

1 Alewife Center #200 Cambridge, MA 02140 tel. 617.945.9051 www.jove.com

Standard Manuscript Template

Please Remove all Gray Text before Submitting

- 1 TITLE 2 Modeling stroke in mice: transient middle cerebral artery occlusion via the external carotid artery 3 4 **AUTHORS AND AFFILIATIONS** 5 Gemma Llovera¹ gemma.llovera-garcia@med.uni-muenchen.de 6 Alba Simats¹ alba.simats@med.uni-muenchen.de 7 Arthur Liesz^{1,2} arthur.liesz@med.uni-muenchen.de 8 9 ¹ Institute for Stroke and Dementia Research, LMU Munich, Feodor-Lynen-Strasse 17, 81377 10 Munich, Germany 11 ² Munich Cluster for Systems Neurology (SyNergy), Munich, Germany 12 13 14 15 **Corresponding Author:** Dr. Gemma Llovera 16 17 Institute for Stroke and Dementia Research, 18 LMU Munich, 19 Feodor-Lynen-Strasse 17 20 81377 Munich, Germany phone: +49-89-4400-46182 21 22 email: Gemma.Llovera-Garcia@med.uni-muenchen.de 23 24 25 **KEYWORDS:**
- 26 stroke, brain ischemia, animal model, middle cerebral artery, transient

28 **SUMMARY:**

- Different models of middle cerebral artery occlusion (MCAo) are widely used in experimental stroke research. Here, an experimental stroke model of transient MCAo via the external carotid artery (ECA) is described. This model aims to mimic the human stroke, in which the
- 32 cerebrovascular thrombus is removed due to spontaneous clot lysis or therapy.
- 33

- 34
- 35

36 **ABSTRACT:**

37 Stroke is the third most common cause of death and the main cause of acquired adult disability 38 in developed countries. Still, to date, therapeutic options are limited to a small proportion of 39 stroke patients within the first hours after stroke. Novel therapeutic strategies are extensively 40 being investigated, especially to prolong the therapeutic time window. These current 41 investigations include the study of important pathophysiological pathways after stroke, such as 42 post-stroke inflammation, angiogenesis, neuronal plasticity, and regeneration. Over the last 43 decade, there is a growing concern about the low reproducibility of experimental results and 44 scientific findings between/among independent research groups. To overcome the so-called 45 "replication crisis", detailed standardized models for all procedures are urgently needed. As an effort within the "ImmunoStroke" research consortium (https://immunostroke.de/), a 46 47 standardized transient MCAo mouse model is proposed. This model allows the complete 48 restoration of the blood flow when removing the filament, simulating the therapeutic or 49 spontaneous clot lysis that occurs in a large proportion of human strokes. In this video, the 50 surgical method of this "filament" stroke model and functional analysis tools are demonstrated. 51

52

53 INTRODUCTION

54 Stroke is one of the most common causes of death and disability worldwide. Although, there are 55 mainly two distinct forms of stroke, ischemic and hemorrhagic, 80%-85% of all stroke cases are 56 ischemic¹. Only two treatments are currently available for ischemic stroke patients: 57 pharmacological treatment with recombinant tissue plasminogen activator (rtPA) or mechanical 58 thrombectomy. However, due to the narrow therapeutic time window and multiple exclusion 59 criteria, only a select number of patients are eligible to benefit from these specific treatment 60 options. Over the last two decades, preclinical and translational stroke research has been 61 centered on the study of neuroprotective approaches, but all compounds that reached clinical 62 trials have so far show no improvements for the patient ².

63

64 As an in vitro model cannot properly model brain interactions and the systemic 65 pathophysiological mechanisms during a stroke, animal models are essential for preclinical stroke research. Mimicking all aspects of human ischemic stroke in a single animal model is not yet 66 67 feasible, since ischemic stroke is itself a complex and heterogeneous disease. For this reason, 68 different ischemic stroke models have been developed in different species. Brain ischemia due 69 to photothrombosis of cerebral arterioles or by permanent distal occlusion of the Middle 70 Cerebral Artery (MCA) are common models that induce small and locally defined lesions in the 71 neocortex^{3,4}. Yet, the probably most commonly used stroke model is the so-called "filament 72 model", in which a transient MCA occlusion is achieved. This model consists of a transient 73 introduction of a suture filament into the internal carotid artery until the origin of the MCA, 74 resulting in a sharp reduction of the cerebral blood flow and the subsequent large infarction of 75 subcortical and cortical brain regions⁵. Although most stroke models mimic occlusions of the MCA⁶, the "filament model" enables us to precisely delimitate the ischemic interval depending 76 77 on the reperfusion time point. Reperfusion by filament removal mimics the human clinical 78 scenario, in which there is a restoration of the cerebral blood flow after spontaneous or 79 therapeutic (rtPA or mechanical thrombectomy) of a clot. Different modifications of this "filament model" have been described to date. In the most common approach, firstly described by Longa *et al.* in 1989⁵, a silicon-coated filament is introduced via the common carotid artery (CCA) and advanced along the internal carotid artery (ICA) into the Circle of Willis, where it blocks the origin of the MCA⁷. Although being a very commonly used approach, this model does not allow the complete restoration of the blood flow during the reperfusion, since the CCA is permanently ligated after removing the filament.

