
but also in almost all pan-cancer studies. As a matter of fact, JAK-
STAT signaling molecules and pathways were also suggested by
PPI analysis. Therefore, we highlighted the IL6ST/JAK/STAT
pathway in the effect of LEPROT in cancer, which was
profoundly involved in the proliferation of cancer cells, immune
regulation, and CAF activation and function (Hirano et al., 2000;
Carbia-Nagashima and Arzt, 2004; Yu et al., 2009; Calon et al.,
2012; Amin et al., 2017; Jones and Jenkins, 2018; Biffi et al., 2019;
Yang et al., 2020b; Cheteh et al., 2020).

Signal transduction in cancer cells is profoundly different from
that in normal cells, and the effects of specific molecules or
pathways on cell processes may exert different cellular responses

in tumors than in normal tissue (Sanz-Moreno et al., 2011;
Pascale et al., 2020). Differences in signal pathways are
commonly observed in distinct cancer types as well (Cui et al.,
2020; Cui et al., 2021), and thus, the cancer-related functions or
interactions of proteins of interest are usually investigated in a
cancer-specific way. In the present study, we found that there was
indeed heterogeneity in the expression level, the correlation with
oncogenes or tumor suppressor genes of LEPROT across cancer
types, but at the same time, we were surprised to notice the
remarkably consistent correlation of LEPROT and effector
T cells, resident memory T cells, Th1 cells, and CAFs across
all cancer types. Moreover, regardless of the regulation of
LEPROT in cancer, it maintained a high correlation with the
IL6ST/JAK1/2/STAT3 pathway. These findings revealed that
LEPROT has robust relationships with inflammatory genes
and TME elements, indicating a role of LEPROT in regulating
inflammatory or immune signals.
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