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Background: Accurate diagnosis of bone metastasis status of prostate cancer (PCa) is
becoming increasingly more important in guiding local and systemic treatment. Positron
emission tomography/computed tomography (PET/CT) and magnetic resonance imaging
(MRI) have increasingly been utilized globally to assess the bone metastases in PCa. Our
meta-analysis was a high-volume series in which the utility of PET/CT with different
radioligands was compared to MRI with different parameters in this setting.

Materials and Methods: Three databases, including Medline, Embase, and Cochrane
Library, were searched to retrieve original trials from their inception to August 31, 2019
according to the Preferred Reporting Items for Systematic Review and Meta-analysis
(PRISMA) statement. The methodological quality of the included studies was assessed by
two independent investigators utilizing Quality Assessment of Diagnostic Accuracy
Studies (QUADAS-2). A Bayesian network meta-analysis was performed using an arm-
based model. Absolute sensitivity and specificity, relative sensitivity and specificity,
diagnostic odds ratio (DOR), and superiority index, and their associated 95%
confidence intervals (CI) were used to assess the diagnostic value.

Results: Forty-five studies with 2,843 patients and 4,263 lesions were identified. Network
meta-analysis reveals that 68Ga-labeled prostate membrane antigen (68Ga-PSMA)
PET/CT has the highest superiority index (7.30) with the sensitivity of 0.91 and specificity
of 0.99, followed by 18F-NaF, 11C-choline, 18F-choline, 18F-fludeoxyglucose (FDG), and
18F-fluciclovine PET/CT. The use of high magnetic field strength, multisequence, diffusion-
weighted imaging (DWI), and more imaging planes will increase the diagnostic value of MRI
for the detection of bone metastasis in prostate cancer patients. Where available, 3.0-T
high-quality MRI approaches 68Ga-PSMA PET/CT was performed in the detection of bone
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metastasis on patient-based level (sensitivity, 0.94 vs. 0.91; specificity, 0.94 vs. 0.96;
superiority index, 4.43 vs. 4.56).

Conclusions: 68Ga-PSMA PET/CT is recommended for the diagnosis of bone
metastasis in prostate cancer patients. Where available, 3.0-T high-quality MRI
approaches 68Ga-PSMA PET/CT should be performed in the detection of bone
metastasis.
Keywords: prostate cancer, bone metastasis, diagnostic study, network meta-analysis, MRI, PET/CT
1 INTRODUCTION

Prostate cancer (PCa) is the second most frequently diagnosed
cancer and the fifth leading cause of cancer death in men
according to global cancer statistics in 2018 (1). Although the
5-year survival rate is fairly high, the common cause of death is
bone metastasis (2–5), which is the second most site of
metastases in PCa (6, 7). Patients with an early diagnosis of
localized disease may benefit from radical localized curative
treatment (8), but patients who suffer from bone metastasis
may be only eligible for hormone therapy or chemotherapy (9,
10). Hence, assessment of bone metastasis status, especially the
early detection, is an important issue in the management of PCa.
To follow and quantify the metastasis extent, which is an
independent prognostic factor (11), the use of non-invasive
imaging modalities is essential (12).

For decades, European and US guidelines recommend bone
scintigraphy (BS) for bone metastasis diagnosis, which, if
necessary, can be complemented by targeted X-rays (TXR) (13,
14). This BS/TXR association is imperfect, which strikingly lacks
diagnostic specificity (15, 16), although the use of single-photon
emission computed tomography (SPECT) improves the
resolution (8, 17). Equivocal imaging results of BS are required
to be determined by the additional use of magnetic resonance
imaging (MRI); however, this multiple approach can add to the
cost and become inconvenient for patients (18). The accuracy of
MRI to detect bone metastasis has been highlighted for almost 30
years, and the superiority than BS has also been repeatedly
suggested (18–21). A meta-analysis conducted by Woo et al.
demonstrated the excellent diagnostic performance of MRI for
the detection of bone metastasis in PCa (22). The development of
new technology, such as diffusion-weighted imaging (DWI) (23),
and the application of whole-body MRI (WB-MRI) may further
expand the potential of MRI (20, 24, 25). However, the use of
MRI for one-step cancer tumor–node–metastasis (TMN) staging
is often presented as not feasible due to costs and the limited
study validating this modality (26).

In recent years, positron emission tomography/computed
tomography (PET/CT) has emerged as a promising molecular
imaging tool in the diagnosis, staging, restaging, and therapeutic
evaluation of several malignancies, as PET provides metabolic
information and morphological imaging techniques offer
anatomical data (27, 28). 18F-fluorodeoxyglucose (18F-FDG) is
the most widely used PET-imaging agent in oncology detection;
however, the low glycolytic rate of most skeletal metastases in
2

PCa and the influence of bladder activity limit the sensitivity for
clinical detection (7). The European Nuclear Medical
Association recommended PET/CT in their guidelines for bone
imaging in 2015 (29), which can show areas of altered osteogenic
activity by using 18F-sodium fluoride (18F-NaF), a bone-specific
radiotracer (30). Additionally, 11C- or 18F-choline are designed
to target tumor cells directly (31), and the European Association
of Urology (EAU) once suggested referring patients for 11C- or
18F-choline PET/CT when the prostate-specific antigen (PSA)
increases >1 ng/ml, and the result is expected to change patient
management (32). Over the last 5 years, 68Ga-labeled prostate-
specific membrane antigen (68Ga-PSMA) PET/CT has gained
widespread use to assess PCa (33, 34), which could identify
metastatic lesions in lymph node, bone, and soft tissue at low
PSA levels (33–35). Therefore, 68Ga-PSMA PET/CT is regarded
as a more specific modality for diagnosing osseous metastases in
PCa (36).

Despite the increasing numbers of studies regarding PET/CT
and MRI in the diagnosis procedure for bone metastases in PCa,
the effectiveness of these two modalities still remains no
consensus. Zhou et al. (37) compared PET/CT and MRI; the
final conclusion was very general because of the limitation of
traditional meta-methods, which could not directly compare the
PET/CT using different radioligands and MRI with different
parameters. Recently, Nyaga et al. (38) developed a Bayesian
network meta-analysis using an arm-based model based on the
assumption that the missing arms occur at random. This method
has been applied in several studies (39, 40) because it could allow
analysis of the variability in the accuracy of multiple tests within
and between studies simultaneously (41).