87 Over the past decade, an increasing number of research groups have been interested in modeling 88 stroke in mice by using the "filament model". However, the huge variability of this model and the 89 lack of standardization of the procedures, among others, are some of the reasons behind the 90 high variability and poor reproducibility of the experimental results and scientific findings reported so far^{2,8}. A potential cause of the currently "replication crisis", so the low reproducibility 91 92 among research laboratories, is the non-comparable stroke infarct volumes between research groups even using the same experimental methodology⁹. Indeed, after conducting the first 93 preclinical randomized controlled multicenter trial study¹⁰, we could confirm that the lack of 94 95 sufficient standardization of this experimental stroke model and the subsequent outcome parameters was the main reason for the current failing reproducibility between preclinical 96 studies from independent laboratories¹¹. Such drastic differences in the resulting infarct sizes 97 98 despite supposedly using the same stroke model justifiably pose not only a threat to confirmatory 99 research, but also for scientific collaborations due to the lack of robust and reproducible models. 100

In light of these challenges, we aimed to develop and describe in detail the procedure for a standardized transient MCAo model as it is used for the collaborative research efforts within the "ImmunoStroke" research consortium (<u>https://immunostroke.de/</u>), which aims to understand brain-immune interactions underlying the mechanistic principles of stroke recovery. Additionally, histological and related functional methods for analysis of stroke outcome in this model are presented. All methods are based on standard operating procedures already developed and used in all research laboratories within the ImmunoStroke consortium.

108

- 110 **PROTOCOL:** 111 112 **Ethics statement** 113 The experiments reported in this video were conducted following national guidelines for the use 114 of experimental animals, and the protocols were approved by the German governmental 115 committees (Regierung von Oberbayern, Munich, Germany). 10 weeks old, male C57Bl/6J mice 116 were used. The animals were housed under controlled temperature (22 $^{\circ}C \pm 2 ^{\circ}C$), with a 12h 117 light-dark cycle period and access to pelleted food and water *ad libitum*. 118 119 1. Preparation of the material and instruments 120 121 1.1. Connect the heat blanket to maintain the operation area warm and maintain constant 122 mouse body temperature during anesthesia (37 °C). 123 124 1.2. Autoclave scissors, forceps, prepare ethanol 70% solution and dexpanthenol eye 125 ointment, and have on-hand several pieces of cotton, , and 5-0 coated braided polyester suture. 126 Prepare a 1 mL syringe with 0,9% saline solution (without needle) to maintain the animal's 127 incision site hydrated. Prepare the anesthesia gas ($100\% O_2 + isoflurane$). 128 129 1.3. Prepare a holder for the laser Doppler probe by cutting the tip of a 10 µl pipet tip (3-5 mm 130 length) 131 132 Preparation of the laser Doppler 2. 133 134 2.1. Inject analgesia to the mouse 30 min before surgery (4 mg/kg Carprofen und 0,1 mg/kg 135 Buprenorphine, intraperitoneally) 136 137 2.2. Anesthetize the mouse by placing it into the induction chamber with an isoflurane flow 138 rate of 4% until the cessation of the spontaneous body movement and vibrissae. 139 140 2.3. Transfer the mouse into the operation area and place it in a prone position with its nose 141 into the anesthesia mask. Maintain isoflurane concentration at 4% for another minute, then
 - 142 reduce it and keep it at 2%.
 - 143

2.4. Gently insert the rectal probe to monitor the temperature throughout the surgical
procedures. Set the associated feedback-controlled heating pad for maintaining the mouse body
temperature at 37 °C.

147

149

- 148 2.5. Apply dexpanthenol eye ointment on both eyes.
- 150 2.6. Disinfect the skin and hair surrounding the left eye and ear with a disinfectant.
- 152 2.7. Cut the scalp between the left ear and the eye (1 cm long) to expose the skull bone.
- 153

