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Roles for viral infections and aberrant immune responses in driving localized
neuroinflammation and neurodegeneration in multiple sclerosis (MS) are the focus of
intense research. Epstein-Barr virus (EBV), as a persistent and frequently reactivating virus
with major immunogenic influences and a near 100% epidemiological association with
MS, is considered to play a leading role in MS pathogenesis, triggering localized
inflammation near or within the central nervous system (CNS). This triggering may
occur directly via viral products (RNA and protein) and/or indirectly via antigenic mimicry
involving B-cells, T-cells and cytokine-activated astrocytes and microglia cells damaging
the myelin sheath of neurons. The genetic MS-risk factor HLA-DR2b (DRB1*1501b,
DRA1*0101a) may contribute to aberrant EBV antigen-presentation and anti-EBV
reactivity but also to mimicry-induced autoimmune responses characteristic of MS. A
central role is proposed for inflammatory EBER1, EBV-miRNA and LMP1 containing
exosomes secreted by viable reactivating EBV+ B-cells and repetitive release of EBNA1-
DNA complexes from apoptotic EBV+ B-cells, forming reactive immune complexes with
EBNA1-IgG and complement. This may be accompanied by cytokine- or EBV-induced
expression of human endogenous retrovirus-W/-K (HERV-W/-K) elements and possibly
by activation of human herpesvirus-6A (HHV-6A) in early-stage CNS lesions, each
contributing to an inflammatory cascade causing the relapsing-remitting neuro-
inflammatory and/or progressive features characteristic of MS. Elimination of EBV-
carrying B-cells by antibody- and EBV-specific T-cell therapy may hold the promise of
reducing EBV activity in the CNS, thereby limiting CNS inflammation, MS symptoms and
possibly reversing disease. Other approaches targeting HHV-6 and HERV-W and limiting
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inflammatory kinase-signaling to treat MS are also being tested with promising results.
This article presents an overview of the evidence that EBV, HHV-6, and HERV-W may
have a pathogenic role in initiating and promoting MS and possible approaches to mitigate
development of the disease.
Keywords: Epstein-Barr virus, human endogenous retrovirus-W, inflammatory cascade, molecular mimicry,
multiple sclerosis, human herpesvirus-6
INTRODUCTION

Multiple sclerosis (MS) is a debilitating neurological condition
with a strong autoimmune component and a significant cause of
neurological impairment in young adults. MS is characterized by
episodic, localized and progressive demyelination as the final
result of focal inflammatory lesions, causing progressive or
reiterating neuroinflammatory and neurodegenerative changes
of the white and gray matter (1). The disease is characterized by
immune cell infiltration from the periphery into the central
nervous system (CNS), causing localized inflammation and
demyelination with axonal damage, leading to autonomic,
sensorimotor, and cognitive impairments. The severity and
clinical phenotype is dependent on the frequency and
distribution of CNS inflammatory lesions as well as the cellular
composition and activation status of such lesions (1, 2). Intensive
research has focused on autoreactive T- and B-cells as causal
mediators, although the trigger for inflammation and
autoreactivity remains obscure (1).

The diagnosis of MS is based on neurological examination,
magnetic resonance imaging (MRI) and the presence of oligoclonal
bands in the cerebrospinal fluid (3, 4). Immunomodulatory
therapies are used for the treatment of MS. These disease-
modifying treatments (DMTs) reduce the incidence of relapses
and impact on progression by dampening the inflammatory
signaling and reducing the entry of lymphocytes into the brain
(5). The etiology of MS is unknown, but the immune system is
thought to be pivotal in the development of MS in genetically
predisposed individuals, in addition to environmental risk factors
such as smoking, deficiency in sun exposure/vitamin D, and
infection (6, 7). There is growing evidence indicating a causal role
for viral pathogens inMS, serving as inflammatory agents activating
astrocytes and microglia directly or indirectly (8, 9). Several viruses,
including Epstein-Barr virus (EBV), Human Herpesvirus-6 (HHV-
od-brain-barrier; BCR, B-cell receptor;
man cytomegalovirus; CNS, central
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mune encephalitis EBV, Epstein-Barr
EBNA, Epstein-Barr nuclear antigen;
ERV, human endogenous retrovirus;
an leukocyte antigen; HSV, Herpes