The arm-based model is more appealing than traditional
meta-analysis and the contrast-based model since the former
not only permits more straightforward interpretation of the
parameters, making use of all available data and yielding
shorter credible intervals, but also provides more natural
variance–covariance matrix structures. We adopted this model,
which makes our results more convincing.

Thus, the primary aim of our meta-analysis is to compare
the diagnostic accuracy of PET/CT and MRI in detecting
bone metastases in PCa on a per-patient and per-lesion basis,
respectively. Additionally, thanks to the establishment of the
network meta-analysis, a direct comparison is performed between
PET/CT with different radioligands and MRI with different
magnet field strengths, coverage, and parameters to provide
better evidence-based advice to physicians. The hypothesis is that
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the multiparametric MRI equipped with high magnet field strength
is an appropriate modality for the diagnosis of bone metastasis
in PCa.
2 MATERIALS AND METHODS

2.1 Protocol and Guidance
This network meta-analysis was conducted in accordance with
the Preferred Reporting Items for a Systematic Review and Meta-
analysis of Diagnostic Test Accuracy Studies (PRISMA-DTA)
(42) statement and PRISMA (PROSPERO registration
number CRD42020148865).

2.2 Inclusion Criteria
The included studies should meet all of the following inclusion
criteria: clinical trials evaluating the diagnostic value of PET/CT
or/and MRI for bone metastasis in prostate cancer patients;
articles published providing data to calculate diagnostic
parameters, including true positive (TP), false positive (FP),
false negative (FN), and true negative (TN); and studies having
a conclusive anatomical or morphological verification standard
to prove or disprove the imaging study result, such as
pathological examination or clinical confirmation.

2.3 Exclusion Criteria
We excluded studies if they were commentaries, letters, case
reports, reviews or non-full-text studies; if all the participants
were prostate patients with bone metastasis; and if they lack of
the conclusive anatomical or morphological verification standard
to prove or disprove the imaging study result, such as
pathological examination or clinical confirmation.

2.4 Outcomes
The outcomes are the absolute sensitivity and specificity, relative
sensitivity and specificity, diagnostic odds ratio (DOR), and
superiority index of PET/CT with numerous tracers and MRI
with different parameters for the diagnosis of bone metastasis in
prostate cancer patients. Supplementary Table S1 shows the
definition of these outcomes.

2.5 Search Strategy
Three databases, includingMedline, Embase, and Cochrane Library,
were searched to retrieve original trials from their inception to
August 31, 2019.We also searched ClinicalTrials.gov and theWorld
Health Organization International Clinical Trials Registry Platform
to identify ongoing or unpublished eligible trials. To maximize the
search for relevant articles, a manual search of the references listed
in all included trials and systematic reviews was performed to
retrieve any relevant articles that were not listed in the databases.
Supplementary Table S2 shows the search strategy.

2.6 Study Selection
After removal of duplicates, two investigators performed a blind
systematic screening for all titles and abstracts in duplicate.
Then, the full texts of the remainders were downloaded
to confirm their eligibility based on the above criteria.
Frontiers in Oncology | www.frontiersin.org 3
To maximize the sensitivity of the screen, disagreements at the
title and abstract stages were resolved by automatic inclusion,
whereas discrepancies at the full-text stage were resolved by
consensus with input from a senior third investigator.

2.7 Data Collection Process
Two independent investigators used a predesigned Microsoft
Excel spreadsheet (Version 2013, Microsoft, Redmond, WA,
USA) to extract basic information from the included studies.
The diagnostic data (TPs, FPs, FNs, and TNs) were extracted or
calculated using the following methods, which are presented in
Supplementary Table S3. The spreadsheets were combined, and
each investigator checked a random selection of the other’s
entries for quality control. Any discrepancies were resolved
by consensus.

2.8 Quality Assessment of
Included Studies
The methodological quality of the included studies was assessed
by two independent investigators utilizing Quality Assessment of
Diagnostic Accuracy Studies (QUADAS-2) tool, which
comprised of four key domains (patient selection, index test,
reference standard, and flow and timing). Detailed information is
shown in Supplementary Table S4.

2.9 Data Synthesis
A Bayesian network meta-analysis using an arm-based model,
developed by Nyaga et al., was performed by running three chains
in parallel until there is convergence. We used absolute sensitivity
and specificity, relative sensitivity and specificity, DOR, and
superiority index and their associated 95% confidence intervals
(CI) to assess thediagnostic valueofPET/CTandMRI.Toassess the
relative performance of diagnostic tests, the definitions of superior,
inferior, equal, and not comparable were drawn. A diagnostic test,
which is pairwise superior to a relatively large number of other tests
andpairwise inferior to relatively few other tests, should have a high
superiority value and be ranked higher than those tests that do not
perform as well. In this network meta-analysis, superiority index
was pooled to quantify rank probabilities of a PET/CTandMRI. All
network meta-analyses were performed using R (v3.4.3;
Comprehensive R Archive Network). Supplementary Table S5
shows the main information of implementation process, software’s
packages, and models.

2.9.1 Subgroup Analyses
For different tracers of PET/CT, we performed several subgroup
analyses according to clinical settings of prostate cancer (new
diagnoses, mixed, and treated), number of patients (<50
and ≥50), patient age (60–70 and > 70), continent of origin
(Europe and others), study design (prospective and
retrospective), and methods of imaging analyses (visual and
semiquantitative evaluation). For the parameters of MRI, we
performed several subgroup analyses according to magnetic field
strength (1.5 and 3.0 T), the number of sequences (single
sequences, or ≥ multisequences), whether using DWI or not,
number of imaging planes (1 or ≥2), and MRI coverage (pelvis
skeleton, axial skeleton, or whole-body skeleton).
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2.9.2 Sensitivity Analyses
The sensitivity analyses were performed by deleting studies
involving only one diagnostic test for detecting bone
metastasis, studies with low a QUADAS-2 score, studies with
the maximum cases, studies with the minimum cases, and studies
published before 2010.

