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We analyze the size and evolution of quantum fluctuations of cosmologically relevant
geometric observables, in the context of the effective relational cosmological dynamics of
GFT models of quantum gravity. We consider the fluctuations of the matter clock
observables, to test the validity of the relational evolution picture itself. Next, we
compute quantum fluctuations of the universe volume and of other operators
characterizing its evolution (number operator for the fundamental GFT quanta, effective
Hamiltonian and scalar field momentum). In particular, we focus on the late (clock) time
regime, where the dynamics is compatible with a flat FRW universe, and on the very early
phase near the quantum bounce produced by the fundamental quantum gravity dynamics.
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1 INTRODUCTION

Three closely related challenges have to be overcome by fundamental quantum gravity approaches,
especially those based on discrete or otherwise non-geometric, non-spatiotemporal entities, in order
to make contact with General Relativity and observed gravitational physics, based on effective
(quantum) field theory. The first is the continuum limit/approximation leading from the fundanental
entities and their quantum dynamics to an effective continuum description of spacetime and
geometry, with matter fields living on it (Oriti et al., 2017). This requires a mixture of
renormalization analysis of the fundamental quantum dynamics and of coarse-graining of its
states and observables. The second is a classical limit/approximation of the sector of the theory
corresponding to (would-be) spacetime and geometry, to show that indeed an effective classical
dynamics compatible with General Relativity and observations emerges, once in the continuum
description (Oriti et al., 2017). The third is a definition of suitable observables that can, on the one
hand, give a physical meaning to both continuum and classical approximations in terms of spacetime
geometry and gravity, and, on the other hand, allow to make contact with phenomenology
(Marchetti and Oriti, 2021). In particular, suitable observables are needed to recast the dynamics
of the quantum gravity system, in the same continuum and classical approximations, at least, in more
customary local evolutionary terms, i.e. in the form of evolution of local quantities with respect to
some notion of time (Giddings et al., 2006; Tambornino, 2012). This, in fact, is the language of
effective field theory used in gravitational and high energy physics. The first two challenges are
standard in any quantum many-body system, but are made more difficult in the quantum gravity
context by the necessary background (and spacetime) independence of the fundamental theory,
which requires adapting non-trivially standard renormalization, coarse-graining and classical
approximation techniques. The same background independence, closely related at the formal
level to the diffeomorphism invariance of General Relativity (Giulini, 2007), makes the third
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challenge a peculiar difficulty in quantum gravity. Locality or
temporal evolution cannot be defined with respect to any
manifold point or direction and generic configurations
(classical and even less quantum) of the gravitational field (or
what replaces it at the fundamental level) do not single out any
such notions either. Beside special situations (e.g. in the presence
of asymptotic boundaries) local and temporal geometric
observables can be understood as relational quantities, i.e.
defined as a relation between geometry and other dynamical
matter degrees of freedom, that provide a notion of local regions
and temporal direction when used as physical reference frames.
In other words, and restricting to the issue of time (Isham, 1992;
Kuchař, 2011), the relational perspective holds that the absence of
preferred, external or background notions of time in generally
relativistic quantum theories does not mean that there is no
quantum evolution, but only that evolution should be defined
with respect to internal, physical degrees of freedom (Höhn et al.,
1912; Tambornino, 2012).

From the perspective of “Quantum General Relativity”
theories (Rovelli, 2004; Thiemann, 2007), in which the
fundamental entities remain (quantized) continuum fields, the
relational strategy to define evolution boils down to either the
selection of a relational clock at the classical level, in terms of
which the remaining subsystem is canonically quantized
(“tempus ante quantum” (Isham, 1992; Anderson, 2012)) or
the definition of an appropriate clock-neutral quantization
(e.g., Dirac quantization) and the representation of classical
complete (i.e., relational) observables (Rovelli, 2002; Dittrich,
2006; Dittrich, 2007; Tambornino, 2012) on the physical
Hilbert space resulting from such quantization (“tempus post
quantum” (Isham, 1992; Anderson, 2012)). Of course, while the
first approach (deparametrization) is technically easier, when
possible, the second one is in principle preferable because
manifestly “clock covariant,” since it treats all the quantum
degrees of freedom on the same footing, thus allowing in
principle to switch from one relational clock to another (see
(Bojowald et al., 2011a; Bojowald et al., 2011b; Hoehn et al., 2011;
Hoehn and Vanrietvelde, 2018) for more details).

In “emergent quantum gravity” theories, in which the
fundamental degrees of freedom are pre-geometric and non-
spatiotemporal, and not identified with (quantized) continuum
fields, the situation has an additional layer of complications
(Marchetti and Oriti, 2021). Any kind of continuum notion in
such theories is expected to emerge in a proto-geometric phase of
the theory from the collective behavior of the fundamental
entities, i.e. only at an effective and approximate level. Among
such continuum notions there is any notion of relational
dynamics, as we understand it from the generally relativistic
perspective.

In the tensorial group field theory formalism (TGFT) for
quantum gravity (see (Krajewski, 2011; Oriti, 2011; Carrozza,
2016; Gielen and Sindoni, 2016) for general introductions),
comprising random tensor models, tensorial field theories and
group field theories (closely related to canonical loop quantum
gravity, and providing a reformulation of lattice gravity path
integrals and spin foam models), we are in this last emergent
spacetime situation (Oriti, 1807).

The issue of the continuum limit is tackled adapting standard
renormalization group (Carrozza, 2016) and statistical methods
for quantum field theories, leading also to several results
concerning the critical behavior of a variety of models. In the
more quantum geometric group field theory (GFT) models
(Magnen et al., 2009; Baratin et al., 2014; Ben Geloun et al.,
2016; Carrozza et al., 2017; Carrozza and Lahoche, 2017; Geloun
et al., 2018) (see also (Finocchiaro and Oriti, 2004) and references
therein), one can take advantage of the group theoretic data and
of their discrete geometric interpretation to give tentative physical
meaning to suitable quantum states and to specific regimes of
approximation of their quantum dynamics (Oriti et al., 2015).
Specifically, the hydrodynamic regime of models of 4d quantum
geometry admits a cosmological interpretation and has been
analyzed in some detail for simple condensate states (Gielen
et al., 2014; Gielen and Sindoni, 2016; Oriti et al., 2016). The
corresponding effective dynamics has been recast in terms of
cosmological observables both via the relational strategy and by a
deparametrization with respect to the added matter degrees of
freedom (Gielen and Sindoni, 2016; Oriti et al., 2016; Oriti, 2017;
Pithis and Sakellariadou, 2019; Wilson-Ewing, 2019; Marchetti
and Oriti, 2021). Among many results (Gielen and Menéndez-
Pidal, 2005; Gielen, 2014; Pithis et al., 2016; Pithis and
Sakellariadou, 2017; Adjei et al., 2018; Gielen and Polaczek,
2020), the correct classical limit in terms of a flat FRW
universe has been obtained rather generically for large
expectation values of the volume operator at late relational
(clock) times (Oriti et al., 2016; Gielen and Polaczek, 2020;
Marchetti and Oriti, 2021), and the big bang singularity is
resolved, with a similar degree of generality (Oriti et al., 2016;
Gielen and Polaczek, 2020), and replaced with a quantum bounce.
In addition, the fundamental quantum gravity interactions seem
to be able produce (at least for some regime of parameters) an
accelerated cosmological expansion, possibly long-lasting,
without introducing additional matter (e.g. inflaton) fields (de
Cesare et al., 2016).

The above results have been obtained looking at the
expectation values of interesting cosmological observables in
(the simplest) GFT condensate states. A careful analysis of
quantum fluctuations of the same observables is then
important to test the validity of the hydrodynamic description
in terms of expectation values, in particular in the large volume
limit when one expects classical GR to be valid, but also close to
the big bounce regime where one expects them to be strong but
still controllable if the bouncing scenario is to be trustable at all.
Moreover, the relational evolution relies on the chosen physical
(matter) degrees of freedom to behave nicely enough to serve as a
good clock, and this would not be the case if subject to strong
quantum fluctuations. This analysis of quantum fluctuations is
what we perform in this paper.

The precise context in which we perform the analysis is that of
the effective relational dynamics framework developed in
(Marchetti and Oriti, 2021).

This construction is motivated by the argued usefulness and
conceptual importance of effective approaches to relational
dynamics (Bojowald et al., 2009; Bojowald and Tsobanjan,
2009; Bojowald et al., 2011a; Bojowald et al., 2011b; Bojowald,
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2012), and it was suggested a general framework in which the
latter is realized in a “tempus post quantum” approach, but only
at a proto-geometric level, i.e. after some suitable coarse graining,
the one provided by the GFT hydrodynamic approximation (or
its improvements).

Besides its conceptual motivations, this effective relational
framework improves on previous relational constructions in
GFT cosmology providing a mathematically more solid
definition of relational observables, allowing the explicit
computation of quantum fluctuations, which will be one the
main objectives of the present work.

This improved effective relational dynamics was obtained by the
use of “Coherent Peaked States” (CPSs), in which the fundamental
GFT quanta collectively (and only effectively) reproduce the classical
notion of a spacelike slice of a spacetime foliation labeled by amassless
scalar field clock. For this effective foliation to bemeaningful quantum
flctuations of the clock observables should be small enough (e.g. in the
sense of relative variances). When this is the case, the relevant physics
is captured by averaged relational dynamics equations for the other
observables of cosmological interest, like the universe volume or the
matter energy density or the effective Hamiltonian. The purpose of
this paper is to explore underwhich conditions this averaged relational
dynamics is meaningful and captures the relevant physics, checking
quantum fluctuation for both clock observables and cosmological,
geometric ones.

2 EFFECTIVE RELATIONAL FRAMEWORK
FOR GFT CONDENSATE COSMOLOGY

The GFT condensate cosmology framework is based on three
main ingredients (see e.g. (Gielen and Sindoni, 2016) for a
review):

1. The identification of appropriate states which admit an
interpretation in terms of (homogeneous and isotropic)
cosmological 3-geometries;

2. The construction of an appropriate relational framework
allowing to describe e.g. the (averaged) geometric quantities
(in the homogeneous and isotropic case, the volume operator)
as a function of a matter field (usually a minimally coupled
massless scalar field);

3. The extraction of a mean field dynamics from the quantum
equations of motion of the microscopic GFT theory, which in
turn determines the relational evolution of the aforementioned
(averaged) volume operator.

In this section, we will review the concrete realization of the
first two steps and of the first part of the third step (i.e. the
extraction of a mean field dynamics), in order to prepare the
ground for the calculation of expectation values, first, and the
quantum fluctuations of geometric observables of cosmological
interest. More precisely, the first step will be reviewed in Section
2.1, while the second and the first part of the third one will be
discussed in Sections 2.2, Sections 2.3, respectively. The second
part of the last step, which requires the detailed computations of

expectation values performed in Section 4.1, will be instead
discussed in Section 4.2.

2.1 The Kinematic Structure of GFT
Condensate Cosmology
In the Group Field Theory (GFT) formalism (Krajewski, 2011;
Oriti, 2011; Carrozza, 2016; Gielen and Sindoni, 2016), one aims
at a microscopic description of spacetime in terms of simplicial
building blocks (Reisenberger and Rovelli, 2001). The behavior of
the fundamental “atoms” that spacetime has dissolved into is
described by a (in general, complex) field φ : Gd →C defined on d
copies of a group manifold, φ(gI) ≡ φ(g1, . . . , gd). By appropriate
choices of the dimension d, of the group manifold G, of the
combinatorial pairing of field arguments in the action, and of
course its functional form, the perturbative expansion of the
theory produces amplitudes that can be seen as a simplicial
gravity path-integral (Baratin and Oriti, 2012), with the group-
theoretic data entering as holonomies of a discrete gravitational
connection. Concretely, most 4d gravity models use d � 4
(i.e., the spacetime dimension), and G � SL(2,C) (local gauge
group of gravity), its Euclidean version, Spin(4), or SU(2), once
an appropriate embedding into SL(2,C) or Spin(4) is specified.
This latter choice allows for an explicit connection of the GFT
quantum states with those in the kinematical Hilbert space of
LQG (Gielen and Sindoni, 2016; Oriti, 2016). From now on,
therefore, we will specialize to d � 4 and G � SU(2).