leosis; IFN, Interferon; LMP, Latent
ivated protein kinase; MBP, myelin
rocyte glycoprotein; MS, Multiple
n; PLP, Proteolipid protein; PPMS,
ng-remitting MS; SPMS, secondary
ucleotide-releasing protein; TCR, T-

org 2
6), Varicella-zoster virus, John Cunningham virus, and human
endogenous retroviruses (HERVs), have been studied in the
context of MS. Except for HERVs, these viruses are persistent and
cause life-long infections with “cellular stress-triggered” reactivation
cycles that may be associated with the relapsing nature of MS
(10, 11).

Here we present a hypothesis and testable model (Figure 1)
suggesting a leading role of EBV infected B-cells in triggering the
clinical MS phenotypes in genetically susceptible individuals (i.c.
HLA-DR2b) by causing direct focal inflammation near and
subsequently within the CNS, inducing reactivation of
endogenous viruses (HERVs and HHV6A) and mimicry-
driven autoimmunity within the CNS. This inflammatory
cascade, overall and in time, leads to deranged (self- and virus-
reactive) immune responses with reiterating and/or progressive
inflammatory signaling in CNS-resident lymphocytes, glia-cells
and astrocytes, associating with destruction of myelin producing
oligodendrocytes (ODCs), together causing damage to the
protective myelin sheath of neurons leading to axonal damage
and progressive neurological disability (2, 9).
EPSTEIN-BARR VIRUS AND MULTIPLE
SCLEROSIS

A Brief Description of EBV Biology
and Life Cycle
EBV is a g1 human herpesvirus (HHV4, lymphocryptovirus) that
persistently infects up to 95 percent of humans worldwide
mainly during childhood. Primary infection in young adults is
often symptomatic and referred to as glandular fever or
infectious mononucleosis (IM). EBV transforms and
immortalizes B-lymphocytes during initial infection as an
essential part of its life cycle, but persists as a quiescent (latent)
virus in a small number of circulating resting memory B-cells
and is thought to infect epithelial cells for virus replication and
spread (12–14). Importantly, the bulk of EBV-carrying B-cells
appear to home to lymphoid tissues in the head and neck region,
proximal to the CNS (15). Dysregulated EBV-infection is
associated with several pathologies, including neurological,
hematological and autoimmune diseases, e.g. chronic-active
EBV infection, MS, Rheumatoid Arthritis (RA) and Systemic
Lupus Erythematosus (SLE), as well as multiple cancers,
including distinct types of lymphoma and carcinoma (16–20).