2.10 Patient and Public Involvement
No patients were involved in setting the research question or the
outcome measures, nor were they involved in developing plans
for design or implementation of the study. No patients were
asked to advise on interpretation or writing up of results. There
are no plans to disseminate the results of the research to study
participants or the relevant patient community. It was not
evaluated whether the studies included in the review had any
patient involvement.
3 RESULTS

3.1 Eligible Studies and Study
Characteristics
We initially identified 24,491 records and included 45 eligible
studies (8, 43–86) in the final network meta-analysis (Figure 1).
The studies comprised 2,843 participants (4,263 lesions), with
978 bone metastasis patients (2,186 lesions), and a total of 32
studies assessed the diagnostic value of PET/CT and 21 studies
for MRI. Table 1 shows the main characteristics of the included
studies. Supplementary Tables S6, S7 show the main technical
parameters of MRI and PET/CT, respectively. Supplementary
Tables S8, 9 show the diagnostic data of each included studies on
patient- and lesion-based level, respectively. Supplementary
Table S10 shows the quality assessment of the included
studies. Four (8.9%), 11 (24.4%), 18 (40.0%), 11 (4.5%), and 1
(2.2%) studies scored 11, 10, 9, 8, and 7, respectively.

3.2 Diagnostic Value of PET/CT on
Per-Patient Analysis
Regarding the tracers of the included studies, nine used 18F-NaF,
seven selected 18F-choline, seven applied 11C-choline, five used
68Ga-PSMA, three selected 18F-FDG, and two applied 18F-
FACBC. As shown in Figure 2, 18F-NaF PET/CT has the highest
sensitivity of 0.95 (95% CI, 0.91–0.99), followed closely by 68Ga-
PSMA and 18F-choline PET/CT; 68Ga-PSMA PET/CT has the
highest specificity of 0.99 (95% CI, 0.94-1.04), followed closely by
11C-choline and 18F-choline PET/CT. Network meta-analysis
demonstrated that 68Ga-PSMA PET/CT has the highest
diagnostic value with the highest superiority index of 7.30
(95% CI, 0.60–11.00), followed closely by 18F-NaF (3.33; 95%
CI, 0.20–9.00), 11C-choline, 18F-choline, 18F-FACBC, and 18F-
FDG PET/CT (Table 2).

3.2.1 Sensitivity Analysis
The sensitivity analyses were performed by deleting studies
involving only one diagnostic test for detecting bone metastasis,
studies with low QUADAS-2 score, studies with the maximum
Frontiers in Oncology | www.frontiersin.org 4
cases, studies with the minimum cases, and studies published
before 2010, and the results were stable (Supplementary Tables
S11–S15).

3.2.2 Subgroup Analysis
The subgroup analyses were performed according to clinical
settings of prostate cancer (newly diagnoses, mixed, and treated),
number of patients (<50 and ≥50), patient age (60–70 and >70),
continent of origin (Europe and others), study design
(prospective and retrospective), and methods of imaging
analyses (visual and semiquantitative evaluation), and the
results were stable (Supplementary Tables S16–S21).
FIGURE 1 | Selection flow chart for studies included in the network
meta-analysis.
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TABLE 1 | Main characteristics of the included studies.

Study, year Country No. of patients Clinical
setting

Age (years) PSA (ng/ml) Clinical T
stage

Gleason score Type of
study

Inclusion
interval

Total
(n)

Metastasis New or
treated

Mean ±
SD

Range Mean ±
SD

Range Range Median Range

n %

Even-Sapir et al.
(8)

Israel 44 23 52.27 Mixed 71.6 ±
8.8

NR NR ≥20 NR NR ≥8 P NR

Eschmann et al.
(43)

Germany 44 44 100.00 Mixed Median
64.1

51–79 Median
5.4

0.15–
200

T1–T4 NR NR R 11.2004–
01.2006

Lecouvet et al.
(44)

USA 66 41 62.12 Mixed 74 46–85 NR NR NR NR NR P NR

Nemeth et al.
(45)

USA 8 7 87.50 NR NR NR NR NR NR NR NR R 1998–2004

Beheshti et al.
(46)

Austria 38 NR – Mixed 69 ± 8 NR 56 ± 64 NR NR NR NR P NR

Beheshti et al.
(6)

Austria 70 NR – Mixed 68 ± 7 NR NR ≥10 NR NR ≥7 P NR

Venkitaraman
et al. (47, 48)

UK 99 14 14.14 Newly
diagnosed

Median
66

44–83 Median
26.5

2–
1600

NR 7 6–10 P 12.2001–
12.2005

Venkitaraman
et al. (47, 48)#

UK 39 10 25.64 Newly
diagnosed

Median
65

54–82 Median
34

5–
1300

T1–T4 8 5–9 P 12.2001–
07.2004

Fuccio et al. (50) Italy 25 22 88.00 Treated 70.2 58–80 Median
6.3

0.2–
37.7

T2N0/Nx
M0-T4N1M0

7 6–9 R NR

Iagaru et al. (51) USA 18 9 50.00 Mixed NR NR NR NR NR NR NR P 09.2007–
12.2010

Langsteger
et al. (52)

Austria 40 22 55.00 Mixed 66 51–82 NR 0.38–
617

NR NR 4–9 P 01.2003–
12.2009

Bortot et al. (53) Brazil 9 2 22.22 NR 67.6 56–82 NR NR NR NR NR P NR
Jadvar et a (54) USA 37 14 37.84 Treated Median

71.1
53.5–
86.9

Median
3.2

0.5–
40.2

T1c–T3 NR NR P 22.09.2010–
23.06.2011

Lecouvet et al.
(55)

Belgium 100 51 51.00 Mixed 69 53–88 32 12–78 ≥T3b NR ≥8 P 03.2007–
03.2010

Mosavi et al.
(56)

Sweden 49 5 10.20 Newly
diagnosed

Median
67

57–80 Median
14

1.3–
950

T1c–T4 9 8–10 P 01.2009–
03.2011

Picchio et al.
(57)

Italy 78 27 34.62 Treated 69 47–82 21.1 0.2–
500.0

T2N0–T4N0 NR NR R 03.2005–
02.2010

Takesh et al.
(58)

Germany 37 18 48.65 Treated 69 ± 7 NR 2.6 0.3–21 NR 7 3–9 R NR

Damle et al. (59) India 49 32 65.31 Mixed 65 50–84 NR NR T3/T4 NR 8–10 P NR
Kitajima et al.
(60)