154 155	2.8.	Cut and retire the temporal muscle to visualize the MCA beneath the skull.	
156 157 158 159 160 161	2.9. Fix the outside part of the tip holding the laser Doppler probe/fiber on top of the left MC with glue and close the skin over it, so the skin is glued as well. Apply 2-3 drops of hardener glu to speed the process. Make sure that the laser Doppler fiber is not glued and can be easil removed from the tip holder at any time.		
162 163	3.	Transient MCAo model (occlusion)	
164 165 166	3.1 the pa	Turn the mouse into the supine position. Put the snout into the anesthesia cone and fix ws with tape.	
167 168 169	3.2 in the	Desinfect the skin and hair surrounding the chest and make a 2-cm-long midline incision neck.	
170 171 172 173 174	3.3 Use re the CC and do	Use forceps to pull the skin, submandibular gland and the sternomastoid muscle apart. tractors to expose the surgical field and find the left common carotid artery (CCA). Dissect CA free from connective tissue and surrounding nerves (without harming the vagal nerve) to a transient ligation before the bifurcation.	
175 176 177 178	3.4 visible knot to	Dissect the external carotid artery (ECA) and tie a permanent knot at the most distal part. Place another suture under the ECA, close to the bifurcation, and prepare a loose o be used later.	
179 180 181	3.5 the bif	Dissect the internal carotid artery (ICA) and place a microvascular clip on it, 5 mm over furcation. Make sure not to damage the vagal nerve.	
182 183 184	3.6 cut the	Cut a small hole into the ECA between the tight and the loose ligations be careful not to e entire ECA.	
185 186 187 188	3.7 Introduce the filament and advance it towards the CCA. Tight the loose ligation in the around the lumen to momentanely secure the filament in that position and avoid bleeding w removing the microvascular clip.		
189 190 191 192 193 194	 3.8 Remove the microvascular clip and insert the filament through the ICA until reac origin of the MCA by detecting a sharp reduction (>80%) in the cerebral blood flow as m by the laser Doppler, and fix the filament in this position by further tightening the knot the ECA. (When the filament goes to the appropriate direction it advances smoothly resistence is found) 		
195 196 197	3.9	Record laser Doppler values before and after filament insertion.	

3.10 Remove the retractor and relocate the sternomastoid muscle and the submandibular
gland before suturing the wound. Remove the laser Doppler probe and place the animal in a
recovery chamber at 37 °C for 1h (until filament removal).

- 202
- 203 204

207

209

213

215

218

221

223

226

228

230

4. Transient MCAo model (Reperfusion)

4.1. Anesthetize the mouse by placing it into the induction chamber with an isoflurane flowrate of 4% until the cessation of spontaneous body movement and vibrissae.

208 4.2. Apply dexpanthenol eye ointment on both eyes.

4.3. Transfer the mouse to the operation area and place it in a supine position with its snout
in the anesthesia mask. Maintain isoflurane concentration at 4% for another minute, then reduce
it and keep it at 2%. Fix the animal's paws with tape.

214 4.4. Insert the laser Doppler probe into the probe holder.

4.5. Remove the wound suture, use forceps to pull the skin, the submandibular gland and thesternomastoid muscle apart. Use retractors to expose the surgical field.

- 4.6. Lose the suture on the ECA, the one that tights the filament, and gently pull the filament.Make sure not to damage the silicone-rubber coating of the filament during the removal.
- 222 4.7. Tightly tie the ECA suture.
- 4.8. Confirm the increase of the cerebral blood flow in the laser Doppler device (>80% of theinitial value before reperfusion).
- 227 4.9. Record laser Doppler values before and after filament removal.
- 229 4.10. Open the transient ligation before the bifurcation from the CCA.

4.11. Remove the retractor and relocate the sternomastoid muscle and the submandibular
gland before suture the wound and place the animal in a recovery chamber at 37 °C for 1 h to
recover from anesthesia.

- 235 4.12. After recovery, the mice are returned to their cages in a temperature-controlled room.
- 236

234

4.13. Take care of the animals by adding wet food pellets and hydrogel in small Petri dishes on
the cage floor until day 3 after surgery.

239

4.14. Inject analgesia every 12h for 3d after surgery (4 mg/kg Carprofen und 0,1 mg/kgBuprenorphine).

242				
243				
244	5.	Sham operation		
245		·		
246				
247				
248	51	Perform all procedures identically to the operation described above including the ligation		
249	of the a	arteries and the introduction of the filament (Stens 1-3 7)		
250	or the t			
250	52	Remove the filament immediately after its insertion. Then, place the animal in the		
251	recove	5.2. Remove the mament inmediately after its insertion. Then, place the animal in the		
252	Tecove			
255	E 2	After that time, place the animal into the operation area again and remove the transient		
254	J.J.	After that time, place the animal into the operation area again and remove the transient		
255	ligation	TOT THE CCA TO ENSURE a full cerebral blood now restoration		
250	F 4	Cuture the wound and place the enimal in a resource chamber at 27 °C for 1 b to resource		
257	5.4.	Suture the wound and place the animal in a recovery champer at 37°C for 1 h to recover		
258	from ai	nestnesia. After recovery, the mice are returned to their cages in a temperature-controlled		
259	room.			
260				
261	5.5.	Take care of the animals by adding wet food pellets and hydrogel in small Petri dishes on		
262	the cag	ge floor until day 3 after surgery.		
263				
264	5.6.	Inject analgesia every 12h for 3d after surgery (4 mg/kg Carprofen und 0,1 mg/kg		
265	Buprer	norphine).		
266				
267				
268				
269	6.	Neuroscore		
270				
271	6.1.	Perform the Neuroscore always at the same time of the day and Use surgical clothes to		
272	keep a "neutral smell".			
273				
274				
275	6.2.	Mice rest 30 mins in the room with an "open" cage before the test		
276				
277	6.3.	Observe each item for 30s (Table 1-2).		
278				
279				
280	7.	Intracardiac perfusion		
281		·		
282	7.1.	Prepare a 20 mL syringe containing PBS-heparin (2U/mL) and place it 1 m above the bench		
283	to facil	itate/ensure gravity-driven perfusion. (OPTIONAL: Intracardiac perfusion can be also done		
284	with 49	% PFA. To that end, prepare a 20 mL svringe containing 4% PFA in PBS. nH: 7.4).		
285				