Indeed, in this case, the fundamental quanta of the field,
assuming it satisfies the “closure” condition φ(gI) � φ(gIh) for
each h ∈ G, can be interpreted as 3-simplices (tetrahedra)
whose faces are decorated with an equivalence class of
geometrical data [{gI}] � {{gIh}, h ∈ G} or, in the dual
picture, as open spin-networks, i.e., nodes from which four
links are emanating, each of which is associated to group-
theoretical data. From this dual perspective, the closure
condition becomes the imposition of invariance under local
gauge transformations which act on the spin-network vertex.

2.1.1 The GFT Fock Space
The Fock space of such “atoms of space” can be constructed in
terms of the field operators φ̂(gI) and φ̂†(gI) subject to the
following commutation relations:

[φ̂(gI), φ̂†(gI′)] � ‖G(gI , gI′) , (1a)

[φ̂(gI), φ̂(gI′)] � [φ̂†(gI), φ̂†(gI′)] � 0 , (1b)

together with a vacuum state |0〉 annihilated by φ̂, so that the
action of φ̂†(gI) on |0〉 creates a “quantum of space” with (an
equivalence class of) geometric data {gI}. The right-hand-side of
Eq. 1a represents the identity in the space of gauge-invariant
(i.e., right diagonal invariant) fields (Gielen et al., 2014).

GFT “ (m + n) -body operators” O
∧
n+m

O
∧
n+m ≡ ∫(dgI)m(dhI)nOm+n(g1I , . . . ,gmI ,h1I , . . . ,hnI )

×∏
i�1

m

φ̂†(giI)∏
j�1

n

φ
∧(hjI) , (2)
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are then constructed from thematrix elementsOm+n, whose form can
be determined from simplicial geometric or canonical approaches like
Loop Quantum Gravity (LQG) (Ashtekar and Lewandowski, 2004;
Rovelli, 2004; Thiemann, 2007). The same kind of construction can of
course be performed in any representation of the relevant Hilbert
space.Wewill work with explicit examples of such operators (number
operator, volume operator, massless scalar field operator, etc.) in the
cosmological context.

Coupling to a Massless Scalar Field
Following (Marchetti and Oriti, 2021; Oriti et al., 2016), a scalar
field is minimally coupled to the discrete quantum geometric data,
with the purpose of using it as a relational clock at the level of GFT
hydrodynamics. This is done by adding to the GFT field and action
the degree of freedom associated to a scalar field in such a way that
the GFT partition function, once expanded perturbatively around
the Fock vacuum, can be identified with the (discrete) path-integral
of a model of simplicial gravity minimally coupled with a free
massless scalar field (or, equivalently, with the corresponding spin-
foam model)1 (Oriti et al., 2016). Therefore, the field operator
changes as follows:

φ̂(gI) → φ̂(gI , χ) , (3)

meaning that the one-particle Hilbert space is now enlarged to
L2(SU(2)4/SU(2) × R). So, each GFT atom can carry (in the
appropriate basis) a value of the scalar field, which is “discretized”
on the simplicial structures associated toGFT states and (perturbative)
amplitudes (Li et al., 2017). This implies that the commutation
relations in (Eq. 1a) need to be modified consistently, obtaining

[φ̂(gI , χ), φ̂†(hI , χ′)] � IG(gI , hI)δ(χ − χ′) . (4)

and that operators (Eq. 2) in the second quantization picture now
involve integrals over the possible values of the massless scalar
field (Oriti et al., 2016; Marchetti and Oriti, 2021).

2.1.2 GFT Condensate Cosmology: Kinematics
The Fock space construction described above proves technically
very useful in order to address the problem of extraction of
continuum physics from GFTs. In particular, in previous works
(Gielen, 2014; Oriti et al., 2016), this was exploited to build
quantum states that, in appropriate limits, can be interpreted as
continuum and homogeneous 3-geometries, thus paving the way
to cosmological applications of GFTs. Such states are characterized
by a single collective wavefunction, defined over the space of
geometries associated to a single tetrahedron or, equivalently
(when some additional symmetry conditions are imposed on
the wavefunction) over the minisuperspace of homogeneous
geometries (Gielen, 2014). For such condensate states then,
classical homogeneity is lifted at the quantum level by imposing
‘wavefunction homogeneity’. Among the many possible
condensate states (characterized by different “gluing” of the

fundamental GFT quanta one to another) satisfying the above
wavefunction homogeneity, most of the attention was directed
toward the simplest GFT coherent states, i.e.,

|σ〉 � Nσ exp[∫ dχ ∫ dgIσ(gI , χ)ϕ∧†(gI , χ)]|0〉, (5)

where

Nσ ≡ e−‖σ‖
2/2, (6a)

||σ||2 � ∫ dgIdχ∣∣∣∣σ(gI , χ)∣∣∣∣2 (6b)

They satisfy the important property

φ̂(gI , χ)|σ〉 � σ(gI , χ)|σ〉 , (7)

i.e., they are eigenstates of the annihilation operator.
In order to make contact with cosmological geometries, one

typically also imposes isotropy on the wave function, requiring
the associated tetrahedra to be equilateral. This results in the
following condensate wavefunction (Oriti et al., 2016)

σ(gI , χ) �∑∞
j�0

σ
j, m→,ι+I

jjjj,ι+
n1n2n3n4

�����
d4(j)√ ∏4

i�1
Dj

mini
(gi),

where
σ{j, m→,ι+}(χ) � σ j(χ)I jjjj,ι+

m1m2m3m4
.

and where d(j) � 2j + 1, j are spin labels, D j
mn are Wigner

representation matrices, I are intertwiners, and I jjjj,ι+
m1m2m3m4

is
an eigenvector of the LQG volume operator with the largest
eigenvalue (Oriti et al., 2016). After imposition of isotropy, σ j
becomes the quantity effectively encoding the physical properties
of the state.

2.2 Effective Relational Dynamics
Framework and its Implementation in GFT
Condensate Cosmology
In (Marchetti and Oriti, 2021), a procedure for extracting an effective
relational dynamics framework was proposed for the cosmological
context, when one is interested in describing the evolution of some
geometric operators with respect of some scalar matter degree of
freedom. Since our analysis of quantum fluctuations will take place
within such effective relational framework, let us summarize how it is
obtained and under which conditions it is expected to be meaningful.
In the following, we will analyze also the limits of validity of such
conditions.

2.2.1 Effective Relational Evolution of Geometric
Observables with Respect to Scalar Matter Degrees of
Freedom
The fundamental observables one is interested in are: a “scalar
field operator” χ̂, a set of “geometric observables”2 {Ôa}a∈S and a

1This procedure can in fact be seen as a discrete version of what would be done in a
3rd quantized framework for quantum gravity; indeed, GFT models (like matrix
models for 2d gravity) are a discrete realization of the 3rd quantization idea (Gielen
and Oriti, 2011).

2For instance, in a cosmological context in which one is interested only to
homogeneous and isotropic geometries, the volume operator is expected to
capture all the geometric properties of the system. In this case, therefore, one
only includes this volume operator among the geometric observables of interest.
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“number operator” N̂ , counting the number of fundamental
“quanta of space.” Since one is assuming that the theory, at
this pre-geometric level, is entirely clock-neutral (and so are all
the operators above), the effective relational dynamics is realized
through an appropriate choice of a class of states |Ψ〉 having both
an intepretation in terms of continuum geometries3 (and thus
possibly characterizing a proto-geometric phase of the theory)
and also carrying a notion of relationality. More precisely, they
should allow for the existence of an Hamiltonian operator Ĥ such
that, for each geometric observable Ôa,

i
d

d〈χ̂〉Ψ
〈Ôa〉Ψ � 〈[Ĥ, Ôa]〉Ψ, (8a)

at least locally and far enough from singular turning points of the
scalar field clock4. In order to interpret this evolution as truly
relational with respect to the scalar field used as a clock, all the
moments of Ĥ and of the scalar field momentum Π̂ on |Ψ〉 should
be equal. In particular, this implies that the averages of these two
operators on |Ψ〉 should be equal,

〈Ĥ〉Ψ � 〈Π̂〉Ψ . (8b)

This equality was investigated in (Marchetti and Oriti, 2021) in
the context of GFT cosmology, and we will discuss it
further below.

A further condition that is necessary in order to interpret
Eq. 8a as a truly relational dynamics involves the smallness of the
quantum fluctuations on the matter clock. In (Marchetti and
Oriti, 2021), this was imposed by requiring the relative variance of
χ̂ on |Ψ〉 to be much smaller than one, and to have the
characteristic many-body 〈N̂〉−1 behavior, i.e.,

δ2χ ≪ 1, δ2χ ∼ 〈N̂〉−1, (9)

where the relative variance on |Ψ〉 is defined as

δ2O � 〈Ô2〉Ψ − 〈Ô〉
2

Ψ

〈Ô〉2Ψ
.

This is of course formally correct only when one is assuming that
the expectation value of χ̂ is non-zero, as we will discuss further
below. When this is not the case, one should define some
thresholds which the relative variances should be smaller than
(Marchetti and Oriti, 2021).

Let us also notice, that, strictly speaking, one would have to
require that all the moments of the scalar field operator higher than
the first one are much smaller than one in order to guarantee a
negligible impact of quantum fluctuations of the clock on the
relational framework. However, one also expects that, being the
system fundamentally a many-body system (for which the second

condition in (Eq. 9) is satisfied), moments higher than the second
one get also suppressed in the largeN limit which we will be mainly
interested in, forming a hierarchy of less and less important
quantum effects (typically, in many-body systems, relative
moments of order n are suppressed by 〈N〉−(n−1), with n> 1).
In the asymptoticN→∞ regime, therefore, one should be allowed
to characterize quantum fluctuations essentially by the behavior of
relative variances. This might not be the case, on the other hand, in
intermediate regimes of smaller N, where indeed there is no good
reason to believe such a hierarchy to be realized. In such cases the
impact of quantum fluctuations has to be studied more carefully.

2.2.2 Implementation in GFT Condensate
Cosmology: CPSs
The strategy to realize the above framework in the context of GFT
condensate cosmology in (Marchetti and Oriti, 2021) made use of
Coherent Peaked States (CPSs). These states are constructed so that
they can provide, under appropriate approximations, “bona fide”
leaves of a relational χ-foliation of spacetime. Given the proto-
geometric nature of the states (Eq. 5) the idea is to look for a subclass
of them characterized by a given value of the relational clock, say χ0,
so that the GFT quanta collectively conspire to the approximate
reconstruction of a relational leaf of spacetime labeled by χ0 itself.
Since, in the condensate states (Eq. 5) the information about the state
is fully encoded in the condensate wavefunction, in (Marchetti and
Oriti, 2021) relational proto-geometric states are chosen among
those where this wavefunction has a strong peaking behavior:

σϵ(gI , χ) ≡ ηϵ(gI ; χ − χ0, π0)~σ(gI , χ) , (10)

where ηϵ is the so-called peaking function around χ0 with a typical
width given by ϵ. For instance, one can choose a Gaussian form

ηϵ(χ − χ0, π0) ≡ N ϵ exp[− (χ − χ0)2
2ϵ ]exp[iπ0(χ − χ0)] , (11)

where N ϵ is a normalization constant and where it was assumed
that the peaking function does not depend on the group variables
gI (the dependence on quantum geometric data is therefore fully
encoded in the remaining contribution to the full wavefunction).
Further, the reduced wavefunction ~σ was assumed not to spoil the
peaking properties5 of ηϵ (Marchetti and Oriti, 2021). Since the
reduced wavefunction is determined dynamically (see Section 2.3
below), this constrains the space of admissible solutions to the
dynamical equations. However, in the cosmological case, this will
not result on discarding any solution, since the most general one
(see Eq. 19b) has the desired property.

In order for the average clock value to be really meaningful in
defining a relational evolution, it is necessary for the width ϵ of the
peaking function to be small, ϵ≪ 1. However, as remarked in
(Marchetti and Oriti, 2021) and as we will see explicitly below,
taking the limit ϵ→ 0, would of course make quantum

3In this sense, the operators χ̂ and {Ôa}a∈O are expected to have an interpretation in
terms of scalar field and geometric quantities respectively, only when averaged on
such states.
4The above equation is however expected to hold globally if the clock is a minimally
coupled massless scalar field, which is going to be the only case we will
consider here.