USA 95 16 16.84 Treated 65.7 49–87 Median
2.5

0.58–
68.3

T2N0–any T
N1

7 2–10 R 12.2011–
01.2013

Pasoglou et al.
(61)

Belgium 30 9 30.00 Treated Median
62.5

51.0–
92.0

Median
30

1.7–
4612.0

cT2–cT4 7.8 6–9 P NR

Piccardo et al.
(62)

Italy 21 6 28.57 Treated 77.2 ±
5.1

70–85 5.8 ±
3.4

2.2–
13.4

NR 8 7–9 P NR

Poulsen et al.
(63)

Denmark 50 NR – Treated 73 ± 8.6 53–94 Median
84

4–
5740

NR 7 5–10 P 05.2009–
03.2012

Evangelista
et al. (64)

Italy 48 11 22.92 Newly
diagnosed

70 49–86 38.34 ±
90.12

2.80–
581.0

T2–T4 NR 6–10 R 04.2010-
04.2013

Pasoglou et al.
(65)

Belgium 30 10 33.33 Mixed 69 NR 31 ± 28 NR NR NR NR P 02.2012–
12.2012

Sampath et al.
(66)

USA 38 22 57.89 NR NR NR NR NR NR NR NR R 09.2007–
07.2013

Wieder et al.
(67)

Germany 57 50 87.72 Treated Median
86

54–80 29.9 1–670 NR 8 6–9 P NR

Barchetti et al.
(68)

Italy 152 70 46.05 Treated NR 53–88 NR NR NR NR ≥7 P 09.2011–
01.2014

Conde-Moreno
et al. (69)

Spain 35 17 48.57 Treated Median
70 ± 6.77

52–80 Median
12

4.54–
75.86

T1N0M0–
T4N0M0

7 5–9 P 01.2014–
03.2015

Nanni et al. (70) Italy 89 6 6.74 Mixed 69 55–83 6.99 0.20–
20.72

T1N0/Nx–
T3N0/Nx

NR NR P NR

Woo et al. (71) Korea 308 21 6.82 Newly
diagnosed

68.5 ±
7.8

38–91 30.9 1.2–
955.5

NR 7 6–10 R 01.2013-
12.2013

(Continued)
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TABLE 1 | Continued

Study, year Country No. of patients Clinical
setting

Age (years) PSA (ng/ml) Clinical T
stage

Gleason score Type of
study

Inclusion
interval

Total
(n)

Metastasis New or
treated

Mean ±
SD

Range Mean ±
SD

Range Range Median Range

n %

Yi et al. (72) China 26 12 46.15 Mixed 72.2 60–88 NR ≥20 T2–T4 NR 8–10 P 08.2010–
11.2014

Fonager et al.
(73)

Denmark 37 27 72.97 Mixed 71 46–87 Median
180

53–
9708

T1–T4 9 7–10 R 02.2014–
12.2015

Huysse et al.
(74)

Belgium 64 62 96.88 Treated NR NR NR NR NR NR NR P NR

Janssen et al.
(75)

Germany 54 29 53.70 Mixed 69.6 ±
6.5

NR 38.4 ±
77.9

NR NR NR NR P NR

Kitajima et al.
(76)

Japan 21 11 52.38 Mixed 70.6 ±
10.8

47–90 342.9 0.2–
5916

NR NR NR P 01.2015–
01.2017

Vargas et al.
(77)

USA 228 57 25.00 Newly
diagnosed

Median
63

36-83 Median
6.3

0.4–
222

T1c–T4 7 6–≥8 R 01.2000–
06.2014

Wondergem
et al. (78)

Netherlands 104 61 58.65 Mixed 74.9 49–93 Median
88.7

2.5–
13500

T1–T4 9 6–10 R 01.2011–
04.2012

Dyrberg et al.
(79)

Denmark 55 20 36.36 Newly
diagnosed

75 ± 9 54–91 85 5–
1000

NR 8 6–10 P 05.2016–
06.2017

Kawanaka et al.
(80)

Japan 30 17 56.67 Treated 71.3 ±
9.0

47–90 65.2 ±
177.4

0.23–
946

NR NR NR R 01.2015–
07.2017

Larbi et al. (81) Belgium 50 37 74.00 Newly
diagnosed

67 ± 10 59–87 NR ≥20 NR NR ≥ 8 R 01.2015–
12.2015

Lengana et al.
(82)

South
Africa

113 26 23.01 Mixed 66.65 43–88 NR NR NR NR NR P NR

Zacho et al. (83) Denmark 68 10 14.71 Treated 67.2 47–80 NR 0.2–11 M0–M1 7 5–9 P NR
Chen et al. (84) USA 106 14 13.21 Mixed Median

70
47–80 Median

1.3
0–61 NR 8 6–10 R 01.2017–

01.2018
Johnston et al.
(85)

UK 56 5 8.93 Newly
diagnosed

67.9 57.9–
84.4

Median
20.05

10.07–
61.20

NR 7 6–10 P 07.2012–
11.2015

Uslu–besli et al.
(86)

Turkey 28 11 39.29 Mixed 67.3 ±
7.4

49–82 25.49 ±
32.7

0.5–
125.1

NR 7 6–9 R 03.2015-
03.2016
Frontiers in Oncolo
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SD, Standard deviation; NR, Not reported; PSA, Prostate specific antigen; P, Prospective; R, Retrospective. #Represents different study.
FIGURE 2 | Network meta-analysis results including sensitivity, specificity, and superiority index values of PET/CT with six commonly used tracers for the detection
of bone metastasis in prostate cancer patients. Sensitivity, specificity, and superiority index are reported as mean (range) unless otherwise indicated. PET/CT,
positron emission tomography/computed tomography; NaF, sodium fluoride; PSMA, prostate membrane antigen; FDG, fludeoxyglucose; FACBC, fluciclovine.
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3.3 Diagnostic Value of MRI on
Per-Patient Analysis
3.3.1 Magnetic Field Strength of MRI
The pooled sensitivity and specificity of 1.5-T MRI were 0.82
(95% CI, 0.73–0.91) and 0.92 (95% CI, 0.87–0.97), respectively,
while the pooled sensitivity and specificity of 3.0-T MRI were
0.89 (95% CI, 0.80–0.98) and 0.88 (95% CI, 0.79–0.97). Network
meta-analysis demonstrated that 68Ga-PSMA PET/CT had the
highest diagnostic value with the highest superiority index,
followed closely by 18F-NaF PET/CT, 3.0-T MRI [1.76, (95%
CI, 0.09–9.00)], 11C-choline PET/CT, 18F-choline PET/CT, and
1.5-T MRI [0.77, (95% CI, 0.09–5.00)] (Supplementary Table
S22 and Figure 3).