286	7.2.	Inject 100 μl of ketamine and xylazine (120/16 mg/kg body weight, respectively). Wait 5		
287	min and corroborate cessation of spontaneous body movement and vibrissae.			
288				
289	7.3.	Fix the animal in a supine position and disinfect the abdominal body surface with ethanol		
290	100%.			
291				
292	7.4.	Make a 3-cm-long incision into the abdomen, cut the diaphragm, the ribs and sternum to		
293	comple	etely visualize the heart.		
294				
295	7.5.	Make a small incision in the right atrium and insert the perfusion cannula into the left		
296	ventricle.			
297				
298	7.6.	Perfuse with 20 mL PBS-heparin.		
299	-			
300	7.7.	After perfusion, decapitate the animal and remove the brain.		
301				
302	78	Freeze the brain on powdered dry ice and store them at -80 °C until further use		
302	7.0.			
303				
305	Q	Infarct volumetry		
302	0.	intarce volumetry		
207	Q 1	Crypsoctioning: Cut the brains socially on a crypstat to 20 um thick soctions overy 400 um		
308	on slid	es Store the slides at -80 °C until use		
200	UII SIIU			
210	0 7	Crosyl violet (CV) staining		
211	0.2	Cresyl violet (CV) stalling		
212	0 7 1	Propage the staining solution: Mix 0.5 gr of CV asstate in 500 mL H.O. Stir and heat (60		
212	°C) uni	Frepare the standing solution. Wix 0.5 gr of CV acetate in 500 mil 120. Still and heat (00		
212	C) un	to constant and used the solution cool and store it in a dark bottle. Reneat to bo c		
314 31E	anu m	ter before every use.		
210	0 7 7	Dry the clides at ream temperature for 20 min. Then place them in 0.50% athened for 1.5		
310	8.Z.Z	Dry the sides at room temperature for 30 min. Then place them in 95% ethanol for 15		
317	min, ir	70% ethanol for 1 min, and alterward in 50% ethanol for 1 min.		
318	0 2 2			
319	8.2.3	Place the slides in distilled water for 2 min, refresh distilled water, and place them in again		
320	for 1 m	hin. Afterward, place the slides in the pre-heated staining solution for 10 min at 60 °C. Wash		
321	the slic	des twice in distilled water for 1 min.		
322				
323	8.2.4	Place the slides in 95% ethanol for 2 min. Then place them into 100% ethanol for 5 min,		
324	refresh	n the 100% ethanol and place them in again for 2 min. Afterward, cover the slides with a		
325	mount	ing medium.		
326				
327	8.2.5	Analysis (Fig.4C)		
328	Scan tl	he slides and analyze the indirect infarct volume by the Swanson method ¹³ to correct for		
329	edema			

- 330 331
- 332

333 **REPRESENTATIVE RESULTS**

334

The model that is described here is a modification of the commonly used "filament" stroke model that consists of introducing a silicon-coated filament through the ECA to transiently block the origin of the MCA. After removing the filament, only the ECA is permanently occluded, allowing a complete blood restoration in the CCA and ICA (**Fig.1**). Besides, it is described a method for measuring the cerebral blood flow during both occlusion and reperfusion procedures by fixing a cannula connected to the laser Doppler probe at the skull over the MCA territory.

(Ischemic area) = (ischemic region)-((ipsilateral hemisphere)-(contralateral hemisphere))

341

Because the blood flow in the CCA is restored after removing the filament, complete reperfusion of the brain occurs (**Fig.2**), similar to the situation observed after successful mechanical thrombectomy in human patients. The mortality rate during the surgery is less than 5% when performed by trained surgeons. At these early time points, animals generally present severe postural and movement deficits, general weakness and loss in body weight¹⁴. These severe deficits are transient and after approximately 1 week the animals show improved activity and deficits are more specific for focal neurological symptoms.

349

Behavioral deficits after MCA occlusion were assessed by the composite Neuroscore¹²; general 350 351 and focal deficits were measured 24 h and 3 d after surgery. The general Neuroscore has 5 items 352 (Table 1), including the evaluation of the fur, ears, eyes, posture and spontaneous activity, with 353 a maximum score of 18. The focal Neuroscore comprises 7 items (Table 2), including the 354 evaluation of body symmetry, gait, climbing, circling behavior, forelimb symmetry, compulsory 355 cycling and whiskers response, with a maximum score of 28. This composite scale ranges from 0 356 (no deficits) to 46 (severe impairments) Stroke animals presented a significant change in the 357 composite and focal Neuroscore but not in the general Neuroscore when compared to sham 358 animals (Fig.3).