EBV is a double-stranded DNA virus encoding approximately
100 open reading frames, which are expressed in tightly
November 2021 | Volume 12 | Article 757302
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regulated latent (transforming and persistent) and replicative
(reproductive) gene clusters (21–23). Genes expressed during
latency encode proteins like EBV-nuclear-antigen-1 (EBNA-1),
essential for viral genome maintenance in dividing cells, linking
the viral genome to host cell chromosomes and affecting host
gene-expression and the latent membrane proteins-1 and -2
(LMP-1, -2), crucial for inducing and maintaining an
immortalized transformed state (default program of latent gene
expression, Latency-II). During initial B-cell transformation and
immortalization, additional EBV nuclear proteins (EBNA-2 to
EBNA-6) are expressed (transformation program, Latency-III),
but their activity is quickly limited by gene silencing via CpG-
promotor methylation within- and strong T-cell control against
Latency-II/-III activated EBV+ B-cells (14, 24). The Latency-II
and -III stages are only sporadically detectable in lymphoid
follicles, where EBV-infected B-cells can proliferate and mimic
Frontiers in Immunology | www.frontiersin.org 3
a germinal center activation program (25). In healthy EBV
carriers EBV persists for life in a small number of quiescent
circulating memory B-lymphocytes, expressing only EBNA-1
protein when these cells divide (True Latency program,
Latency-I) (26). Upon cognate antigen encounter within
lymphoid tissues, these memory B-cells can switch to IgG-
producing plasma cells (13). The molecular switch of memory
B-cell to Ig-producing plasma cell activates a three stage EBV
lytic-cycle with ultimate virion release and apoptotic cell death.
Induction of the lytic phase requires initial triggering of
immediate-early viral gene expression encoding highly
immunogenic transcription factors Zta and Rta (step-1),
followed by early genes encoding enzymes for nucleotide
metabolism and viral DNA replication (step-2) and late genes
encoding proteins involved in virion assembly (step-3) (27).
Virus-encoded small nuclear and nucleolar RNAs and over 40
FIGURE 1 | Overview of the central viral cascade causing dysregulation of immune responses, localized CNS-inflammation and neuronal damage underlying MS-
pathogenesis. A central role is proposed for Epstein-Barr virus (EBV), a persistent and frequently reactivating virus, that is associated with Multiple Sclerosis (MS) in
genetically susceptible individuals (HLA-DRB*1501). Following (“stress”-induced) EBV reactivation in quiescent latency-I EBV-carrying B-cells in lymphoid tissues near
the CNS, EBV-encoded gene products, - such as EBER1, miRNA and LMP1 in exosomes secreted by viable reactivating B-cells (latency-II/-III) and EBNA1-DNA
complexes released from apoptotic EBV+ B-cells and possibly forming reactive immune complexes with locally produced anti-EBNA1-IgG -, together trigger anti-viral
T-/B-/NK-cell-, antibody- and cytokine responses (Type-I IFN, TNF-a, IL-6, -10, -17A) causing localized inflammation. This is associated with spread of viral
products, immune complexes, cytokines and the infiltration of (cross-)? reactive lymphocytes via a compromised blood-brain barrier causing aberrant activation of
CNS-resident microglia and astrocytes and damage to oligodendrocytes (ODCs), leading to CNS inflammatory lesions as characteristic feature of MS. EBV itself and
inflammatory cytokines may trigger the expression of endogenous germline-encoded viral sequences (MSRV or HERV-K/-W and HHV6A) in reactive lymphocytes
and in inflammatory glia/astrocytes/ODC, which further enhance the localized CNS inflammation. In this inflammatory milieu, shared epitopes between (endogenous)
viral and neuronal self-antigens may trigger autoimmune responses in susceptible individuals (HLA-DRB*1501), thus perpetuating CNS inflammation and causing
pathogenic microglia activation and neuronal damage in an episodic (CIS), recurrent (RRMS) or progressive (SPMS, PPMS) virus-driven and auto-reactive pathogenic
process. Interference with virus-driven inflammatory signaling, reconstitution of a quiescent immunological balance, remyelination and repair of damaged neurons are
therefore key to future treatment and curative approaches in MS.
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microRNAs encoded in two gene clusters are abundantly
expressed during latent and lytic stages and modulate host
gene expression and inflammatory responses, associating with
distinct EBV-driven diseases (28–31). Host immune surveillance
against EBV is constantly active at a high level (~1% of all T-cells
are EBV-antigen responsive) and predominantly directed at
latency-II/-III and immediate early gene products, preventing
latent B-cell proliferation and lytic activation of EBV (24).