3.3.2 Sequence of MRI
The pooled sensitivity and specificity of multisequence MRI were
0.91 (95% CI, 0.87–0.95) and 0.93 (95% CI, 0.90–0.96), while the
pooled sensitivity and specificity of single-sequence MRI were
0.64 (95% CI, 0.48–0.80) and 0.89 (95% CI, 0.76–1.02),
respectively. Network meta-analysis demonstrated that 68Ga-
PSMA PET/CT had the highest diagnostic value with the
highest superiority index, followed closely by 18F-NaF
PET/CT, multisequence MRI [2.04, (95% CI, 0.14–7.00)], 11C-
choline PET/CT, 18F-choline PET/CT, and single-sequence
MRI [0.36, (95% CI, 0.09–1.02)] (Supplementary Table S23
and Figure 3).

3.3.3 Whether DWI Was Used
The pooled sensitivity and specificity of DWIMRI were 0.94 (95%
CI, 0.89–0.99) and 0.93 (95% CI 0.88–0.98), while the pooled
sensitivity and specificity of no-DWI MRI were 0.86 (95% CI,
0.71–1.01) and 0.86 (95% CI, 0.74–0.98), respectively. Network
meta-analysis demonstrated that 68Ga-PSMA PET/CT had the
highest diagnostic value with the highest superiority index,
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followed closely by DWI MRI [3.63, (95% CI 0.14–9.00)], 18F-
NaF PET/CT, no-DWI MRI [1.44, (95% CI, 0.09–9.00)], 11C-
choline PET/CT, and 18F-choline PET/CT (Supplementary
Table S24 and Figure 3).

3.3.4 Imaging Plane of MRI
The pooled sensitivity and specificity of ≥2 imaging planes MRI
were 0.95 (95% CI, 0.90–1.00) and 0.93 (95% CI, 0.89–0.97),
while the pooled sensitivity and specificity of 1 imaging plane
MRI were 0.75 (95% CI, 0.69–0.81) and 0.92 (95% CI, 0.86–0.98),
respectively. Network meta-analysis revealed that 68Ga-PSMA
PET/CT had the highest diagnostic value with the highest
superiority index, followed closely by two or more imaging
planes MRI [4.27, (95% CI, 0.20–9.00)], 18F-NaF PET/CT,
11C-choline PET/CT, 18F-choline PET/CT, and one imaging
plane MRI [0.25, (95% CI, 0.09–1.00)] (Supplemental Table S25
and Figure 3).

3.3.5 MRI Coverage
The pooled results demonstrated that axial skeleton or whole-
body skeleton MRI had similar sensitivity of 0.84 vs. 0.82 and
specificity of 0.93 vs. 0.94, compared with pelvis MRI. Network
meta-analysis demonstrated that 68Ga-PSMA PET/CT had the
highest diagnostic value with the highest superiority index,
followed closely by 18F-NaF PET/CT, 11C-choline PET/CT,
pelvis skeleton MRI, 18F-choline PET/CT, and axial skeleton
or whole-body skeleton MRI (Supplementary Table S26
and Figure 3).

3.3.6 Sensitivity Analysis
In five subgroup analyses above, we performed sensitivity
analysis by deleting studies involving only one test for
detecting bone metastasis, which show the similar results
(Supplementary Tables S27–S31).
TABLE 2 | The network meta-analysis results of PET/CT with different tracers to detect bone metastasis in PCa.

Test Absolute
Sensitivity

Absolute
Specificity

Diagnostic OR
[Rank]

Superiority
Index [Rank]

Relative
Sensitivity

Relative
Specificity

Datasets, n Studies, n

18F-NaF 0.95
(0.91–0.99)

0.88
(0.83–0.93)

248.15
(34.14–799.75)

[2]

3.33
(0.20–9.00)

[2]

1.00
(1.00–1.00)

1.00
(1.00–1.00)

10 9

18F-Choline 0.89
(0.85–0.93)

0.91
(0.86–0.96)

123.18
(21.09–361.86)

[4]

1.71
(0.14–7.00)

[4]

0.94
(0.88–1.00)

1.03
(0.95–1.11)

7 7

11C-Choline 0.86
(0.81–0.91)

0.94
(0.89–0.99)

208.88
(21.37–780.88)

[3]

1.92
(0.14–7.00)

[3]

0.91
(0.84–0.98)

1.07
(0.98–1.16)

7 7

68Ga-PSMA 0.91
(0.83–0.99)

0.99
(0.94–1.04)

3379817.37
(49.99–5941029.19)

[1]

7.30
(0.60–11.00)

[1]

0.96
(0.87–1.05)

1.12
(1.04–1.20)

5 5

18F-FDG 0.69
(0.54–0.84)

0.85
(0.70–1.00)

81.17
(1.35–497.30)

[6]

0.49
(0.09–3.00)

[6]

0.73
(0.57–0.89)

0.96
(0.78–1.14)

3 3

18F-FACBC 0.80
(0.62–0.98)

0.59
(0.37–0.81)

92.40
(0.40–598.84)

[5]

0.55
(0.09–3.00)

[5]

0.84
(0.65–1.03)

0.67
(0.42–0.92)