5For instance, a reduced wavefunction (whose modulus is) behaving as exp[χn]
with n≥ 2 would certainly destroy any localization property of the wavefunction σϵ .
On the other hand, any function (whose modulus is) characterized by polynomial
or exponential expχ behavior would be an admissible candidate for the reduced
condensate wavefunction.
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fluctuations on the momentum of the massless scalar field clock
to diverge, thus making the clock highly quantum even in regimes
in which we expect to reach some kind of semi-classicality.
Moreover, even by considering a small but finite ϵ, there is no
guarantee in principle for quantum fluctuations in the scalar field
momentum to become controllable in the same semi-classical
regime. This can be ensured, however, by imposing the
additional condition

ϵπ2
0 ≫ 1 . (12)

For more remarks and comments on this particular class of states
we refer to (Marchetti and Oriti, 2021).

2.3 Reduced Wavefunction Dynamics and
Solutions
Since the relational approach discussed in the previous section is
by its very nature effective and approximate, following (Marchetti
and Oriti, 2021) we will only extract an effective mean field
dynamics from the full quantum equations of motion. In other
words, we will only consider the imposition of the quantum
equations of motion averaged on the states that we consider to be
relevant for an effective relational description of the cosmological
system:

〈 δS[φ̂, φ̂†]
δφ̂†(gI , χ0)〉σϵ;χ0 ,π0

≡ 〈σϵ; χ0, π0

∣∣∣∣∣∣∣∣ δS[φ̂, φ̂
†]

δφ̂†(gI , χ0)
∣∣∣∣∣∣∣∣σϵ; χ0, π0〉 � 0 ,

(13)

where
∣∣∣∣σϵ; χ0, π0〉 is the isotropic CPS with wavefunction (10) and

with peaking function (Eq. 11). The quantity S is the GFT action.
As we have mentioned at the beginning of Section 2.1, its form is
chosen so that the GFT partition function expanded around the
Fock vacuum matches the spin-foam model one wants to
reproduce. Following (Oriti et al., 2016), this would be an EPRL
Lorentzian model with a minimally coupled massless scalar field,
described in terms of the SU(2) projection of the Lorentz
structures entering in the original definition of the model. The
action includes a quadratic kinetic term and a quintic (in powers of
the field operator) interaction term, S � K + U + U .

For cosmological applications, there are typically two
assumptions that are done on the GFT action. The first is that
the classical field symmetries of the action of a minimally coupled
massless scalar field (invariance under shift and reflection) are
respected by the GFT action as well. This greatly simplifies the
form of the interaction and kinetic terms, which read (Oriti et al.,
2016; Marchetti and Oriti, 2021)

K � ∫ dgIdhI ∫ dχdχ′φ(gI , χ)
×K(gI , hI ; (χ − χ′)2)φ(hI , χ′),

U � ∫ dχ ∫⎛⎝∏5
a−1

dgaI⎞⎠U(g1I , . . . , g5I )∏5
a−1

φ(gaI , χ)0
The details about the EPRL model are encoded in the specific
form of the kinetic and interaction kernels K and U above. In

particular, it is U that carries information about the specific
Lorentzian embedding of the theory.

The second assumption usuallymade in cosmological applications,
however, is that one is interested in a “mescocopic regime”where these
interactions are assumed to be negligible (though see (Pithis et al.,
2016; Pithis and Sakellariadou, 2017), for some phenomenological
studies including interactions). Under these two assumptions and
imposing isotropy on the condensatewavefunction (seeSection 2.1.2),
the above quantum equations of motion reduce to two equations for
the modulus ρj and the phase θj of the reduced wavefunction
~σ j ≡ ρjexp[iθj] of the CPS for each spin j (Marchetti and Oriti, 2021),

0 � ρj″(χ0) − Q2
j

ρ3j (χ0) − μ2j ρj(χ0) , (14a)

θj′(χ0) � ~π0 + Qj

ρ2j (χ0) , (14b)

where

μ2j �
π2
0

ϵπ2
0 − 1

( 2
ϵπ2

0

− 1
ϵπ2

0 − 1
) + Bj

Aj
, (15a)

~π0 � π0

ϵπ2
0 − 1

, (15b)

Qj are integration constants and (Oriti et al., 2016)

Aj � ∑
n→,ι

[K(2)]jjjj,ι
n1n2n3n4

I jjjjι+
n1n2n3n4

I jjjjι+
n1n2n3n4

αι
jα

ι
j,

Bj � −∑
n→,ι

[K(0)]jjjj,ι
n1n2n3n4

I jjjjι+
n1n2n3n4

I jjjjι+
n1n2n3n4

αι
jα

ι
j.

Here,K(2n) denotes the 2n -th derivative of the kineric kernel with
respect to its scalar field argument evaluated at 0, while αιj are
determined by

I jjjj,ι+
n1n2n3n4

�∑
ι

αιjI jjjj,ι
n1n2n3n4

.

Eq. 14a can be immediately integrated once to obtain

Ej � (ρj′)2 + Q2
j

ρ2j
− μ2j ρ

2
j , (16)

where the constants Ej are integration constants6. This equation
can be then combined with Eq. 14a in order to obtain a linear
equation in terms of ρ2j (χ0). In fact, since
(ρ2j )′′ � 2(ρj′)2 + 2ρjρj′′, combining Eq. 14a (multiplied by ρj)
and Eq. 16, we obtain

(ρ2j )′′ � 2(Ej + 2μ2j ρ
2
j ) . (17)

6It is interesting to notice that the above equation is equivalent to the equation of
motion of a conformal particle (de Alfaro et al., 1976) with a harmonic potential,
which is a system characterized by a conformal symmetry. Since there are some
interesting examples of systems whose dynamics can be can be mapped into a
Friedmann one exactly in virtue of their conformal symmetry, (see e.g. (Lidsey,
1802; Ben Achour and Livine, 2019)), the above equation alone would already
suggest a connection between the effective mean field dynamics discussed here and
a cosmological one.
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The most general solution can be written as

ρ2j � − Ej

2μ2j
+ Aje

2μjχ0 + Bje
−2μjχ0 . (18)

Of course we can find some relations between the constants Aj and Bj

and the constants of integration Qj and Ej, so that we can choose a
differentway toparametrize the solution. Indeed,wefirst notice that since
for χ0 → +∞ the term with Aj dominates, while for χ0 → −∞ the
termwithBj dominates, thismeans that bothAj andBj arenon-negative.
Then, by defining χ0,j as the point at which (ρ2j )′(χ0,j) � 0, we see that

����
AjBj

√
� ±

���������
E2
j + 4μ2j Q

2
j

√
4μ2j

,
�����
Aj/Bj

√
� e−2μjχ0,j .

Thus our solution becomes

ρ2j � − Ej

2μ2j
+
���������
E2
j + 4μ2j Q

2
j

√
2μ2j

cosh(2μj(χ0 − χ0,j)), (19a)

where we have chosen only the positive solution because ρ2j ≥ 0.
Equivalently, we can write

ρ2j � − αj

2
+
�������
α2
j + 4β2j

√
2

cosh(2μj(χ0 − χ0,j)), (19b)

where we have defined

αj ≡ E j/μ2j , β2j ≡ Q2
j /μ2j . (20a)

The solution is nowonly parametrized by μj,αj, βj, and χ0,j. This is our
fundamental equation, representing a general solution of (Eq. 14a).

For the following discussion, it will be useful to derive some
bounds on the modulus of the derivatives of ρ2j divided by ρ

2
j itself.

In order to study these bounds explicitly, it is helpful to define

xj ≡ 2μj(χ0 − χ0,j), rj ≡ β2j /α2
j . (20b)

Then, denoting [ρ2j ](n) the n-th derivative of ρ2j with respect to χ0,
we have ∣∣∣∣∣[ρ2j ](n)∣∣∣∣∣

ρ2j
� (2μj)n

������
1 + 4rj
√

−sgn(αj) + ������
1 + 4rj
√

cosh xj

× { sinh xj, n odd.

cosh xj, n even.

(21)

In the following sections we will discuss in more detail under
which conditions the above states indeed implement a notion of
relational dynamics, as defined in Section 2.2.1.

3 AVERAGES AND FLUCTUATIONS:
GENERALITIES

In this section we compute expectation values of relevant operators
in the effective relational GFT cosmology framework (i.e., the
number operator N̂ , the volume operator V̂ , the momentum
operator Π̂, the Hamiltonian operator Ĥ and the massless scalar
field operator X̂), and their relative variances on CPS states, in order

to characterize the behavior of the first moments of the relevant
operators and with the ultimate purpose of trying to deduce some
information about the impact of quantum fluctuations on the
effective relational framework discussed so far (Section 5).

We express these expectation values and relative variances in
terms of the modulus of the reduced wavefunction only, possibly
using Eq. 14b in order to trade any dependency on the phase of
the reduced wavefunction for its modulus. In Section 4, instead,
we use the explicit solution (Eq. 19a, Eq. 19b) to considerably
simplify the equations obtained in the following two
subsections.

3.1 Expectation Value of Relevant Operators
First, let us compute the expectation value of the relevant
operators, whose definitions are reviewed below.

Number and Volume Operators
The simple case of the number operator allows us to discuss the
prototypical computation that we are going to perform frequently in
the following. Its definition is (Oriti, 2017;Marchetti andOriti, 2021)

N
∧
≡ ∫ dχ ∫ dgIφ∧†(gI , χ)φ(gI , χ). (22)

Its expectation value on a isotropic CPS is therefore given by

N(χ0) ≡ 〈N
∧
〉σϵ ;χ0 ,π0 �∑

j

∫ dχρ2j (χ)∣∣∣∣ηϵ(χ − χ0; π0)∣∣∣∣2
In order to evaluate this quantity, one can expand the function ρ2j
around χ � χ0, given the fact that the function ηϵ is strongly peaked
around that point. As a result, the relevant integral to be computed is

ρ2j (χ0) ∫ dχ∣∣∣∣ηϵ(χ − χ0; π0)∣∣∣∣2
× ⎡⎣1 +∑∞

n�1

(χ − χ0)n
n!

[ρ2j ](n)(χ0))
ρ2j (χ0) ⎤⎦

By normalizing ηϵ so that the integral of its modulus squared is
unitary, we see that

∫ dχ(χ − χ0)2m∣∣∣∣ηϵ(χ − χ0; π0)∣∣∣∣2 � ϵm(2m)!
4mm!

, (23)

giving zero, instead, for odd powers. In conclusion, one finds

N(χ0) �∑
j

ρ2j (χ0)⎡⎣1 +∑∞
n�1

[ρ2j ](2n)(χ0))
ρ2j (χ0)

ϵn
4nn!
⎤⎦ (24)

Similar computations hold for the volume operator, counting the
volume contributions of all tetrahedra in a given GFT state and
defined as (Oriti et al., 2016; Marchetti and Oriti, 2021)

V̂ � ∫dχ∫dgIdgI′φ∧ †(gI , χ)V(gI , gI ′)φ∧(gI ′, χ), (25)

in terms of matrix elements V(gI , gI′) of the first quantized
volume operator in the group representation. Indeed, one has
(Marchetti and Oriti, 2021)
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V(χ0) ≡ 〈V̂〉σϵ;χ0 ,π0 �∑
J

Vj ∫ dχρ2j (χ)∣∣∣∣ηϵ(χ − χ0; π0)∣∣∣∣2,
where Vj represents the volume contribution of each equilateral
tetrahedron whose faces have area determined by the quantum
number j. The situation is the same as before, and one therefore
concludes that

V(χ0) �∑
j

Vjρ
2
j (χ0)⎡⎣1 +∑∞

n�1

[ρ2j ](2n)(χ0))
ρ2j (χ0)

ϵn
4nn!
⎤⎦ (26)

In particular, when higher order derivatives can be neglected, we
notice that we can write

N(χ0) ≃∑
J

ρ2j (χ0), V(χ0) ≃∑
J

Vjρ
2
j (χ0), (27)

for the expectation value of the number and of the
volume operator. We will see in Section 4.1 that this will
be indeed the case when these quantities are evaluated on
solutions of the dynamical equations and under some fairly
general conditions on the parameters characterizing the
dynamics.

Momentum and Hamiltonian Operator
Similar results hold for the scalar field momentum and the
hamiltonian operators. The effective7 Hamiltonian operator Ĥ
can be defined as a Hermitean operator whose action on a CPS is
given by (Marchetti and Oriti, 2021)

Ĥ

∣∣∣∣∣∣∣∣σϵ; χ0, π0〉 ≡ − i(N ′(χ0)
2

+ ∫ dgI ∫ dχφ∧ †(gI , χ)zχηϵ(χ − χ0, π0)
~σ(gI , χ))∣∣∣∣∣∣∣∣σϵ; χ0, π0〉. (28)

Such an operator generates by construction translations
with respect to χ0, and thus, in the regime in which the
relational picture is well-defined, it is the operator
generating relational evolution of expectation values of
geometric operators.