359

Infarct volumetry was also performed using cresyl violet staining of coronal serial brain sections 24 h after stroke induction. The infarct volume mean was 61.69 mm3, representing 48% of the affected brain hemisphere (**Fig.4**). When performed by a trained surgeon, the variability of this stroke model is low, with a coefficient of variation of 6%. The lesion area includes the somatosensory and motor cortex as well as subcortical structures such as the striatum (**Fig.4**).

366

367 FIGURE AND TABLE LEGENDS

368

Table 1: General Neuroscore. Animals received between 0 and 4 points, depending on the
 severity, for each of the five general deficits measured. The scores on the different areas are then
 summed to provide a total general score ranging from 0-18.

372

373 Table 2: Focal Neuroscore. Animals received between 0 and 4 points depending on the severity,

for each of the seven general deficits measured. The scores on the different areas are then summed to provide a total focal score ranging from 0-28.

376

Figure 1: Scheme for the access and intraluminal MCA occlusion. The filament (dotted line) is
inserted between the proximal and distal suture knots in the ECA, and advanced along the ICA
until it reaches the origin of the MCA (see insert). Once in place, the ECA is ligated with a suture
to fix the filament. ACA anterior cerebral artery, BA basilar artery, CCA common carotid artery,
ECA external carotid artery, ICA internal carotid artery, MCA middle cerebral artery, PCA
posterior communicating artery, PTG pterygopalatine artery. This figure has been modified from
Jackman *et al.* 2011¹⁵.

384

Figure 2: Blood flow during occlusion and reperfusion. Blood flow is registered before and after
 filament insertion and before and after filament removal, where the reduction of the blood flow
 during the occlusion and the restoration of the blood flow during the reperfusion was observed.
 Every color represents one animal.

389

Figure 3: Neuroscore for functional deficits after tMCAo. A. Total, B. focal and C. general
 Neuroscore before, 24h and 3d after tMCAo. Open bars: sham; dark grey bars: tMCAo. BL=before
 tMCAo. n=10 per group. *p<0.05.

393

Figure 4: Volumetric infarct analysis and infarct outcome 24h after tMCAo. A. Representative
cresyl violet stained coronal brain sections every 400 μm at 24h after tMCAo. Dashed lines
demarcate the lesion area. B. Analysis of infarct volume of 10 brains (each dot representing one
individual brain) 24h after tMCAo. The horizontal red line represents the mean (61.69 mm3³),
error bars indicate standard deviation (3.78 mm3). C. Representative picture for infarct volume
calculation from a cresyl violet coronal section. Blue=Contralateral hemisphere. Red=Ipsilateral
hemisphere. Pale striped area= Ischemic region.

401

402

403

404 **DISCUSSION**

The present protocol describes the experimental stroke model of transient MCAo by introducing a silicon-coated filament through the ECA until the origin of the MCA. This stroke model is one of the most commonly used stroke models due to the possibility to achieve arterial reperfusion after a delimitated occlusion period. Thus, can be regarded as a translationally relevant stroke model.

409

410 The "filament" model as presented in this video has some advantages compared other previously 411 described stroke models, including the fact of not needing craniotomy and achieving complete 412 reperfusion of the occluded vessel. However, the complexity of the surgery could be considered 413 as a limitation, since it includes an invasive surgery and a precise manipulation of the different 414 arteries very close to the trachea and the vagal nerve. Also, the long exposure of the animal to 415 anesthetics might be a critical factor to also take into account, as the impact of anesthetics on 416 neuroprotection and stroke outcome has already been well documented¹⁶. Although this 417 complex surgical procedure cannot be achieved as brief as other described brain ischemia

418 models, it can be completed in approx. 20 min when performed by a trained surgeon.

419

420 In contrast with previously described "filament" stroke protocols¹⁷, the method here described 421 also allows the measurement of the cerebral blood flow during both, occlusion and reperfusion 422 phases. Monitoring the blood flow during repefusion might be an important parameter for preventing stroke repefusion injury¹⁸, which in clinics is known to cause deleterious 423 consequences in patients that underwent pharmacologic or endovascular interventions for 424 425 recanalization of the thrombosed vessels. Despite discrepancy exist between the consequences of cerebral blood flow restoration after MCAo¹⁹, it has been described that the variability of 426 427 blood flow restoration after stroke can influence the pathophysiological and biochemical events 428 in brain, as well as the infarct volume and the neurological deficits of stroke mice²⁰. Therefore, in 429 the model here described, a complete blood flow restoration and its recording are requirements 430 to guarantee reproducible infarcts among mice, specially when aiming at conducting 431 translational stroke studies.

432

433

434 The overall mortality during the surgery here described is less than 5% and is mainly caused by 435 anesthesiology complications, bleedings, or sacrifice due to pre-defined exclusion criteria. In 436 contrast, this stroke model presents a moderate mortality rate within the first 24h-48h after 437 stroke induction, which might increase the number of animals needed per experiment to 438 ultimately achieve a proper cohort of stroke mice. In terms of infarct volume, this model induces 439 large infarcts, with approx. 50% of the hemisphere affected by the ischemia. It also produces 440 brain swelling, overall affecting different regions of the brain, including cortical and subcortical 441 regions.