2 2
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Data are reported as mean (range) unless otherwise indicated.
PET/CT, positron emission tomography/computed tomography; PCa, prostate cancer; NaF, sodium fluoride; PSMA, prostate membrane antigen; FDG, fludeoxyglucose; FACBC,
fluciclovine; CI, credible interval; OR, odds ratio.
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FIGURE 3 | Network meta-analysis results including sensitivity, specificity, and superiority index values of PET/CT with four commonly used tracers and MRI with
numerous characteristics for the detection of bone metastasis. Sensitivity, specificity, and superiority index are reported as mean (range) unless otherwise indicated.
PET/CT, positron emission tomography/computed tomography; NaF, sodium fluoride; PSMA, prostate membrane antigen; DWI, diffusion-weighted imaging.
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3.4 Diagnostic Value of High-Quality MRI
vs. PET/CT on Per-Patient Analysis
In order to achieve the highest accuracy of MRI, we define a
high-quality MRI which is referred to the MRI equipped with
multisequence, DWI used, and ≥2 imaging planes. High-quality
MRI (1.5-T) has a sensitivity of 0.96 (95% CI, 0.90–1.02) and a
specificity of 0.90 (95% CI, 0.81–0.99), while 3.0-T high-quality
MRI has a sensitivity of 0.94 (95% CI, 0.86–1.02) and a specificity
of 0.94 (95% CI, 0.86–1.02), respectively. Network meta-analysis
demonstrates that 68Ga-PSMA PET/CT has the highest
diagnostic value with the highest superiority index [4.56, (95%
CI, 0.11–11.00)], followed closely by 3.0-T high-quality MRI
[4.43, (95% CI, 0.14–11.00)], 1.5-T high-quality MRI [3.38, (95%
CI, 0.11–9.00)], 18F-NaF PET/CT, 11C-choline PET/CT, and
18F-choline PET/CT (Table 3). The sensitivity analyses were
performed by deleting studies involving only one test for
detecting bone metastasis, and the results were stable
(Supplemental Table S32 and Figure 4).

3.5 Diagnostic Value of PET/CT vs. MRI on
Per-Lesion Analysis
Regarding the tracers of the included studies, three studies used
18F-NaF, four selected 18F-choline, two applied 11C-choline, and
one selected 68Ga-PSMA PET/CT. Only five studies reportedMRI
data. The pooled results demonstrated that 11C-choline PET/CT
had the highest sensitivity of 0.84 (95% CI, 0.70–0.98), and 18F-
choline PET/CT has the highest specificity of 0.91 (95% CI, 0.83–
0.99). Network meta-analysis revealed that 11C-choline PET/CT
had the highest diagnostic value with the highest superiority index,
followed closely by 68Ga-PSMA PET/CT, 18F-choline PET/CT,
MRI, and 18F-NaF PET/CT (Supplementary eTable 33).
Subgroup analysis based on the analysis of high-quality MRI
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(only 1.5-T, insufficient data for 3.0-T high-quality MRI)
showed similar results (Supplementary Table S34).
4 DISCUSSION

“In the current meta-analysis, we compared the diagnostic
accuracy of MRI and PET/CT for the detection of bone
metastasis in PCa. On patient-based level, network meta-
analysis reveals that for numerous tracers, 68Ga-PSMA PET/
CT has the highest superiority index, followed by 18F-NaF, 11C-
choline, 18F-choline, 18F-FDG, and 18F-fluciclovine PET/CT;
for the parameters of MRI, higher magnetic field strength,
multisequence, more imaging planes, and MRI with DWI will
increase the diagnostic value for bone metastasis in prostate
cancer patients. Where available, 3.0-T high-quality MRI
approaches 68Ga-PSMA PET/CT was performed in the
detection of bone metastasis (sensitivity, 0.94 vs. 0.91;
specificity, 0.94 vs. 0.96; superiority index, 4.43 vs. 4.56).

Given this hybrid method, as PET provides metabolic
information and morphological imaging techniques offer
anatomical data (27, 28, 87, 88), a more accurate delineation of
bone metastases is allowed. As well-known, the radioactive tracer
is one of the most important cores of nuclear medicine imaging.
Antoch et al. (28) demonstrated that the selection of the
appropriate radioligands could increase accuracy when
detecting micrometastases. Hence, we conducted the analysis
based on the several popular tracers and found that 68Ga-PSMA
PET/CT possessed the highest diagnostic value [superiority
index, 7.30 (95% CI, 0.60–11.00)]. Pyka et al. (89) performed a
retrospective study and showed a higher sensitivity and
specificity of 68Ga-PSMA PET/CT (100% and 100%) when
TABLE 3 | PET/CT with different tracers and high-quality MRI to detect bone metastasis in PCa.

Test Absolute
Sensitivity

Absolute
Specificity

Diagnostic OR[Rank] Superiority Index
[Rank]

Relative
Sensitivity

Relative
Specificity

Datasets, n Studies, n

18F-NaF PET/CT 0.95
(0.91–0.99)

0.89
(0.84–0.94)

256.89
(34.08–796.33)

[4]

1.08
(0.11–5.00)

[4]

1.00
(1.00–1.00)

1.00
(1.00–1.00)

10 9

18F-Choline PET/CT 0.89
(0.84–0.94)

0.91
(0.86–0.96)

121.19
(22.43–355.84)

[6]

0.51
(0.09–3.00)

[6]

0.94
(0.87–1.01)

1.03
(0.95–1.11)

7 7

11C-Choline PET/CT 0.86
(0.81–0.91)

0.94
(0.89–0.99)

212.63
(20.64–791.67)

[5]

0.75
(0.09–5.00)

[5]

0.91
(0.84–0.98)

1.07
(0.98–1.16)

7 7

68Ga-PSMA PET/CT 0.91
(0.83–0.99)

0.96
(0.87–1.05)

4,633,299.15
(14.51–4,438,033.15)

[1]

4.56
(0.11–11.00)

[1]

0.96
(0.86–1.06)

1.09
(0.96–1.22)

5 5

3.0-T high-quality MRI 0.94
(0.86–1.02)

0.94
(0.86–1.02)

6033.33
(27.09–39,719.47)

[2]

4.43
(0.14–11.00)

[2]

0.99
(0.89–1.09)

1.07
(0.96–1.18)

4 4

1.5-T high-quality MRI 0.96
(0.90–1.02)

0.90
(0.81–0.99)

2,056.83
(23.96–11,589.08)

[3]

3.38
(0.11–9.00)

[3]

1.02
(0.93–1.11)

1.02
(0.90–1.14)

4 4
O
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Data are reported as mean (range) unless otherwise indicated.
PET/CT, positron emission tomography/computed tomography; MRI, magnetic resonance imaging; PCa, Prostate cancer; NaF, Sodium fluoride; PSMA, Prostate membrane antigen; T,
Tesla; CI credible interval; OR, odds ratio.
High-quality MRI was referred to the MRI equipped with multisequence, DWI used, and ≥2 imaging planes.
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compared to BS. Uslu-Besli et al. (86) conducted a cohort study
of 28 patients and demonstrated that 68Ga-PSMA PET/CT
changed management of seven patients by confirming the
presence of bone metastasis, which was overlooked by BS in
three patients and by excluding the false negative lesions on BS in
four patients. Through binding to PSMA, a transmembrane
protein expressed predominantly in prostate cells and
especially in prostate cancer cells, 68Ga-PSMA leads to the
internalization and accumulation in primary and metastatic
cancer lesions (90), which is proven to have the higher yield of
positive scans than obtained with other tracers at a low PSA level
(91, 92). However, the half-life and yield of 68Ga significantly
limited the ability 68Ga-PSMA to meet the demand for imaging
in PCa. To this regard, 18F-PSMA was considered as the ideal
PET/CT tracer (93), but we were not able to analyze it because of
the insufficient study.