Defining Ĥ the operator whose action on the CPSs is given by
the second term in the round brackets in Eq. 28, we see that its
expectation value on an isotropic CPS is

〈Ĥ〉σϵ ;χ0 ,π0 � π0 ∫ dgI ∫ dχ∣∣∣∣ηϵ(χ − χ0, π0)∣∣∣∣2ρ2(gI , χ) + i
2
N ′(χ0)

By definition of N(χ0) we can write

〈Ĥ〉σϵ ;χ0 ,π0 � π0N(χ0) + i
2
N′(χ0) ,

so that, in conclusion we obtain, for Ĥ,

〈Ĥ〉σϵ ;χ0 ,π0 � 〈Ĥ〉σϵ;χ0 ,π0−i
N′(χ0)

2
� π0N(χ0) . (29)

The situation for the momentum operator is similar. By definition

Π̂ � 1
i
∫ dgI ∫ dχ[φ∧†(gI , χ)( z

zχ
φ
∧(gI , χ))] (30)

and one has

〈Π̂〉σ;χ0 ,π0 � 1
i
∫ dχ∑

J

σϵ,j(χ; χ0, π0)zχσϵ,j(χ; χ0, π0)
�∑

j

∫ dχρ2j (χ)(θ ′j(χ) + π0)∣∣∣∣ηϵ(χ − χ0; π0)∣∣∣∣2
� π0[ 1

ϵπ2
0 − 1

+ 1]∑
j

∫ dχρ2j (χ)∣∣∣∣ηϵ(χ − χ0; π0)∣∣∣∣2
+∑

j

Qj

� π0( 1
ϵπ2

0 − 1
+ 1)N(χ0) +∑

j

Qj. (31)

From this explicit form, we notice that the evaluation of both the
expectation value of Ĥ and Π̂ essentially reduces to an evaluation
of the averaged number operator.

Now, in the approximation ϵπ2
0 ≫ 1, the two expectation values

coincide, as required by the effective relational dynamics framework,
for any values of χ0, as long as ∑jQj � 0. It is however interesting to
notice that, as the number of GFT quanta increases, the impact of the
second termabove becomes decreasingly important. As a consequence,
in the asymptotic regimeN→∞, the equality between the expectation
values of the Hamiltonian and the momentum operator is satisfied to
any degree of accuracy required, regardless of the strict imposition of∑jQj � 0. So, if one was interested only to the implementation of an
effective relational framework in the thermodynamics regimeN→∞,
or at large condensate densities (which become large universe
volumes), one might be formally dispensed from imposing the
condition ∑jQj � 0. On the other hand, if one wants to describe
mesoscopic intermediate regimes through the same formalism, then
such a requirement needs to be imposed. In order to take into account
these different possibilities, from now on we retain any ∑jQj term,
setting it to zero only when necessary.

Massless Scalar Field Operator
The massless scalar field operator is defined as (Oriti et al., 2016;
Marchetti and Oriti, 2021)

X̂ ≡ ∫ dgI ∫ dχ χφ̂†(gI , χ)φ̂(gI , χ), (32)

so its expectation value on an isotropic CPS is given by

〈X̂〉σϵ ;χ0 ,π0 �∑
j

∫ dχ χρ2j (χ)∣∣∣∣ηϵ(χ − χ0; π0)∣∣∣∣2. (33)

Notice, however, that this operator is extensive (with respect to
the GFT number of quanta, thus indirectly with respect to the
universe volume), so it can not be directly related (not even in
expectation value) to an intensive quantity such as the massless
scalar field. This identification, however, can be meaningful for
the rescaled operator χ̂ ≡ X̂/〈N̂〉σϵ;χ0 ,π0, at least when the average
on a CPS

∣∣∣∣σϵ; χ0, π0〉 is considered.

7We remark that this is an “effective” operator since its construction is always
subject to a prior choice of appropriate states; in this case, CPSs (see (Marchetti and
Oriti, 2021) for a more detailed discussion).
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The evaluation of 〈X̂〉σϵ;χ0 ,π0 follows the lines described above:
one has to first expand the integrand around χ0, and then
integrates the expansion. As before, only terms with even
number of derivatives survive the integration, so we can write
the above quantity as

〈X̂〉σϵ ;χ0 ,π0 � χ0∑
j

ρ2j (χ0)∫dχ∣∣∣∣ηϵ(χ−χ0;π0)∣∣∣∣2⎧⎨⎩1+∑
n�1

∞ ⎡⎣[ρ2j ](2n)(χ0)
ρ2j (χ0)

+2n[ρ2j ](2n−1)(χ0)
ρ2j (χ0)χ0 ⎤⎦ (χ−χ0)2n(2n)!

⎫⎬⎭
As a result of the integration one obtains

〈X̂〉σϵ;χ0 ,π0 � χ0∑
j

ρ2j (χ0) ×⎧⎨⎩1 +∑
n�1

∞ ⎡⎣[ρ2j ](2n)(χ0)
ρ2j (χ0)

+ 2n
[ρ2j ](2n−1)(χ0)
ρ2j (χ0)χ0 ⎤⎦ ϵn

4nn!

⎫⎬⎭. (34)

The first terms in squared brackets are the same that appear in the
expectation value of the number operator. The second terms in
square brackets are new. And these terms are in fact crucial: when
they are not negligible, the expectation value 〈X̂〉σϵ;χ0 ,π0 can not be
written anymore as χ0N(χ0), which means that the expectation
value of the intrinsic massles scalar field operator χ̂ is not χ0
anymore.

More precisely, in the most general case, by defining

ΔX(χ0) ≡∑
j

∑∞
n�1

2n
[ρ2j ](2n−1)(χ0)

χ0

ϵn
4nn!

, (35)

we see that this leads to an expectation value of the “intrinsic”
massless scalar field operator of the form

〈χ̂〉σϵ ;χ0 ,π0 ≡
〈X̂〉σϵ ;χ0 ,π0
N(χ0) � χ0(1 + ΔX(χ0)/N(χ0)), (36)

and when the second term satisfies
∣∣∣∣∣ΔX(χ0)∣∣∣∣∣/N(χ0)≳ 1, the CPS

parameter χ0 is not anymore the expectation value of the intrinsic
massless scalar field operator and thus the χ0 - evolution of
averaged geometric operators cannot be interpreted as a
relational dynamics. How larger is the second term with
respect to 1 depends clearly on two features of the state: i) the
impossibility of peaking precisely the clock value, i.e. sending
(ϵ→ 0), and ii) the possibility for N−1 to be large in the regime of
small number of particles.

Given that the reason why we can not take the limit ϵ→ 0 is
related to quantum fluctuations, and that, generally speaking,
these are expected to become important when N≪ 1, the term
ΔX/N encodes a first interplay between relationality and
quantum properties of the clock.

3.2 Relative Variances
According to the requirements specified in Section 2.2.1, it is
fundamental to check the behavior of clock quantum fluctuations
in order to understand whether the relational framework is truly
realized at an effective level.

Having done that, this analysis should be extended to all
the relevant geometric operators in terms of which we write
the emergent cosmological dynamics; this is true in
particular for the volume operator, whose averaged
dynamics was shown in (Marchetti and Oriti, 2021) to
reproduce, “at late times” and under some additional
assumptions, a Friedmann dynamics. In order for this
“late time regime” to be truly interpreted as a classical
one, quantum fluctuations of the volume operator (and
possibly also of the other physically interesting operators)
should be negligible.

We now proceed to study the behavior of these fluctuations,
limiting ourselves here only to relative variances. The explicit
computations of these quantum fluctuations can be found in
Supplementary Appendix A.

Number Operator
As before, we start from the number operator. Its relative variance
can be easily found to be

δ2N � N−1(χ0) , (37a)

thus decreasing as the number of atoms of space increases,
as expected. When the lowest order saddle point
approximation is justified, one can write the above
expression as

δ2N ≃ ⎡⎢⎢⎣∑
j

ρ2j (χ0)⎤⎥⎥⎦
−1
. (37b)

Volume Operator
For the volume operator the computations are similar. One finds

δ2V �
∑jV

2
j ρ

2
j [1 + ∑∞

n�1
[ρ2j ](2n)(χ0)

ρ2j (χ0)
ϵn

4n(n)!]
⎧⎨⎩∑jVjρ2j [1 + ∑∞

n�1
[ρ2j ](2n)(χ0)

ρ2j (χ0)
ϵn

4n(n)!]⎫⎬⎭
2. (38a)

If one can neglect higher order derivatives, then

δ2V ≃
∑jV

2
j ρ

2
j(∑jVjρ2j )2. (38b)

Hamiltonian Operator
The relative variance of the Hamiltonian operator, instead, is
given by

δ2H ≃ N−1(χ0)[1 + (2ϵπ2
0)−1] ≃ N−1(χ0) , (39)

which is under control in the regime ϵπ2
0 ≫ 1 with a large number

of GFT quanta and, in this limit, behaves as the relative variance
of the number operator.

Momentum Operator
Next, we discuss the variance of the momentum operator.
The computations are a little more involved, but under the
assumption that ϵπ2

0 ≫ 1 one finds
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δ2Π � 1

(π0N +∑jQj)2
⎧⎨⎩∑

j

(Qj + Ej)
+ ∑

j

[1ϵ + μ2j + π2
0]ρ2j (χ0)⎡⎣1 +∑

n�1

∞ [ρ2j ](2n)(χ0)
ρ2j (χ0)

ϵn
n!4n
⎤⎦

− ∑
j

ρ2j (χ0)
2ϵ

⎛⎝1 +∑
n�1

∞ [ρ2j ](2n)(χ0)
ρ2j (χ0)

ϵn
n!4n

(2n + 1)⎞⎠⎫⎬⎭.

From the explicit form of δ2Π above we deduce that:

• In the formal limit ϵ→ 0, δ2Π →∞, i.e. that the system is
subject to arbitrarily large quantum fluctuations. This is of
course a consequence of the Heisenberg uncertainty
principle when “clock time” localization of the
condensate wavefunction is enhanced;

• By taking the limit8 π0 → 0, the expectation value of Π̂ on a
CPS becomes ∑jQj, while one can see that δΠ2

σϵ;χ0,π0
has a

contribution growing essentially as N (see Supplementary
Appendix A). In this case, therefore, quantum fluctuations
become extremely large in the N→∞ regime, which is
certainly an undesired feature, since we expect that in this
limit some kind of semi-classical spacetime structure is
recovered. On the other hand, as we will see below, when
condition (Eq. 12) is assumed, in the limitN→∞ quantum
fluctuations are suppressed.

Massless Scalar Field Operator
Finally, we discuss the variance of the massless scalar field
operator. Its quantum fluctuations are given by

δX2
σϵ ;χ0 ,π0

� χ20∑
j

ρ2j (χ0)⎧⎨⎩1 +∑
n�1

∞ ⎡⎣[ρ2j ](2n)(χ0)
ρ2j (χ0)

+ 4n
[ρ2j ](2n−1)(χ0)
χ0ρ

2
j (χ0)

+ 2n(2n − 1) [ρ2j ](2n−2)(χ0)
χ20ρ

2
j (χ0) ⎤⎦ ϵn

4nn!

⎫⎬⎭.

(40)

which, once divided by (Eq. 34) squared, gives the relative
variance of χ̂. Notice, in the above equation, that even though
the coefficients in the square brackets grow as n for the second
term and as n2 for the third one, the behavior of the overall
coefficients of these terms (i.e., by taking into account also the
factor (4nn!)−1) is decreasing with n. As we will see in the next
section, this implies that in the evaluation of this variance on the
specific solutions (19b) it is enough to consider the lowest non-
trivial order. The only difference with respect to the expectation
value of the massless scalar field, is that in this case odd and even
derivatives of the ρ2j function are at the same perturbative order.

In particular, for n � 1 the last term becomes dominant when
ϵ/(2χ0)2 ≫ 1, i.e., when

∣∣∣∣χ0∣∣∣∣≪ ���
ϵ/2

√
. Now, suppose that∣∣∣∣π0|−1 ≪

∣∣∣∣χ0∣∣∣∣≪ ���
ϵ/2

√
(this region is allowed because ϵπ20 ≫ 1),

so that the computations carried out for the expectation value
are still valid, but this last term is indeed important in the
evaluation of the fluctuations. We see that this n � 1 term
gives a contribution to the relative variance of the form

ϵ
2χ20

∑jρ
2
j (χ0)[∑jρ

2
j (χ0)2]2 ≃

ϵ
2χ20

N−1(χ0).
The prefactor on the right-hand-side is by assumption large, but it
can be suppressed by the factor N−1(χ0), assuming it is large
enough.