442

443 To warrant a low variability and a high reproducibility of this stroke model, In addition, we 444 suggest that the following exclusion criteria be taken into account : 1)Operation time longer than 445 20 min; 2)More than 20% of blood flow reduction when CCA ligated (step 3.3); 3)Reduction of 446 blood flow during occlusion below 80% of the initial pre-occlusion value, and 4)Increase of blood 447 flow 10 min after repefusion rate below 80% compared to the pre-reperfusion value. For an 448 experienced and trained surgeon, no animals are excluded due to the operation time. However 449 10-15% of the animals show a 20% reduction of the blood flow when the CCA is ligated and 5-450 10% do not have an adequate reduction or increase of the blood flow during occlusion or 451 reperfusion, respectively. Therefore, the success rate after excluding animals according to these 452 criteria is around 75-85%.

453

In addition, animals are examined daily after MCAo (body weight, temperature and basic physiological behavior) to control for sickness behavior, pain or discomfort.. Besides this general care, several tests for specific behavioral analysis after focal brain ischemia have been also developed. Despite all the different available tests to evaluate sensorimotor dysfunction, such as the Rotarod test ²², Sticky label test ²³, Corner test ²⁴ or the Cylinder test ²⁵.Here animals submitted to this stroke model were evaluated for focal as well as general deficits because stroke also induces cytokine-sickness behavior independent of focal (sensory or motor) deficits²⁶.

- Taken together, the "filament" stroke model here described is a valuable model for basic and translational stroke research. This model as a standardized stroke model is proposed to be used
- 464 to harmonize stroke models across laboratories.
- 465

466 **ACKNOWLEDGMENTS**

- We thank all our collaboration partners of the Immunostroke Consortia (FOR 2879, From immune
 cells to stroke recovery) for suggestions and discussions. This work was funded by the Deutsche
 Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence
- 470 Strategy within the framework of the Munich Cluster for Systems Neurology (EXC 2145 SyNergy
- 471 ID 390857198) and under the grants LI-2534/6-1, LI-2534/7-1 and LL-112/1-1.
- 472

473 **DISCLOSURES**

474 The authors have no competing interests to disclose.

475	REFERENCES:		
476			
477	1	Donnan, G. A., Fisher, M., Macleod, M. & Davis, S. M. Stroke. Lancet. 371 (9624), 1612-	
478		1623, (2008).	
479	2	O'Collins, V. E. et al. 1,026 experimental treatments in acute stroke. Ann Neurol. 59 (3),	
480		467-477, (2006).	
481	3	Tureyen, K., Vemuganti, R., Sailor, K. A. & Dempsey, R. J. Infarct volume quantification in	
482		mouse focal cerebral ischemia: a comparison of triphenyltetrazolium chloride and cresyl	
483		violet staining techniques. J Neurosci Methods. 139 (2), 203-207, (2004).	
484	4	Zhang, Z. et al. A new rat model of thrombotic focal cerebral ischemia. J Cereb Blood Flow	
485		Metab. 17 (2), 123-135, (1997).	
486	5	Longa, E. Z., Weinstein, P. R., Carlson, S. & Cummins, R. Reversible middle cerebral artery	
487		occlusion without craniectomy in rats. Stroke. 20 (1), 84-91, (1989).	
488	6	Carmichael, S. T. Rodent models of focal stroke: size, mechanism, and purpose. <i>NeuroRx</i> .	
489		2 (3), 396-409, (2005).	
490	7	Engel, O., Kolodziej, S., Dirnagl, U. & Prinz, V. Modeling stroke in mice - middle cerebral	
491		artery occlusion with the filament model. J Vis Exp. 10.3791/2423 (47), (2011).	
492	8	Dirnagl, U. et al. A concerted appeal for international cooperation in preclinical stroke	
493		research. Stroke. 44 (6), 1754-1760, (2013).	
494	9	McNutt, M. Journals unite for reproducibility. Science. 346 (6210), 679, (2014).	
495	10	Llovera, G. et al. Results of a preclinical randomized controlled multicenter trial (pRCT):	
496		Anti-CD49d treatment for acute brain ischemia. Sci Transl Med. 7 (299), 299ra121, (2015).	
497	11	Llovera, G. & Liesz, A. The next step in translational research: lessons learned from the	
498		first preclinical randomized controlled trial. J Neurochem. 139 Suppl 2 271-279, (2016).	
499	12	Clark, W. M., Lessov, N. S., Dixon, M. P. & Eckenstein, F. Monofilament intraluminal middle	
500		cerebral artery occlusion in the mouse. <i>Neurol Res.</i> 19 (6), 641-648, (1997).	
501	13	Swanson, G. M., Satariano, E. R., Satariano, W. A. & Threatt, B. A. Racial differences in the	
502		early detection of breast cancer in metropolitan Detroit, 1978 to 1987. Cancer. 66 (6),	
503		1297-1301, (1990).	
504	14	Lourbopoulos, A. et al. Inadequate food and water intake determine mortality following	
505		stroke in mice. <i>J Cereb Blood Flow Metab.</i> 37 (6), 2084-2097, (2017).	
506	15	Jackman, K., Kunz, A. & Iadecola, C. Modeling focal cerebral ischemia in vivo. Methods	
507		Mol Biol. 793 195-209, (2011).	
508	16	Kitano, H., Kirsch, J. R., Hurn, P. D. & Murphy, S. J. Inhalational anesthetics as	
509		neuroprotectants or chemical preconditioning agents in ischemic brain. J Cereb Blood	
510		Flow Metab. 27 (6), 1108-1128, (2007).	
511	17	Rousselet, E., Kriz, J. & Seidah, N. G. Mouse model of intraluminal MCAO: cerebral infarct	
512		evaluation by cresyl violet staining. J Vis Exp. 10.3791/4038 (69), (2012).	
513	18	Rha, J. H. & Saver, J. L. The impact of recanalization on ischemic stroke outcome: a meta-	
514		analysis. <i>Stroke.</i> 38 (3), 967-973, (2007).	
515	19	Liu, J. R. <i>et al.</i> Transient filament occlusion of the middle cerebral artery in rats: does the	
516		repertusion method matter 24 hours after perfusion? <i>BMC Neurosci.</i> 13 154, (2012).	
517	20	Sommer, C. J. Ischemic stroke: experimental models and reality. <i>Acta Neuropathol.</i> 133	
518		(2), 245-261, (2017).	