Although the recommendation of the use of 18F-NaF PET/
CT in PCa was refrained in guidelines, it is routinely used
worldwide (94, 95). Our results showed that 18F-NaF PET/CT
had the highest sensitivity (0.95) but relative low specificity
(0.88). The uptake of 18F-NaF, a bone-specific imaging
radiotracer, is correlated to the blood flow and, especially, to
the activity of local osteoblasts (30, 96–98), and the study by the
National Oncologic PET Registry (NOPR) showed that the
intended managements in approximately 44–53% of prostate
cancer patients had been significantly impacted by the
application of 18F-Na PET/CT (99, 100). However, 18F-NaF
has the same shortcoming as the other bone-seeking agents, such
as 99m-technetium used in BS, leading to confusion between
benign lesion and metastases, and which creates more false
positives and causes lower specificity (78, 101). Choline is an
essential component of the phospholipids, whose increase is
associated with the high proliferation of prostate cancer cells,
and both 11C-Choline and 18F-choline have been investigated in
particular for the detection of relapse and metastasis of PCa
(102–104). Our results demonstrated that the urinary excretion
of 18F-choline was slightly higher than 11C-Choline (superiority
Frontiers in Oncology | www.frontiersin.org 10
index, 1.92 vs. 1.71), which may affect the interpretation of
findings in the pelvis and cause lower accuracy (105, 106).
Additionally, our study validated that 11C-Choline PET/CT
processed the highest sensitivity–specificity and superiority
index on the per-lesion basis (preformed in a situation of the
lack the data of 68GA-PMSA PET/CT). The commonly used
tracer 18F-FDG appears to be less useful in PCa because of the
low avidity of most prostate cancer cells and urinary activity
(107). Osseous metastases in PCa are typically osteoblastic
(7, 108), while 18F-FDG are more sensitive in osteolytic lesions
than in osteogenic lesions (72).

According to different factors (magnetic field strength,
coverage, sequence used, the participation of DWI, and the
number of imaging planes), MRI was grouped and directly
compared to PET/CT using four commonly used radioligands
(68Ga-PSMA, 18F-NaF, 11C-choline, and 18F-choline). 68Ga-
PSMA PET/CT was still predominating, which was followed by
the MRI equipped with better options. It is possible for MRI to
detect metastasis lesion at an early stage owing to the high soft-
tissue resolution (109–111). Meanwhile, numerous clinical
advantages of 3.0-T MRI over 1.5-T have been demonstrated
(112), which was also confirmed in our analysis (sensitivity, 0.89
vs. 0.82; specificity, 0.88 vs. 0.92; superiority index, 1.76 vs. 0.77).
However, Woo et al. (22) reported that there existed no significant
heterogeneity among different magnetic field strength. Recently,
DWI is of increasing interest for the detection of primary or
metastatic cancers (113, 114), benefiting from the ability to
differentiate malignant from benign prostatic tissues according
to different water diffusivity (68). Our analysis, according to
whether DWI was involved, indicated the usefulness of DWI in
the evaluation of bone metastases in PCa (sensitivity, 0.94 vs. 0.86;
specificity, 0.93 vs. 0.86; superiority index, 3.63 vs. 1.44). A
previous meta-analysis reported similar results that of improved
diagnostic performance for identifying tumor foci in PCa due to
the useful complement from DWI (115). Barchetti et al. (68) also
revealed that conventional imaging, including T1-weighted
(T1W), T1-weighted images (T2W), and short tau inversion
FIGURE 4 | Network meta-analysis results including sensitivity, specificity, and superiority index values of PET/CT with four commonly used tracers and high-quality
MRI for the detection of bone metastasis in prostate cancer patients. Sensitivity, specificity, and superiority index are reported as mean (range) unless otherwise
indicated. PET/CT, positron emission tomography/computed tomography; NaF, sodium fluoride; PSMA, prostate membrane antigen; DWI diffusion-weighted
imaging; *high-quality MRI was referred to the MRI equipped with multi-sequence, DWI used, and ≥2 imaging planes.
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recovery (STIR) sequence, may improve the specificity of DWI in
detecting bone metastases. Regarding the coverage of MRI,
whether a dedicated axial skeleton or whole-body MRI was
utilized or only covered the pelvis, the results showed a similar
performance (sensitivity, 0.44 vs. 0.82; specificity, 0.94 vs. 0.93).
Although it is necessary to assess the extent of extra-prostatic
extension, which is an independent prognostic factor (11), the
possibility of distant bone metastasis without pelvic or lumbar
spinal involvement is negligible (44, 116). The motion-related
signal intensity also decreases, leading to the failure in depicting
lesions in ribs, sternum, and scapula (117, 118), and the increased
cost and acquisition time remain obstacles to the use of WB-MRI.
However, the application of wider coverage enables the detection
of extra-skeletal involvement, including lymph nodes (119, 120),
allows their monitoring under therapy, and helps to assess the
efficacy of many new drugs in advanced PCa (121–123).
Additionally, the use of more imaging planes and sequences to
determine bone metastases can achieve better diagnostic accuracy,
attributed to the acquisition of more information. These analyses
proved that the optimization of MRI parameters could
significantly improve the diagnostic ability of bone metastasis
in PCa.