Humoral Immune Responses Against
EBV in MS
The serological evidence for EBV being a risk factor for MS is
strong and growing, although the high levels of EBV
seropositivity in adults make it hard to establish such
association unequivocally. However, recent large-scale studies
have revealed a near 100 percent EBV seropositive rate in MS
patients, which is significantly higher compared to age-, gender-
and population-matched controls (32, 33). The increased IgG
seropositivity in MS patients particularly involves responses to
proteins coded for by EBV latent genes (esp. EBNA-1) rather
than lytic genes (EA, VCA), and is virus-specific because no
elevated antibody levels to human cytomegalovirus (CMV) or
Herpes simplex virus (HSV) are significantly linked to MS (32,
34). The risk of MS increased more than two-fold after a history
of IM, as opposed to subclinical primary EBV infection (35, 36).
The risk was further substantially elevated in individuals with an
IM history and HLA Class II DR2b (DRB1*1501 b, DRA1*0101
a), which is the strongest genetic risk factor for MS (37).
Furthermore, specific increases in serum anti-EBNA-1
antibody levels preceded the onset of clinically apparent MS by
several years, showed increases during conversion from a
clinically isolated syndrome (CIS) to definite MS and
associated with active MRI lesions in established MS (38–41).
Overall, anti-EBNA-1 antibodies are specifically elevated in MS
and thought to originate from the periphery as the levels of anti-
EBNA-1 antibodies relative to total IgG were higher in the serum
compared to CSF in the majority of relapsing-remitting MS
patients (34, 42). Importantly, EBNA-1 forms dimers and
multimeric complexes tightly bound to viral and host DNA,
which are released upon apoptotic death of EBV-infected host
cells as induced by the lytic switch and/or anti-EBV cytotoxic T-
cell (CTL) responses (see Figure 2). Such EBNA-1-DNA
complexes are stable and highly immunogenic and human
anti-EBNA-1 antibodies specifically recognize surface epitopes
of such complexes (Figure 2, epitopes depicted in top section),
but not the intramolecular dimer and DNA-interacting regions
of EBNA-1 (43, 44). This suggests that anti-EBNA-1 antibody
responses are driven by apoptotic EBNA-1-DNA complexes
directly (via BCR on B-cells) or indirectly (via phagocytosis
and/or Fc-/Complement receptor-mediated uptake and
presentation in specialized antigen-presenting cells, APC) thus
triggering anti-EBNA-1 T- and B-cell responses. Oligoclonal
bands, which are found in the CSF of most MS patients,
contain immunoglobulins that recognize EBNA-1 and
intrathecal IgG from MS patients recognized defined EBNA-1
epitopes thus implying local anti-EBNA-1 antibody production
Frontiers in Immunology | www.frontiersin.org 4
that can lead to immune (complex)-mediated pathology (45).
Interestingly, more recent detailed epitope mapping studies have
confirmed the prevalence of anti-EBNA-1 IgG and IgM in CSF
and sera from MS-patients, and revealed possible cross-reactive
peptide mimicry epitopes, as will be detailed later (46, 47). The
presence of high levels of anti-EBNA-1 antibodies and
oligoclonal bands in CSF may reflect increased activation and
locoregional multiplication with subsequent T-cell mediated
apoptotic elimination of B-cells that are latently infected with
EBV (26).

Cellular Immune Responses Against EBV
EBV-reactive T lymphocytes are abundant in the circulation of
EBV carriers and pivotal in controlling EBV homeostasis by
eliminating undesired and potentially dangerous (re)activated
EBV-infected B-cells (24). It is estimated that in healthy EBV
carriers about 1% of all circulating T-cells are responsive to EBV-
derived antigenic peptides, with latency-associated and
immediate early lytic proteins being prime targets (23). CD4+
T cell responses are dominantly directed against EBNA-1,
recognizing 12-15 mer peptide epitopes located within the
stable EBNA-1/DNA dimer structure, suggesting complete
complex degradation “in trans” in APCs (myeloid dendritic or
B cells) before presentation on MHC-II to CD4+ T cells (48) (see
Figure 2, epitopes in top section). On the other hand, CD8+
cytotoxic T cells (CTLs), which recognize MHC-I associated 8-
mer peptides processed “in cis” by the host cell proteasome and
presented on the surface of EBV infected cells, are much less
abundant and very restricted in epitope recognition (24, 44, 49).
Importantly, elevated EBNA-1 specific T-cell responses are
detectable during initial stages (CIS) of MS and are predictive
for symptomatic MS progression in parallel with anti-EBNA1
serology (40). Aberrant EBV-specific T-cell control has been
found in MS patients, as will be detailed here below.