- 519 21 in *Mechanisms of Vascular Disease: A Reference Book for Vascular Specialists* eds R.
 520 Fitridge & M. Thompson) (2011).
- Jones, B. J. & Roberts, D. J. A rotarod suitable for quantitative measurements of motor
 incoordination in naive mice. *Naunyn Schmiedebergs Arch Exp Pathol Pharmakol.* 259 (2),
 211, (1968).
- 524 23 Bouet, V. *et al.* The adhesive removal test: a sensitive method to assess sensorimotor 525 deficits in mice. *Nat Protoc.* **4** (10), 1560-1564, (2009).
- 52624Zhang, L. *et al.* A test for detecting long-term sensorimotor dysfunction in the mouse after527focal cerebral ischemia. J Neurosci Methods. **117** (2), 207-214, (2002).
- Schallert, T., Fleming, S. M., Leasure, J. L., Tillerson, J. L. & Bland, S. T. CNS plasticity and assessment of forelimb sensorimotor outcome in unilateral rat models of stroke, cortical ablation, parkinsonism and spinal cord injury. *Neuropharmacology.* **39** (5), 777-787, (2000).
- Roth, S., Yang, J., Cramer, J., Malik, R. & Liesz, A. Detection of cytokine-induced sickness
 behavior after ischemic stroke by an optimized behavioral assessment battery. *Brain Behav Immun.* 10.1016/j.bbi.2020.11.016, (2020).
- 535

Figure 1

Figure 2

Figure 3

General Neuroscore

Figure 4

Table 1

	Time-point of scoring s		
	Hair	0. Hair neat and clean	
		1. Localized piloerection and dirty hair in 2 body parts (nose and eyes)	
		2. Piloerection and dirty hair in >2body parts	
	e on nch	0. Normal (ears are stretched laterally and behind, they react by straightening up following noise)	
	Ears (mouse an open be top)	1. Stretched laterally but not behind (one or both), they react to noise	
		2. Same as 1. NO Reaction to noise.	
		0. Open, clean and quickly follow the surrounding environment	
	n OBT	1. Open and characterized by aqueous mucus. Slowly follow the surrounding environment	
	ouse c	2. Open and characterized by dark mucus	
	Eyes (m	3. Ellipsoidal shaped and characterized by dark mucus	
oscore		4. Closed	
al Neur	se on ntly)	0. The mouse stands in the upright position with the back parallel to the palm. During swing, it stands rapidly.	
Genera	e mous ing ger	1. The mouse stands humpbacked. During the swing, it flattens the body to gain stability.	
Ū	Posture (place the the palm and swi	2. The head or part of the trunk lies on the palm	
		3. The mouse lies on one side, barely able to recover the upright position.	
		4. The mouse lies in a prone position, not able to recover the upright position.	
	ouse	0.The mouse is alert and explores actively	
	ity (m	1.The mouse seems alert, but it is calm and sluggish	
	s activ	2.The mouse explores intermittently and sluggishly	
	taneo : 0	3.The mouse is somnolent and numb, few movements on-the-spot	
	Spor	4.No spontaneous movements	
	Total score for general scoring		
	(normal=0 max=18)		