The highlight of the current meta-analysis was to directly
compare the high-quality MRI (multisequence, DWI involved,
more imaging planes) with PET/CT using four commonly used
tracers. The results showed that although the 3.0-T high-quality
MRI did not surpass the 68Ga-PSMA PET/CT at the patient-
based level, the diagnostic ability was very close (sensitivity, 0.94
vs. 0.91; specificity, 0.94 vs. 0.96; superiority index, 4.43 vs. 4.56).
In recent decades, MRI and PET/CT compete for the single-step
whole-body technique for assessing metastases and imaging
of response to treatment in solid cancers. Lecouvet et al. (44)
demonstrated that MRI was a highly sensitive and specific one-
step modality to diagnose bone metastases in patients with high-
risk PCa and leads to changes in treatment strategy in 22% of
patients. Echmann et al. (43) proved the similarly high accuracy
of 11C-Choline PET/CT and 1.5-T multiparametric WB-MRI,
while Conde-Moreno et al. (124) found a significantly lower
ability of DWI WB-MRI for detecting bone metastasis in
recurrent PCa. Although previous studies have yielded
inconsistent conclusions, our results demonstrated that 3.0-T
multiparametric WB-MRI has a comparable high sensitivity,
specificity, and superiority index at the patient-based
level, following the 68Ga-PSMA PET/CT. Nevertheless,
multiparametric WB-MRI seems to fulfill the requirements of
no ionizing radiation and no intravenous injection of isotopes or
any contrast medium, and it is also adept at depicting all
metastatic bone lesions. T1W imaging can describe the
infiltration of the bone marrow, T2W imaging has also been
the mainstay of MRI due to its high tissue contrast resolution,
while DWI can help discover the areas of increased cellularity
and highly vascularized structures (71, 125, 126). Additionally,
the efforts for standardization of prostate MRI acquisition and
reporting (127, 128), including MR Prostate Imaging Reporting
and Data System (PI-RADS) (129) and the Prostate Diagnostic
Imaging Consensus Meeting (PREDICT) (130), have further
Frontiers in Oncology | www.frontiersin.org 11
contributed to the use and emphasized the importance of
interpreting MRI in the context of clinical features.

4.1 Strengths and Limitations
The arm-based model is more appealing than traditional meta-
analysis and the contrast-based model since the former not only
permits more straightforward interpretation of the parameters,
making use of all available data and yielding shorter credible
intervals but also provides more natural variance–covariance
matrix structures. We adopted this model, which makes our
results more convincing.

We adopted numerous statistical indicators including
absolute sensitivity and specificity, relative sensitivity and
specificity, diagnostic odds ratio (DOR), and superiority index
to compare the diagnostic value of PET/CT and MRI with
different parameter systematically. It is still a challenge to rank
competing diagnostic tests especially when a test does not
outperform the others on both sensitivity and specificity. DOR
is commonly used in traditional meta-analysis, but it cannot
distinguish between tests with high sensitivity but low specificity
or vice versa. Deutsch et al. (131) introduced a superiority index
to quantify the superiority of a diagnostic test. The superiority
index is designed to consider the joint performance of the
assessment measures. Corresponding weight is given to
diagnostic tests based on their performance.

Our network meta-analysis included a total of 45 studies
involving 2,843 patients and 4,263 lesions, which, to our
knowledge, is the largest among similar studies. While the data
in our study can be used to demonstrate numerical superiority of
one imaging modality in terms of sensitivity, specificity, etc., they
are even richer in that these variables can be compared across all
nine imaging modalities simultaneously to assess their relative
accuracy. Using this large amount of diagnostic data, we
compared these imaging modalities at patient- and lesion-
based level. Furthermore, a series of subgroup analyses were
conducted to explore the potential influencing factors. Other
subgroup analysis suggested a similar direction and magnitude of
effect for studies investigating diagnostic value. We also
performed sensitivity analyses by removing studies involving
only one diagnostic test to confirm the stability of our results.
Our results provide a comprehensive overview of the existing
evidence on the imaging diagnosis of bone metastasis and have
implications for clinicians, researchers, radiologists, and
guideline committees. While many oncologists already
consider PET/CT as the preferred method for detecting bone
metastasis, however, this study provide formal quantification of
the relative value of MRI.

This study is not without weakness. The first limitation was
the lack of a well-accepted reference standard; all included
studies used best value comparator (BVC) or predominantly
BVC as the reference standard, which is according to a
combination of clinical, laboratory, imaging, and follow-up
studies (22). Although it is a more accurate reference standard
to obtain pathological results by biopsy or surgery when
determining bone metastasis, it is neither feasible nor ethical to
conduct such further examinations solely. Second, patients were
October 2021 | Volume 11 | Article 736654
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categorized at diagnosis to low or high risk based on clinical
characteristics, such as PSA, Gleason score at biopsy, and clinical
stage. It should be taken into account the potential value of the
respective modalities according to the cancer grade and stage.
For example, several studies reported that PSA values is strictly
correlated with 11C-choline PET/CT sensitivity (102, 132).
Hence, the specific imaging strategies should be adopted for
PCa with different risk (133–135). Unfortunately, due to
insufficient raw data, we are unable to do more subgroup
analysis. Additionally, the same limitation made a comparison
based on different metastatic sites difficult to accomplish. It is
challenging for both PET/CT and MRI to diagnose rib
metastases due to thoracic respiratory movements (103, 136–
138), and further research on the diagnostic efficacy of different
imaging modalities on thoracic sites will be interesting. Third,
several other imaging modalities, such as BS, X-ray, BS/TXR, CT,
PET, SPECT/CT, and especially, PET/MRI, a potentially
disruptive technology synergizing PET and MRI, are also
commonly used to assess bone metastasis. However, the
purpose of this study was only to compare PET/CT and MRI
in detecting bone metastasis in PCa; hence, caution is needed in
applying our results to routine clinical practice. Fourth, studies
assessing cost effectiveness should be performed to assist in
making the clinical decision. In our study, insufficient data
prevented us from assessing the economic effectiveness and
social benefits systematically.
5 CONCLUSION

This systematic review and network meta-analysis of diagnostic
tests, which included 45 studies involving 2,843 patients and
4,263 lesions, indicates that 68Ga-PSMA PET/CT is
recommended for the diagnosis of bone metastasis in prostate
cancer patients. Where available, 3.0-T high-quality MRI
approaches 68Ga-PSMA PET/CT should be performed the
detection of bone metastasis.
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