EBV Persistence and Dysregulation of EBV
Homeostasis in MS
Throughout life, EBV remains immunologically silent (Latency-I)
in small numbers of B- cells (1 in 105) in the blood, which home to
the head and neck lymphoid tissues (15). EBV-infected B-cells
periodically reactivate during lymph node passage to form new
EBV+ B-cells (Latency-II/-III) or become plasma cells that may
reproduce virus (lytic stage), leading to virus shedding in saliva
and blood, but both types of reactivation are tightly controlled by
CTLs to EBV latency-II/-III and immediate early lytic antigens to
prevent B-cell lymphoproliferation (24). Importantly,
physiological and immunological stressors can trigger
inflammatory events that reactivate EBV from latency and drive
multiplication of EBV-carrying B-cells (50, 51). Such aberrant
state of EBV latency and/or reactivation proximal to the CNS may
deregulate and enhance local (anti-EBV) inflammatory responses
by release of exosomes (see Figure 2, lower section) containing
EBV-encoded immunomodulatory RNAs (EBER1, miRNA) and
proteins (LMP1). These exosomes may influence locoregional
cellular functions and cytokine milieu (30, 31). CTL-mediated
elimination of EBV+ B-cells may create apoptotic bodies
November 2021 | Volume 12 | Article 757302
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containing EBNA1 that will be taken-up by local APC and induce
further anti-EBV T-cell activation and associated (IL-17A)
cytokine release. These locally produced cytokines are further
affecting normal immune balances, triggering blood-brain-
barrier (BBB) permeation and possible local oligodendrocyte
(ODC) disfunction (52–54). Episodes of (natural or therapy-
induced) immune suppression and T-cell dysfunction are clearly
related to and provide evidence for the importance of a well-
balanced immune control over EBV-reactivation and B-cell
proliferation (17, 55). Several studies have addressed in detail
the T-cell operators and viral targets involved in maintaining a
life-long balanced immune control over EBV and their potential
exhaustion and dysregulation in MS (24, 56, 57).

Aberrant T-cell responses in CSF and CNS have been widely
associated with MS, and a dysregulated T-/B-cell interaction may
be fundamental to MS pathogenesis (58–60). The trigger(s) for
initiating and maintaining this dysregulated immune balance in
the CNS remains elusive. Intrathecal EBV-specific T-cell
Frontiers in Immunology | www.frontiersin.org 5
responses against EBV and/or auto-antigens have been
identified and may be involved in MS pathogenesis (61–65).
These can reflect autoreactive EBV-infected B-cells entering the
CSF from the blood (Pender’s hypothesis (66); and becoming
activated locally, thus triggering inflammatory signaling and
initiating EBV-specific or auto- (cross-) reactive CTL responses
in the CNS. Alternatively, inflammation or stress-induced
activation of (EBV-carrying) B-cells in meninges or
locoregional lymphoid tissues may trigger cytokine responses
and/or EBV encoded small-RNA (EBER)-induced inflammation
via exosome secretion (Figure 2, lower section) that affect BBB
integrity and allows anti-EBV immune cell passage and
activation of microglia and astrocytes and dysfunctional of
ODCs that together cause neuronal damage (2, 31, 51, 67–72).