Table2

	Time-point of scoring		score
	on line)	0. Normal (Body: normal posture, trunk elevated from the bench, with fore and hindlimbs leaning beneath the body. Tail: straight)	
	ouse e-tail	1 Slight asymmetry (Body: leans on one side with fore and hindlimbs leaning beneath the body. Tail: slightly bent)	
	y (m e nosi		
	imeti ve the	Moderate asymmetry (Body: leans on one side with fore and hindlimbs stretched out. Tail: slightly bent).	
	y syn obser	3. Prominent asymmetry (Body: bent, on one side lies on the OBT. Tail: bent)	
	Bod OBT, c	4. Extreme asymmetry (Body: highly bent, on one side constantly lies on the OBT. Tail: highly bent)	
	ved	0. Normal (gait is flexible, symmetric and quick)	
	Obser)	1 Stiff inflexible (humphacked walk slower than normal mouse)	
	OBT. (rbed)		
	se on ndistu	2. Limping, with asymmetric movements	
	n mow)	3. Trembling, drifting, falling	
	Gait	4. Does not walk spontaneously (when stimulated by gently pushing the mouse walks no longer than 3 steps)	
	ب5° n the face)	0. Normal (mouse climbs quickly)	
	on a 4 ouse i ng sur	1. Climbs with strain, limb weakness present.	
	ouse he mo	2 Holds onto slone, does not slin or climb	
	ng (m lace t the g		
	limbi i ace. P ter of	3. Slides down slope, unsuccessful effort to prevent fail	
	C surf cen	4. Slides immediately, no effort to prevent fail.	
	e on (ر	0. Absent circling behavior	
е	mous	1. Predominantly one-side turns.	
oscor	vior (I	2. Circles to one side, although not constantly.	
Neur	beha free	3. Circles constantly to one side	
Focal	rcling OBT		
	Ö	4. Pivoting, swaying, or no movement.	
)	0. Normal	
	t ry (n y tail	1. Light asymmetry: mild flexion of contralateral forelimb.	
	'mme Ided t	2. Marked asymmetry: marked flexion of contralateral limb, the body slightly bends on the ipsilateral side.	
	mb sy usper	3. Prominent asymmetry: contralateral forelimb adheres to the trunk.	
	oreli. s		
	Ps c	4. Sight asymmetry, no body, into movement.	
	relim bs il: it of the alsy)	0. Absent. Normal extension of both forelimbs.	
	ng (fo ndlim the ta ence (mb pa	1. Tendency to turn to one side (the mouse extends both forelimbs, but starts to turn preferably to one side)	
	circli ch, hi ed by e pres eral li	2. Circles to one side (the mouse turns towards one side with a slower movement compared to healthy mice)	
	l isory n ben pende als the tralat	3. Pivots to one side sluggishly (the mouse turns towards one side failing to perform a complete circle)	
	ompu sus revea	4. Does not advance (the front part of the trunk lies on the bench, slow and brief movements)	
	on C		
	onse (
	se (m [.] 3T)	1. Light asymmetry (the mouse withdraws slowly when stimulated on the contralateral side)	
	spon: the Of	2. Prominent asymmetry (no response when stimulated to the contralateral side)	
	ker re t	3. Absent response contralaterally, slow response when stimulated ipsilaterally.	
	Whis	4. Absent response bilaterally	
	Total score for focal det	icits	
	(normal=0 max=28)		

Name of Material/ Equipment	Company	Catalog Number	Comments/Description	
45º ramp	H&S Kunststofftechnik		height: 18 cm	
5/0 threat	Pearsalls	10C103000		
5ml Syringe	Braun			
Acetic Acid	Sigma Life Science	695092		
Anesthesia system for isoflurane	Drager			
Bepanthen pomade	Bayer			
C57BI/6J mice	Charles River	000664		
Clamp	FST	12500-12		
Clip	FST	18055-04		
Clip holder	FST	18057-14		
Cotons	NOBA Verbondmitel Danz	974116		
Cresyl violet	Sigma Life Science	C5042-10G		
Cryostat	Thermo Scientific CryoStarNX70			
Ethanol 70%	CLN Chemikalien Laborbedorf	521005		
Ethanol 96%	CLN Chemikalien Laborbedorf	522078		
Ethanol 99%	CLN Chemikalien Laborbedorf	ETO-5000-99-1		
Filaments	Doccol	602112PK5Re		
Fine 45 angled forceps	FST	11251-35		
Fine forceps	FST	11252-23		
Fine Scissors	FST	14094-11		
Glue	Orechseln	BSI-112		
Hardener Glue	Drechseln & Mehr	BSI-151		
Heating blanket	FHC DC Temperature Controller			
Isoflurane	Abbot	B506		
Isopentane	Fluka	59070		
Ketamine	Inresa Arzneimittel GmbH			
Laser Doppler	Perimed	PF 5010 LDPM, Pe	riflux System 5000	
Laser Doppler probe	Perimed	91-00123		
Phosphate Buffered Saline PH: 7,4	Apotheke Innestadt Uni Munchen	P32799		
Recovery chamber	Mediheat			
Roti-Histokit mounting medium	Roth	6638.1		
Saline solution	Braun	131321		

Scalpel
Silicon-coated filaments
Stereomicropscope
Superfrost Plus Slides
Vannas Spring Scissors
Xylacine

Feather Doccol Leica Thermo Scientific FST Albrecht 02.001.30.011 602112PK5Re M80 J1800AMNZ 15000-00