So, already from this example we can deduce that, in the limit
of arbitrarily large N, the only point which has to formally be
excluded from the analysis because clock fluctuations become too
large is χ0 � 0. In this point the prefactor is formally divergent,
regardless of any large value of N we are considering. This is of
course a consequence of using relative variances: if we are
interested in the physics at χ0 � 0, as already argued, e.g., in
(Ashtekar et al., 2005), one should set a precise threshold on δX2,
rather than using relative variances.

4 AVERAGES AND FLUCTUATIONS:
EXPLICIT EVALUATION

Having obtained the expectation values and the relative variances
of relevant operators in the effective relation GFT cosmology
frameowork in terms of the modulus of the reduced wavefunction
(and possibily of its derivatives), we can now further simplify the
obtained expressions by means of Eq. 19b.

4.1 Expectation Values
The explicit evaluation of the expectation values of operators, as
shown above, involves an infinite number of derivatives of the
modulus of the reduced wavefunction. However, it is interesting
to notice that

1 + [ρ2j ]′′
ρ2j

ϵ
4
� −sgn(αj) + ������

1 + 4rj
√

coshxj(1 + ϵμ2j )
−sgn(αj) + ������

1 + 4rj
√

coshxj
≃ 1, (41)

since

μ2j ϵ �
ϵπ2

0

ϵπ2
0 − 1

( 2
ϵπ2

0

− 1
ϵπ2

0 − 1
) + ϵ Bj

Aj
≪ 1, (42)

under our working assumption ϵπ2
0 ≫ 1 and by further assuming9∣∣∣∣Bj/Aj

∣∣∣∣≪ ϵ−1. Moreover, since, in general, one has

[ρ2](n+2)[ρ2](n) � 4μ2j , n≥ 1, (43)

8As we have mentioned above, the result above was obtained using the condition
ϵπ20 ≫ 1 (see Eq. 60), which is certainly not justified in this case. However, one can
explicitly check, by using the full result in terms of π̃0 and π0, that the conclusions
below are still valid.

9Notice that under this assumption, which seems natural given the smallness of ϵ
required by the CPS construction, the details of the underlying GFT model become
effectively unimportant for the derivation of the results discussed below.

Frontiers in Astronomy and Space Sciences | www.frontiersin.org July 2021 | Volume 8 | Article 68364910

Marchetti and Oriti Quantum Fluctuations in GFT Cosmology

https://www.frontiersin.org/journals/astronomy-and-space-sciences
www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


we see that terms with n> 1 are negligible with respect to the
n � 1 term, thus implying that all even derivatives in the sums
(Eqs. 24, 26) can be neglected. As a result, we can write

N(χ0) ≃∑
j

ρ2j (χ0), V(χ0) ≃∑
j

Vjρ
2
j (χ0), (44)

the first equation above also determining the expectation values
of Π̂ and Ĥ, according to Eqs. 29, 31.

Similarly, the natural hierarchy of derivatives obtained from
Eqs. 43, 42 is present also in the sum over n in Eq. 35. For the
same reasons as above, therefore, we can write

ΔX(χ0) ≃∑
j

[ρ2j ]′(χ0)
χ0

ϵ
2
,

so that

|ΔX|
N

≃

∣∣∣∣∣∣∣∣∣∣∑j
[ρ2j ]′(χ0)

χ0

ϵ
2

∣∣∣∣∣∣∣∣∣∣⎡⎢⎢⎣∑j ρ2j (χ0)⎤⎥⎥⎦
−1
. (45)

However, determining whether these higher derivative terms become
important in the expectation values of operators like N̂ , V̂ , Π̂ and Ĥ is
quite different from determining whether ΔX/N is important in the
expectation value of χ̂, basically because, as we can clearly see from the
above expression, ΔX involves odd derivatives and it explicitly
depends on χ0.

As we have alreadymentioned, the smallness of the factorΔX/N is
crucial for a consistent interpretation of χ0 as the expectation value of
themassless scalar field χ̂, to be used in a relational picture. In general,
whenever |ΔX|/N≪ 1, such an interpretation is allowed.

Whether this condition is actually satisfied, though, drastically
depends on the properties of the solution ρ2j for each j and hence
on the precise set of free parameters {αj, βj, χ0,j}. It is obvious from
Eq. 34 together with the above expression, that as long as

1 + [ρ2j ]′
ρ2j χ0

ϵ
2
≃ 1, (46)

this interpretation is allowed. Following the same steps of
(Eq. 41), we see that the above condition is satisfied as long as

ϵμ2j
∣∣∣∣tanhxj∣∣∣∣∣∣∣∣∣xj + xoj

∣∣∣∣∣≪ 1, ∀j

where xoj ≡ 2μjχ0,j, and where we have neglected an unimportant
factor 2. This condition is certainly satisfied in two simple
(though interesting) cases:

1. First, since
∣∣∣∣tanhxj∣∣∣∣≤ 1, we see that when∣∣∣∣∣xj + xoj

∣∣∣∣∣ ≡ 2μj
∣∣∣∣∣χ0∣∣∣∣∣≫ (ϵμ2j )−1, i.e., again, neglecting

unimportant factors 2, when∣∣∣∣χ0∣∣∣∣≫ ϵμj ∼ π−1
0 , (47)

condition (Eq. 46) is actually satisfied. Notice also that since
π−1
0 ≪

�ϵ√
, by requiring

∣∣∣∣χ0∣∣∣∣≫ �ϵ√
the above condition is also

satisfied. It is interesting to notice that
�ϵ√
actually quantifies the

impossibility to perfectly localize the condensate wavefunction
around χ0. If χ0 is of order or smaller than this quantity, it is
clear that any desired localization property is lost in this irreducible
uncertainty.

2. Second, notice that if all the xoj ≥ 0 (resp. xoj ≤ 0) the above
condition is always satisfied for all χ0 ≥ 0 (resp. for all χ0 ≤ 0).
In the case only a single spin is considered, say jo, this means
that the evolution of the modulus of the condensate
wavefunction with respect to χ0 can be interpreted as an
evolution with respect to the expectation value of χ̂ from
the minimum of the former, at xojo ≥ 0 (resp. xojo ≤ 0) to
arbitrarily large positive (negative) values of χ0. We will
discuss this single spin case in more detail in Section 5.2.3.

More generally, instead, the value of hj(xj) ≡
∣∣∣∣∣tanhxj|/|xj + xoj

∣∣∣∣∣
is determined by two scales: xj + xoj ≡ κ(1)j ≡ 2μjχ0, and
xoj /κ

(1)
j ≡ κ(2)j . These two quantities acquire a clear physical

meaning in a single spin scenario with j � jo discussed in
Section 5.2.3. In that case, κ(1)jo basically measures the amount
of evolution experienced by ρ2jo from χ0 � 0, while κ(2)jo measures
how large is the amount of evolution elapsed since χ0 � 0 with
respect to the moment at which ρ2jo has reached its minimum.
Since only a single spin is excited, the expectation value of the
volume operator and ρ2jo are in a one-to-one correspondence (see
Eq. 44), which gives to the above statements about κ(1)k and κ(2)j a
straightforward physical meaning.

Of course, the desired condition (Eq. 46) is satisfied for∣∣∣∣∣κ(1)j

∣∣∣∣∣≳ 1 (late evolution for ρ2j ) or for
∣∣∣∣∣κ(1)j

∣∣∣∣∣≪ 1 and
∣∣∣∣∣κ(2)j

∣∣∣∣∣≲ 1
(early evolution for ρ2j , but still later than when the minimum of
ρ2j happened), as reviewed in Table 1. In the remaining cases,∣∣∣∣∣κ(1)j

∣∣∣∣∣≪ 1 and
∣∣∣∣∣κ(2)j

∣∣∣∣∣≫ 1 (very early evolution for ρ2j ), instead, we
have

hj(xi) ∼
⎧⎨⎩
∣∣∣∣∣κ(1)j

∣∣∣∣∣−1, ∣∣∣∣∣κ(1)j

∣∣∣∣∣∣∣∣∣∣κ(2)j

∣∣∣∣∣≳ 1∣∣∣∣∣κ(2)j

∣∣∣∣∣, ∣∣∣∣∣κ(1)j

∣∣∣∣∣∣∣∣∣∣κ(2)j

∣∣∣∣∣≪ 1
,

so, while in the first case the condition ϵμ2j hj ≪ 1 becomes the
condition already encountered in (Eq. 47),

∣∣∣∣χ0∣∣∣∣≫ ϵμj, in the
second case the situation is different. We see that when

ϵμ2j ×
⎧⎨⎩
∣∣∣∣∣κ(1)j

∣∣∣∣∣−1 ≪ 1,
∣∣∣∣∣κ(1)j

∣∣∣∣∣∣∣∣∣∣κ(2)j

∣∣∣∣∣≳ 1∣∣∣∣∣κ(2)j

∣∣∣∣∣≪ 1,
∣∣∣∣∣κ(1)j

∣∣∣∣∣∣∣∣∣∣κ(2)j

∣∣∣∣∣≪ 1
,

for all js, then we can write 〈X̂〉σϵ;χ0,π0 ≃ χ0∑
j
ρ2j (χ0) ≃ χ0N(χ0),

and conclude that χ0 is indeed the expectation value of the
intrinsic massless scalar field operator χ̂. See Tables 1, 2 for a
summary of the results.

4.2 Fluctuations
The arguments exposed above can be used straightforwardly to
compute relative variances of operators.

Number, Hamiltonian and Volume
For the relative variances of the number, Hamiltonian and
volume operators, we have
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δ2H ≃ δ2N � N−1 ≃ ⎡⎢⎢⎣∑
j

ρ2j
⎤⎥⎥⎦−1 (48a)

δ2V ≃∑
j

V2
j ρ

2
j/⎡⎢⎢⎣∑

j

Vjρ
2
j
⎤⎥⎥⎦2. (48b)

Momentum
For the momentum operator, given that we require ϵμ2j ≪ 1, we
can safely only retain the first terms of the expansions appearing
in (A). Moreover, since μ2j ∼ (ϵπ0)−2, μ2j π2

0 ∼ (ϵπ2
0)−2, and since

ϵπ20 ≫ 1, both the first two terms in squared brackets in the first
line of (A), as well as the whole first term in the second line of
equation (A) are negligible with respect to the term

π2
0∑

j

N 2
ϵ ∫ dχρ2j e−(χ−χ0)2ϵ � π2

0N(χ0).
As a result, we finally have

δΠ2
σϵ ;χ0 ,π0

≃ π2
0N(χ0) +∑

j

(Ej + Qj).
Now, we recall that in order to have an identification between the
first moments of the Hamiltonian and the momentum operator
one needs to have either ∑

j
Qj � 0 or to be in the asymptotic limit

in which ∑
j
Qj is negligible with respect to π0N . Since |π0|> 1 this

implies that when this identification is true, then we can also
neglect the∑

j
Qj term in the above equation. As a consequence, we

have a relative variance

δ2Π ≃ N−1(χ0) + N−2(χ0)∑jEj

π2
0

≃ N−1 + N−2∑
j

μ2j αj.

So, we see that the first term of the relative variance behaves as σ2N ,
while the second is new, and because of its behavior ∼ N−2 it
might become dominant in the regime in which N≪ 1.

Also, let us notice that δΠ2
σϵ;χ0 ,π0

is indeed always positive
under our assumptions. In fact, we see that we can write

δΠ2
σϵ;χ0 ,π0

� π2
0∑

j

ρ2j
⎡⎢⎣1 + ∑j∈Pαj(μ2j /π2

0)∑jρ
2
j

−∑j∈N

∣∣∣∣αj∣∣∣∣(μ2j /π2
0)∑jρ

2
j

⎤⎥⎦,
where P ≡ {j ∈ J

∣∣∣∣αj ≥ 0}, and N ≡ J − P, J being the total set of
spins over which the sum is performed10.

Let us estimate how large is the last term in square brackets.
Since μ2j /π

2
0 ∼ (ϵπ2

0)−2, we can bring it out of the sum and just study

∑j∈N

∣∣∣∣αj∣∣∣∣∑jρ
2
j

≤
∑j∈N

∣∣∣∣αj

∣∣∣∣∑j∈Nρ
2
j

≤ 1,

since, for each j ∈ N ,

ρ2j �
∣∣∣∣αj∣∣∣∣(1 + ������

1 + 4rj
√

coshxj)/2≥ ∣∣∣∣αj∣∣∣∣.
Thus, generally speaking, we have

δΠ2
σϵ;χ0 ,π0

≥ π2
0∑

j

ρ2j
⎡⎢⎣1 + ∑j∈Pαj(μ2j /π2

0)∑jρ
2
j

− 1(ϵπ2
0)2⎤⎥⎦,

and the right-hand-side is of course positive because (ϵπ20)≫ 1.
Moreover, since

δΠ2
σϵ;χ0 ,π0

≤ π2
0∑

j

ρ2j
⎡⎢⎣1 + ∑j∈Pαj(μ2j /π2

0)∑jρ
2
j

⎤⎥⎦,
we see that in this limit we can approximately write

δΠ2
σϵ ;χ0 ,π0

≃ π2
0N(χ0)⎡⎢⎢⎣1 + N−1(χ0)∑

j∈P
αj(μ2j /π2

0)⎤⎥⎥⎦,
so that the relative variance becomes

δ2Π ≃ N−1(χ0) + N−2(χ0)∑
j∈P
αj(μ2j /π2

0). (48d)

Massless Scalar Field
Instead, about the relative variance of the massless scalar field
operator, we have

δ2χ ≃
ϵ

2Nχ20

1

(1 + ΔX/N)2 +
N + 2ΔX
(N + ΔX)2

≲
1
N
(1 + ϵ

2χ20

1

(1 + ΔX/N)2)
(48e)

Let us make two remarks about this quantity:

1. First, in order for (Eq. 40) to be non-negative, we need to
impose that

ΔX/N ≥−1/2 − ϵ/(4χ20).
Contrarily to what happens for the momentum operator, this
is actually a feature that we must impose “by hand” on our
solutions. We will assume it to be true from now on.

2. Second, the divergence in the above variance at the point
ΔX/N � 1 is again due to our choice of using relative
variances, and, as already mentioned above, a more careful
choice would be to define an appropriate threshold on the
quantity δX2

σϵ;χ0 ,π0
(Ashtekar and Lewandowski, 2004;

Marchetti and Oriti, 2021). The precise identification of this
threshold is usually demanded to observational constraints,
which are not available in our case. As a consequence, we

TABLE 1 | Validity of the condition (Eq. 46) depending on the scales κ(1)j and κ(2)j .
The case

∣∣∣∣∣κ(1)j

∣∣∣∣∣≪ 1 and
∣∣∣∣∣κ(2)j

∣∣∣∣∣≫ 1 is studied in Table 2 below.

10We will formally assume that the set J is finite, either because there is an explicit
cut-off Λ on the allowed spins, or because, after a certain spin Λ on, all the ρjs
become dynamically subdominant.
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just consider relative variances, and avoid the point in which
they might diverge.

The scaling of all the relative variances (Eq. 48e, 48a, 48b, 48d)
is essentially determined by N ≃ ∑jρ

2
j , so it is interesting to study

separately situations in which N≫ 1 and N ≲ 1.

4.2.1 Large Number of GFT Quanta
We will first consider the case of large number of GFT quanta,
N≫ 1. Generally speaking, this situation might be realized in two
different ways:

1. There exists at least one of the ρ2j s which is much larger
than one.

2. All the ρ2j s are ≲ 1, but their sum is still much larger than 1.

While for the number and the Hamiltonian operators variances
are smaller than one by assumption, for the momentum, the
volume and the massless scalar field operator, the situation is
more complicated, so it is useful to discuss them by distinguishing
between the two cases above.

First Case
When at least one of the ρ2j s is much larger than one, it is useful to
distinguish between two sets, L ≡ {j ∈ J

∣∣∣∣∣ρ2j ≫ 1}, S ≡ J − L.

δ2Π: While the first term of the variance of the momentum operator
is certainly much smaller than one, in order to evaluate the
second term one should know exactly the values of all the αj s

for each j ∈ P. Nonetheless, since μ2j /π
2
0 ∼ (ϵπ2

0)−2, the second
term is actually neglgible as long as

∑
j∈P
αj ≪ [N(χ0)/(ϵπ2

0)]2,
which is certainly satisfied for a large class of initial conditions,
given the large value of the right-hand-side. For instance,
notice that for rj ≳ 1 for each j ∈ P, we have that

∑
j∈P
αj ≲∑

j∈P
ρ2j ≲N≪N2(χ0)/(ϵπ2

0)2.
Also, notice that when P � ∅, σ2Π ∼ N−1 ≪ 1 under our
assumptions.

δ2V : About the volume operator, we have the following set of
inequalities:

δ2V � ∑j∈LV
2
j ρ

2
j(∑jVjρ2j )2 +

∑j∈SV
2
j ρ

2
j(∑jVjρ2j )2

≪
∑j∈LV

2
j ρ

4
j(∑jVjρ2j )2 +

∑j∈SV
2
j ρ

2
j(∑jVjρ2j )2

≪ 1 + ∑j∈SV
2
j ρ

2
j(∑jVjρ2j )2 ≤ 1 +

∑j∈SV
2
j ρ

2
j(∑j ∈ LVjρ2j )2

≪ 1 + (V2)S/(V2)L,
where (V2)S,L � ∑

j∈(S,L)
V2
j . For (V2)S/(V2)L ∼ 1, the variance of

the volume operator is always much smaller than a quantity
of order 1 and thus it is negligible. In particular, when L � J ,
it follows that δ2V ≪ 1. Then the volume behaves classically,
since all the moments of the volume operator are negligible,
as one can easily see by following the same steps taken for the
variance.

δ2χ : As for the massless scalar field operator, we see that, when
|ΔX|/N≪ 1, the relative variance is negligible as long as
χ20 ≫ ϵ/N (neglecting unimportant factors 2). When, on the
other hand this quantity is of order 1, fluctuations on the
massless scalar field operator might become important. Again,
by definition, the point χ0 � 0 is a point where relative
quantum fluctuations become uncontrollable.
On the other hand, let us consider the situation in which
|ΔX|/N ≳ 1 (though not very close to ΔX/N � −1 leading to
the unphysical singularity on the relative variance discussed
above). In such a situation, we can consider the factor
1/|1 + ΔX/N| ≡ 1/λ≲ 1. The condition for having small
fluctuations in this case becomes∣∣∣∣χ0∣∣∣∣≫ �������

ϵ/(λN)
√

, (49)

again neglecting unimportant factors 2. It is interesting to
notice that, depending on how large the factor (ϵπ2

0)/λ2N2 is,
two different situations may be realized.

1. When (ϵπ20)/λ2N2 ≳ 1, we have that
������
ϵ/(λN)√

≳ π−10 , and so
the condition (49) in turns implies that

∣∣∣∣χ0∣∣∣∣≫ π−10 . This
condition, as shown in the above subsection, in turns
implies that χ0 can be interpreted as the expectation
value of the massless scalar field operator.

2. When instead (ϵπ2
0)/λ2N2 ≪ 1, it may be that�������
ϵ/(λN)
√

≪
∣∣∣∣χ0∣∣∣∣≪ π−1

0 ,

thus leading to a small relative variance of the massless
scalar field operator but to the impossibility of identifying
χ0 as a relational parameter after all.

Second Case
The arguments exposed in the first case about the variances of all
the operators besides the volume operator (which after all just

TABLE 2 | Validity of the condition (Eq. 46) depending on the scales κ(1)j and κ(2)j ,
assuming

∣∣∣∣∣κ(1)j

∣∣∣∣∣≪ 1 and
∣∣∣∣∣κ(2)j

∣∣∣∣∣≫ 1.
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made reference to N, which is still ≫ 1), are still valid. On the
other hand, the inequalities used for the volume operator become
inadequate in this case. Still, it is clear that we have

ρ2j,min fΛ ≤ σ
2
V ≤ ρ−4j,min fΛ ,

where ρ2j,min ≡ minj∈Jρ2j and

fΛ ≡
∑Λ

j�0V
2
j(∑Λ

j�0Vj)2 �
∑Λ

j�0j
3

(∑Λ
j�0j3/2)2 ≃ 3.56Λ−3.49,

where the last approximate equality has been obtained by an
explicit fit. Notice that, since N ≃ ∑jρ

2
j ≫ 1, we must have

Λρj,min ≤N ≤Λ ,

which are however not particularly helpful in extracting tighter
bounds. As a conclusion, by defining a � 3.56 and b � 3.49, we
see that, when

aρ2j,min/Λ≳ 1 ,

fluctuations on the volume operator are certainly large, while
when

aρ−4j,minΛ−b ≪ 1 ,

the relative volume variance is certainly negligible. This
is of course the case when all the ρ2j s are of order one, since Λ≫ 1.

4.2.2 Number of GFT quanta of order of or smaller
than one
When the number of GFT quanta is N ≲ 1, the situation is far
more complicated. In fact, not only all the relative variances
computed so far can be large, but in this case one does not expect
a hierarchy of moments of quantum operators, so that
considering only relative variances in order to asses the
possible quantum effects is no more enough. Furthermore, one
expects also that in this regime a hydrodynamic approxiamtion
cannot capture anymore the quantum dynamics of the
fundamental “atoms of spacetime”, which can only be
consistently determined by solving all the Schwinger-Dyson
equations of the theory and which is however pre-geometric
and not in principle relational (as we intend it from the classical
perspective).

In such a case, therefore, not only we expect the CPSs not to
define a notion of relational dynamics, but we expect averaged
results not to capture all the relevant physics of the system. Hence,
we will leave the study of this specific regime to some future work.

5 EFFECTIVE RELATIONAL DYNAMICS:
THE IMPACT OF QUANTUM EFFECTS

Let us now recapitulate our results and draw some conclusions
from them.

In order for the cosmological CPS construction to fit in an
effective relational framework, a certain number of conditions,
proposed in (Marchetti and Oriti, 2021) and reviewed in Section
2.2.1, should be satisfied. Here, we summarize in which regimes

they are satisfied, ensuring the reliability of the cosmological
evolution obtained in (Marchetti and Oriti, 2021), with its
classical Friedmann-like late times dynamics and singularity
resolution into a bounce.

As mentioned in Section 2.2.1, variances are not in general
enough to characterize the properties of operators in a fully
quantum regime (see also Section 4.2.2), except when there is
a clear hierarchy among operator moments, with the higher ones
being suppressed by higher powers of the number of quanta. If we
try to quantify quantum fluctuations in terms of relative
variances, as we will mostly do here, we must be careful not to
assume that certain features characterizing the behavior of
relative variances are true also for higher moments, since in
certain regimes, variances may be indeed small but higher
moments become relevant. Still, as we have mentioned, we do
expect that there exists a regime in which the aforementioned
hierarchy among moments is indeed present: it is the case in
which the number of GFT quanta is large.

While in mesoscopic regimes it is not possible to determine
under which conditions the hydrodynamic and the effective
relational approximations are satisfied only by studying
relative variances, large variances can however be taken as a
clear evidence that one, or possibly both the above
approximations are not adequate.

5.1 Quantum Effects in the Effective
Relational CPS Dynamics
First, therefore, let us discuss the form that the conditions in II B 1
take in the CPS cosmology framework, focusing on the volume
operator. Then Eq. 8a is satisfied by the CPS construction
(Marchetti and Oriti, 2021) provided that.

1. The Expectation Value of the (Intrinsic) Massless Scalar
Field Operator Is χ0

We have already mentioned that in general this is not exactly
the case, essentially because we can not take the limit ϵ→ 0 in
order to avoid divergences in quantum fluctuations of the
massless scalar field momentum. Hence, this issue is a
consequence of the quantum properties of the chosen
relational clock.

Also, in order to interpret the evolution generated by Ĥ as a
truly relational one, we want its moments to coincide with those
of Π̂. Imposing this condition as an exact relation for the first
moment and for any values of χ0 requires ∑jQj � 0, while this is
not formally required in a large N regime where the condition is
satisfied approximately.

A similar situation happens for the relative variance. Indeed,
again in the large N regime, δ2Π � δ2H � N−1 to any degree of
accuracy required11.

On the other hand, let us notice that imposing the equality
between (48a) and (48d) for smaller N, and so for mesoscopic

11While a formal proof would be needed that similar results extend to even higher
moments, it seems likely that this is the case.
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intermediate regimes, would impose another constraint on the
initial conditions, requiring that all the αjs with j ∈ P are zero.
In turns, this implies that at least one of the αjs with j ∈ J must
be negative, in order not to have only trivial solutions. This
means, from Eq. 44, that the expectation value of the volume
never vanishes, which might have important consequences for
the volume evolution.

Next, according to the general discussion in (Marchetti and
Oriti, 2021) and in Subsection II B 1, one has to be sure that the
clock variable is not “too quantum,” which, in our framework can
be phrased as the requirement that.

2. Relative Quantum Fluctuations of χ̂ Must Be Much Smaller
Than One

As usual, we can get some information about the behavior of
clock quantum fluctuations from the form of δ2χ obtained above.
From the explicit expression in Eq. 48e, we notice that besides the
general behavior ∼ N−1, there is an additional irreducible
contribution to quantum fluctuations parametrized by ϵ. From
the computations in the above subsection we conclude that in this
case the smallness of the relative variance is dictated by a non-
trivial interplay between ϵ, χ0 and N, contrarily to what happens
for the other observables. This might make it more difficult to try
to extrapolate general features of even higher moments in a
mesoscopic regime from those that we observe from the
relative variance.

Conditions 1 and 2 are the two necessary conditions that need
to be satisfied in order to qualify the framework constructed so far
as a truly relational one.

Further, the evolution of the expectation value of the volume
operator is a good enough characterization of the universe
evolution (in the homogeneous and isotropic context) if.

3. Quantum Fluctuations (Encoded in Moments Higher than
the First One) of the Volume Operator are Negligible

Also for this operator, as in the massless scalar field case, the
existence of a hierarchy of moments is in general far from being
trivial, since the relative variance is already strictly dependent on
the possible spin cut-off scale.

However, even when satisfying condition 3, the resulting
system might be highly non-classical, depending on the value
of quantum fluctuations for the remaining operators N̂ , Π̂ and Ĥ.
A necessary condition for a classicalization of the system to
happen is therefore that.

4. Quantum Fluctuations (Encoded in Moments Higher than the
First One) of all the Relevant Operators (N, χ, Π, H, V) are
Negligible.

Therefore, in order for a classical relational regime to be realized
at late enough times in the CPS framework, both conditions 5.1
(together with the identification of the moments of H and Π) and 4
should be satisfied. In particular, large variances of any of these
operators actually signal a breakdown of the hydrodynamic
approximation underlying Eq. 13.

5.2 Effective Relational Volume Dynamics
with CPSs
In light of the above conditions it is interesting to examine the
relational evolution of the average of the volume operator, since,
in GFT cosmology, it is at this level that the comparison with the
Friedmann dynamics is usually performed. We will review this
below, in Section 5.2.1, emphasizing two main regimes of its
evolution: a possible bounce and a Friedmann-like late evolution.
In Section 5.2.2, instead, we will draw some general conclusions
on the relationality and classicality of these two phases in light of
the results obtained in the previous sections.

5.2.1 General Properties of the Volume Evolution
Let us start from the general expression (Eq. 26)

V(χ0) �∑
j

Vjρ
2
j (χ0)⎡⎣1 +∑∞

n�1

[ρ2j ](2n)(χ0))
ρ2j (χ0)

ϵn
4nn!
⎤⎦.

We see that V(χ0) is always positive and never reaches zero, at
least as long as one of the βjs (equivalently, one of the Qj) is
different from zero. Also, from the above expression, we see that

V′ �∑
j

VjCjμjsinh(2μj(χ0 − χ0,j)), (50a)

V′′ � 2∑
j

VjCjμ
2
j cosh(2μj(χ0 − χ0,j)), (50b)

where

Cj �
∣∣∣∣αj

∣∣∣∣ �����1 + rj
√ ⎛⎝1 +∑∞

n�1

(ϵμ2j )n
n!
⎞⎠.

Since V′→ ± ∞ when χ0 → ± ∞, it has to cross zero12, and since
V′′> 0 always, we see that V′ is monotone, so it has only one zero.
This means that there is only one turning point. Were this evolution
truly relational, the scenario would be that of a bouncing universe,
increasing monotonically as the bounce happens, lately behaving as a
Friedmann universe, as already suggested in (Oriti et al., 2016). Let us
discuss this two features in more detail.

Bounce
The bounce happens at a relational time χ0 which is
minj∈Jχ0,j ≤ χ0 ≤maxj∈Jχ0,j. Indeed, V′(χ0)|maxj∈Jχ0,j

> 0, while
V′(χ0)|minj∈ Jχ0,j

< 0. By continuity and monotonicity, the value of
the bounce must be included among these two points. In addition, we
notice from Eqs. 44, 19b that when at least one of the rjs is different
from zero, or at least one of the αjs is strictly negative, the volume
never reaches zero. So, in these cases, the classical singularity is
resolved into a bounce with non-zero volume13.

12Here we are assuming μj > 0; if μj < 0 the limits are opposite, but the result is
the same.
13See (Oriti et al., 2016; Marchetti and Oriti, 2021) for a comparison with LQG
effective bouncing dynamics and (Battefeld and Peter, 2015) for a review of
bouncing models.
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Friedmann Regime
When 2

∣∣∣∣μj(χ0 − χ0,j)
∣∣∣∣≫ 1 (for each j), the hyperbolic functions

can be approximated as simple exponentials. In that case, then,
assuming μj is independent of j, (or that at least it is mildly
dependent on it) one obtains

(V′
3V
)2

� (2
3
μj)2 , V′′/V � 4μ2j , (51)

which are indeed the flat space (k � 0) Friedmann equations,
upon imposing that μ2j � μ2 � 3π~G (~G being the dimensionless
gravitational constant) (Marchetti and Oriti, 2021) (see
Supplementary Appendix B, Eq. 65). Notice that the same
equations can be obtained also when one of the js is
dominating the volume evolution, and its corresponding μj is
then taken to be proportional to the (effective) Newton constant
(Wilson-Ewing, 2019).

5.2.2 Effective Relational Volume Dynamics with CPS:
The Impact of Quantum Effects
Let us now characterize better these two phases of the evolution of
the average volume in terms of their relationality and
quantumness.

Friedmann Dynamics and Classical Regime
The Friedmann regime is selected by the condition

∣∣∣∣xj∣∣∣∣≫ 1 for
each j. Notice that this condition does not necessarily imply that
ρ2j ≫ 1, but it does imply that

∑
j∈P
αj ≪∑

j∈P
ρ2j ≲N .

As the parameter xj grows, eventually it will be far enough from
each single xoj to make the factor |ΔX|/N≪ 1, and, eventually also
making N arbitrarily large. From these conditions we see that all
the fluctuations on the relevant operators become negligible, and
the parameter χ0 becomes the expectation value of the massless
scalar field operator χ̂. Therefore, all the conditions from 1 to 4
(including the matching of all the moments of Ĥ and Π̂) are
satisfied. As a result.

Statement 1: For the chosen approximation of the underlying
GFT dynamics, a classical regime in which the volume evolution
with respect to χ0 can be interpreted as a relational flat space
Friedmann dynamics with respect to a massless scalar field clock is
always realized, independently of the initial conditions.

Let us remark that the approximations involving the
underlying GFT dynamics that we used to extract an
effective mean field dynamics (see Section 2.3) may be very
important for the validity of the above statement. For
instance, among those, a crucial one was the approximation
of negligible interactions14. These, however, are supposed
to become relevant as the average number of GFT quanta
become very large, which is the asymptotic regime in
which conditions 1 and 4 are expected to be satisfied.

When interactions become important it is certainly
possible that some of the above arguments do not hold
anymore, but it is also possible that non-zero interactions
do not modify substantially the conclusions above, but
they change the effective matter content of the Friedmann
system, possibly including now a dark sector (see e.g.
(Pithis et al., 2016; Pithis and Sakellariadou, 2017; Oriti and
Pang, 2105)).

Bounce
The situation concerning the bounce is much more
complicated, essentially because it is not an asymptotic
regime, and thus the value of initial conditions turns out to
be important. It is less obvious whether the bounce can be
interpreted as a relational dynamics result, or if the averaged
evolution is overwhelmed by quantum fluctuations, thus
making us question also the validity of the hydrodynamic
approximation in (Eq. 13).

In general, itmight happen that both the conditions 1 and 2 are not
satisfied. For instance, this is the case if the bounce happens at χ0 � 0
with initial conditions such that N(0)≲ 1. Similarly, it might happen
that only one of the two conditions above is satisfied. This is the case,
for instance, of having a bounce χ0 such that�������

ϵ/(λN)
√

≪
∣∣∣∣∣∣χ0∣∣∣∣∣∣≪ π−1

0 ,

with arbitrarily large values of N(χ0), so that essentially the bounce
happens already in a ‘large volume’ regime. In this case quantum
fluctuations of all the relevant operators are negligible but the
interpretation of χ0 as expectation value of the massles scalar field
operator is not allowed. Or, the other way around, it might be that
indeed χ0 ≫ π−1

0 , thus allowing to interpret χ0 as expectation value of χ̂
but N(χ0)≲ 1, making fluctuations possibly very large for all the
relevant operators.

On the other hand, there are regimes in which a bounce can
satisfy all the conditions from 5.1 to 5.1. For instance, let us consider
the case in which all the χ0,j ≡ χ0, which therefore marks the bounce.
Also, let us assume that ρ2j (χ0)≫ 1 for each j ∈ J , so thatN(χ0)≫ 1
too. Let us fix χ0 > 0, in particular with χ0 ≫

�������
ϵ/N(χ0)
√

. Lastly, let us

also assume that rj ≳ 1 for each j ∈ P. Then we know that ΔX/N is
negligible for each χ0 ≥ χ0, and that relative variances are negligibly
small. More precisely, relative variances of σ2N , σ

2
V and σ2H are small

because of ρ2j (χ0)≫ 1, σ2Π is small because of N(χ0)≫ 1 and
rj∈P ≳ 1, while σ2χ is small because of N(χ0)≫ 1 and
χ0 ≫

�������
ϵ/N(χ0)
√

. If we could rest assured that all moments
higher than the second one are negligible as well and that the
effective equality between Π̂ and Ĥ is guaranteed, then we could
conclude that the bouncing scenario would be not only reliable and
truly relational, but that it could also admit an effective classical
description (in terms of some modified gravity theory, with an
interesting possibility being mimetic gravity (de Cesare, 2019)).
Notice also, that under the above conditions, the dynamics is
indeed relational from the point χ0 on. In practice, therefore, when
these conditions are realized, one could follow the volume
evolution from the bouncing point to the Friedmann regime
and on toward infinite values of χ0.

14Let us also mention, however, that another important role is played by the
assumption

∣∣∣∣Bj/Aj

∣∣∣∣≪ ϵ−1, see footnote 42.
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The relevant quantities for a simplified two-spin scenario
like the one described above with j1 � 1/2, j2 � 1, μj1 � μj2 � μ,
ϵμ2 ≪ 1, rj1 � rj2 � 0, and αj < 0,

∣∣∣∣αj∣∣∣∣≫ 1 for j ∈ {j1, j2} are plotted
in Figures15 1, 2 and 3 as functions of x ≡ 2μχ0. The value of the
bounce χ0,j1 � χ0,j2 � χ0 is taken to be far enough from χ0 � 0, so
to avoid any unphysical singularity in the quantities
represented. In Figure 1, we vary the values of αj from
lower to higher values (darker to lighter colors in the plots).
In the left panel, we represent the dimensionless volume
operator ~V � V/L3Pl (Oriti et al., 2016) (i.e., such that
~Vj ∼ j3/2), while on the right panel, we represent the
variance of the number operator. As the values of αj are
increased, the minimum value of the averaged volume becomes
larger, while δ2N becomes less and less important at the bounce.
This behavior is shared also by δ2χ and δ

2
V , since δ

2
N sets the scaling

of the relative variances of all the operators. Indeed, as we can see
from Figure 2, they are of the same order of magnitude. Actually,
one notices that fluctuations in χ̂ and in N̂ (dashed dark line and
lighter solid line respectively) are very close to each other, with
differences only of order 10−5-10−6 in the range plotted. This is due
to the smallness of the quantity ΔX/N , which is plotted in Figure 3
for increasing values of χ0, as we see from Eq. 48e. From both
Figures 2, 3, we notice that all the variances andΔX/N go to zero at
large positive x (where the Friedmann regime is expected to kick
in). In any case, we should remark that, since we currently have
little control on moments higher than the second ones, one can
take the above example only as an indication of the existence of the
singularity resolution into a bounce.

In general, therefore, we can draw the following conclusion:
Statement 2: The bouncing scenario is not a universal feature

of the model, meaning that it is not realized under arbitrary choices
of the initial conditions. However, if i) there exists at least one
αj < 0 or at least one rj ≠ 0, ii) all the quantities in Eqs. 45, 48e, 48b
are much less than one when the averaged volume attains its (non-
zero) minimum, and iii) all the higher moments of the volume and

massless scalar field are negligible, the initial singularity is indeed
resolved into a bounce16.

We remark again that this lack of universality is due to the
possible role of quantum fluctuations, in particular higher
moments, which may make the relational evolution unreliable,
while the bouncing dynamics of the average universe volume is in
fact general (but not necessarily with a non-zero minimum
value). In other words, whether or not the dynamics of the

FIGURE 1 | Plots of the dimensionless volume operator ~V ≡ V/LPl and of the relative variance of the number operator δ2N as functions of x � 2μχ0 in a two-spin
scenario with j1 � 1/2 and j2 � 1. The plots are obtained with μj1 � μj2 � μ, rj1 � rj2 � 0, x0,j1 � x0,j2 � 2μχ0 � 10, and αj1 � −10c, αj2 � −15c, with c varying from 1 to 5 in
integer steps. Darker (lighter) lines correspond to smaller (higher) values of c.

FIGURE 2 | Plot of δ2V (dark solid line), δ2χ (dark dashed line) and δ2N (light
solid line) as functions of x ≡ 2μχ0 around the bounce x � 10 for μj1 � μj2 � μ,
rj1 � rj2 � 0, x0,j1 � x0,j2 � 2μχ0 � 10, and αj1 � −10, αj2 � −15. In the inset plot,
instead, is represented 106(δ2χ − δ2N) for the same choice of the relevant
parameters.

15Indeed, under these assumptions expectation values and variances of Π̂ and Ĥ are
determined by N.

16Notice that the requirements (ii) and (iii) correspond to conditions from 1 to 3
being satisfied. The first two of them qualify the framework as relational, while the
third one guarantees that the expectation value of the volume operator captures in a
satisfactory way the relational evolution of the homogeneous and isotropic
geometry.
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volume is relational and entirely captured by the lowest moment
strongly depends on the initial conditions.

5.2.3 An Example: Single Spin Condensate
As an explicit and fairly simple (though possibly very physically
relevant (Gielen, 2016)) example of the arguments exposed above,
let us consider the case in which only one spin among those in J is
excited, say jo, so that all the sums characterizing the collective
operators above are not present anymore. For instance, we now
have

N(χ0) ≃ ρ2jo(χ0) , V(χ0) ≃ Vjoρ
2
jo
(χ0) , (52)

where

ρ2jo(χ0) �
∣∣∣∣αjo

∣∣∣∣
2
(− sgn(αjo) + coshxjo) , (53)

where we have imposed the condition ∑
j
Qj � 0, i.e., Qjo � 0, or

βjo � 0, since we would like to have a relational framework even in
intermediate regimes.

Let us study in detail under which conditions a resolution of
the initial singularity into a bouncing universe, assuming that
indeed quantum effects are effectively encoded into relative
variances (so that we can neglect the impact on the system of
moments of relevant operators higher than the second one). From
Eqs. 52, 53, we deduce that a bounce with a non-zero value of the
(average) volume happens only when αjo < 0. We also recall that
in this case one has an equality between the second moments of
the Hamiltonian and the momentum operator. So, in the
following, we will specialize to this case. The situation in this
case simplifies considerably: for instance, we have

δ2N � δ2V � σ2
H � δ2Π � N−1 (54)

Before proceeding with further considerations, it is interesting
to remark that the single spin case mirrors the situation

appearing in Loop Quantum Cosmology (LQC) (Bojowald,
2008; Ashtekar and Singh, 2011), where one considers a LQG
fundamental state corresponding to a graph constructed out of a
large number of nodes and links with the latter being associated
all to the same spin. This similarity can be also observed in
fluctuations. Indeed, from the above equation we see that in this
case the quantity governing quantum fluctuations is exactly the
average number of particles, with variances suppressed as N−1
for large N. In LQC, the quantity setting the scale of quantum
fluctuations is V0 (Rovelli and Wilson-Ewing, 2014), the
coordinate volume of the fiducial homogenous patch under
consideration. In a graph interpretation of the LQC framework,
V0 � Nℓ0, with ℓ0 being a fundamental coordinate length,
adding another interesting “phenomenological” connection
besides those already presented in (Gielen and Oriti, 2014;
Oriti et al., 2016; Marchetti and Oriti, 2021) between these
two approaches.

Going back to Eq. 54, we see that, in order for the bounce to
have any hope of being classical, we also need to require

∣∣∣∣αjo∣∣∣∣≫ 1.
For the moment, therefore, the two conditions that we have
imposed on αjo are

αjo < 0 , |αjo

∣∣∣∣≫ 1 . (55)

What is left to check are the values of ΔX/N and σ2χ , which are
required to be small in order to have ameaningful relational dynamics.
ΔX/N : About ΔX/N , the computation is straightforward: we

have

|ΔX|
N

�

∣∣∣∣∣∣∣(ρ2jo)′(χ0)
∣∣∣∣∣∣∣∣∣∣∣χ0∣∣∣∣

1
ρ2jo(χ0)

ϵ
2

�
∣∣∣∣sinhxjo∣∣∣∣∣∣∣∣∣xjo + xojo

∣∣∣∣∣
1

1 + coshxjo
ϵμ2jo .

So, we conclude that for each xojo ≥ 0 (i.e., for each χ0,jo ≥ 0) the
above quantity is always ≪ 1 for each χ0 ≥ 0.

δ2χ : About the relative variance of the massless scalar field
operator, assuming χ0,jo ≥ 0, we have

σ2
χ � N−1 + ϵ

2Nχ20
.

Since the first term is always much smaller than 1 under
our assumptions, the relative variance of the massless scalar
field operator is negligible as long as ϵ/(2Nχ20) is negligible
as well. This is satisfied for each χ0 ≥ χ0,jo as long as
(χ0,jo)2 ≫ ϵ/(2∣∣∣∣αj∣∣∣∣).
Notice that the assumption of χ0,jo ≥ 0 (χ0,jo ≤ 0) is necessary if

one wants to have a relational picture extending from today to the
bounce among positive (negative) values of the massless scalar
field. Indeed, if the bounce had happened at, say χ0,jo < 0 (today
being at positive values of the massless scalar field), we should
have crossed the point χ0 � 0, which is however a point in which
relative quantum fluctuations formally diverge and the clock may
become not classical anymore. In conclusion, by further assuming
that

FIGURE 3 | Plot of ΔX/N as a function of x with μj1 � μj2 � μ, rj1 � rj2 � 0,
αj1 � −10, αj2 � −15 and ϵμ2 � 10−2, but with different values of the bounce,
given by xj1 � xj2 � (1 + 0.1c)10 for c going from 0 to 5 in integer steps. Darker
(lighter) lines correspond to smaller (higher) values of c.
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χ0,jo ≥ 0 , (χ0,jo)2 ≫ ϵ/(2∣∣∣∣αjo

∣∣∣∣) , (56)

the singularity is indeed replaced by a bounce (again assuming
χtoday0 > 0). Notice that the second inequality above does not
impose a very strict constraint on χ0,jo, since by construction
of the CPSs ϵ is assumed to be a very small quantity.

To sum up, a classical bounce that can be understood within
the effective relational framework discussed above and in
(Marchetti and Oriti, 2021), can be obtained in this single spin
case for instance by requiring that.

1. Qjo � 0, guaranteeing equality between the expectation value of
Π̂ and Ĥ;

2. Conditions (Eq. 55) are satisfied, the first of which guarantees
that the expectation value of the volume operator reaches a
non-zero minimum before bouncing, and the second of which
guarantees small relative variances of the operators N̂ , V̂ , Ĥ
and Π̂;

3. Assuming that χtoday0 > 0, conditions (Eq. 56) are satisfied17.
The first of them guarantees that χ0 can be interpreted as the
expectation value of the (intrinsic) scalar field operator, while
the second one guarantees that its relative quantum
fluctuations stay small during the whole Universe’s
evolution from the bounce until today.

Under these assumptions, the relational time elapsed from the
bounce would be

xtodayjo ≃ log[Vtoday

Vjo

2∣∣∣∣αjo

∣∣∣∣ − 1]
≃ log[Vtoday

Vjo

2∣∣∣∣αjo∣∣∣∣] � log
Vtoday

Vjo

− log

∣∣∣∣αjo∣∣∣∣
2

,

where we have assumed the term −1 to be negligible with respect
to the first contribution. If we further assume that the right-
hand-side of the last equality is dominated by the first term,
we get

xtodayjo ≃ log
Vtoday

Vjo

∼ 252 − 3
2
logjo , (57)

where the last line is just the result of a crude estimate obtained
from Vtoday ∼ H−3

0 ≃ (9.25h × 1025 m)3, with h ≃ 0.71 and

Vjo ≃ (LP)3j3/2o .

6 CONCLUSION

Wehave analyzed the size and evolution of quantum fluctuations of
cosmologically relevant geometric observables (in the
homogeneous and isotropic case), in the context of the effective
relational cosmological dynamics of quantum geometric GFT
models of quantum gravity. We considered first of all the
fluctuations of the matter clock observables, to test the validity

of the relational evolution picture itself. Next, we studied quantum
fluctuations of the universe volume and of other operators
characterizing its evolution, like the number operator for the
fundamental GFT quanta, the effective Hamiltonian and the
scalar field momentum (which is expected to contribute to the
matter density). In particular, we focused on the late (clock) time
regime (see Statement 1, Section 5.2.2), where the dynamics of
volume expectatation value is compatible with a flat FRW universe,
and on the very early phase near the quantum bounce. We found
that the relative quantum fluctuations of all observables are
generically suppressed at late times, thus confirming the good
classical relativistic limit of the effective QG dynamics. Near the
bounce, corresponding to a mesoscopic regime in which the
average number of fundamental GFT quanta can not be
arbitrarily large, the situation is much more delicate (see
Statement 2, Section 5.2.2). Depending on the specific choice of
parameters in the fundamental dynamics and in the quantum
condensate states, relational evolution as implemented by the CPSs
strategy may remain consistent or become unreliable, due to
fluctuations of the clock itself and to possible issues with
“synchronization” of the fundamental GFT quanta. Even when
the relational evolution picture remains valid, quantum
fluctuations of the geometric observables may become large,
depending again on the precise values of the various parameters.
When this happens, this could signal simply a highly quantum
regime, but one that is still describable within the hydrodynamic
approximation in which the effective cosmological dynamics has
been obtained; or it could be interpreted as a signal of a breakdown
of the same hydrodynamic approximation, calling for a more
refined approximation of the underlying quantum gravity
dynamics of the universe.

The analysis will have now to be extended to the case in which
GFT interactions are not negligible. We expect such interactions
to be most relevant at late clock times and largish universe volume
(i.e. largish GFT condensate densities) (Oriti et al., 2016;
Marchetti and Oriti, 2021), thus it is unclear whether they
should be expected to modify much the behavior of quantum
fluctuations, since the are suppressed in the same regime.
However, GFT interactions also modify the underlying
dynamics of the volume itself, possibly causing a recollapsing
phase (de Cesare et al., 2016), thus they may as well enhance
quantum fluctuations in such cases. Another important extension
would be of course the inclusion of anisotropies (de Cesare et al.,
2018), but this is something we need to control much better
already at the level of expectation values of geometric observables,
in order to be confident about the resulting physical picture.
Finally, quantum fluctuations should be considered in parallel
with thermal fluctuations, which we can now compute as well
using the recently developed thermofield double formalism for
GFTs (Assanioussi and Kotecha, 2003; Kotecha and Oriti, 2018;
Assanioussi and Kotecha, 2020).

Thus, much more work is called for. It is clear, however, that
we now have a solid context to tackle cosmological physics from
within full quantum gravity, also for what concerns quantum
fluctuations. While we move toward the analysis of cosmological
perturbations (Gielen and Oriti, 2018; Gielen, 2019) and the
associated quantum gravity phenomenology, these results will17If χtoday0 < 0 the first condition in (Eq. 56) would read χ0,jo ≤ 0.
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help to control better the viability of the picture of the evolution
universe we are going to obtain.
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