Support for the hypothesis that anti-EBV inflammatory
responses may be associated with the onset of MS came from
reports of high levels of CTL activation against EBV but not
CMV in the course of early MS (73). Studies on the
FIGURE 2 | Processing, presentation and position of EBNA-1 epitopes for CD4+, CD8+ T-cells and antibodies (B-cells). Viable persistent and “reactivating” EBV
infected B-cells secrete EBER1 and LMP1 containing exosomes in the head & neck lymphoid microenvironment, continuously activating resident myeloid cells
(possibly including microglia and astrocytes) for innate inflammatory signaling and increased antigen-uptake, digestion and presentation. Such innate signals may
attract and pre-activate T- and B-cells to the inflammatory site. In EBV carriers, lifelong strong adaptive CD4+ and CD8+ cytotoxic T-cell immunosurveillance exists
against replicating latent (Latency-I,-II,-III) and reactivating (Latency-III, Lytic) EBV-infected B-cells recognizing viral peptides bound to surface MHC-I or MHC-II
molecules, resulting in release of pro-inflammatory cytokines. This T-cell surveillance is causing repetitive apoptotic cell death of EBV-infected cells and release of
nuclear content as apoptotic bodies, enhancing the local inflammatory milieu. Such apoptotic bodies contain EBNA1-DNA (and host protein) complexes which are
taken-up by antigen-presenting cells (APC), digested and presented in MHC-II for further CD4+ T-help and cytokine activation. EBNA1-dimers and multimeric
EBNA1-DNA complexes also bind to the B-cell receptor (BCR) on B-cells, directly triggering anti-EBNA1 antibody responses, supported by local CD40 T-cell
interactions and cytokines (IL4, IL10, IL17A). Prevalent anti-EBNA1 antibodies may form (complement-containing) immune complexes with released EBNA1-dimer/-
DNA resulting in Fc-receptor (FcR) uptake into APC’s and processing for MHC-II cross-presentation. Binding to B-cell receptor (IgM-IgD) directly triggers anti-EBNA1
antibody responses and possible anti-self autoimmune responses mediated by EBNA1-bound DNA and host nuclear proteins (i.c. ORC-complex) or via the mimicry
domains within the EBNA1 sequence (see Table 1).
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https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Meier et al. Molecular Mimicry and Viruses in Multiple Sclerosis
characterization of CTLs to latent and lytic EBV antigens in
relapsing-remitting MS (RRMS) found an expansion of CTLs
specific for lytic EBV antigens (Zta/BZLF1 and BMLF1) during
active disease in untreated MS patients but not in patients treated
with natalizumab (74). Furthermore, the frequency of CTLs
specific for EBV lytic and latent antigens was higher in active
and inactive MS patients than in controls (74). More recently,
activated EBV-specific CD8+ T-cells were found to predominate
in CSF of MS patients compared to non-MS controls (63).
Characterization of CD4+ T-cell responses in MS patients also
showed dysregulation with strikingly elevated frequencies of
EBNA-1-specific CD4+ memory T cells, with increased
proliferative capacity and enhanced IFN-g production (40, 75).
T-helper (Th) cell responses to three other latent and three other
lytic immunodominant EBV antigens and CMV epitopes did not
differ between patients and controls suggesting that EBNA-1
specific Th1 cells in MS are capable of sustaining autoimmunity
(75). Multiple auto-antigen targets have been defined for CNS-
derived T-cells, some of which are specifically expressed on
activated EBV-carrying B-cells and share MHC-II restricted
antigenic epitopes with EBV proteins, in particular EBNA-1, as
will be detailed later (63–65, 76).

EBV Status and the MS Brain
Disruption of the BBB facilitates translocation of EBV-infected
B-cells, inflammatory cytokines (i.c. IFN-1, TNF-a, IL17A),
exosomes as well as anti-EBV antibodies and EBV-specific
immune cells. One important question, which warrants further
study, is how EBV and/or its products enter the MS brain during
inflammatory events that (temporarily or chronically) permeate
the BBB and whether such entrance is an early (triggering) or late
(bystander) event in MS pathogenesis. As EBV resides in B-cells,
which are able to traverse the “inflammation-damaged” BBB and
traffic into CNS, its presence could be a mere bystander
phenomenon. Recent studies indicate that epigenetic
manipulation, for instance by inflammatory cytokines, can
drive activation and CNS infiltration of EBV-infected B-cells
(77). On the other hand, during periods of (EBV-related)?
inflammation in locoregional lymphoid patches in the
parenchyma, EBV+ B-cells and EBV-products in exosomes
produced by such B-cells may cross the BBB and be taken-up
by microglia cells to cause localized CNS inflammation (31, 78,
79). This would fit well with the characteristic MAPKERK

activation status of microglia and astrocytes in MS lesions,
which are not directly infected with EBV (2, 9).

The detection of EBV in the MS brain is not without
controversy (80). Although initial PCR studies failed to find
traces of EBV genome in MS-related CNS tissue biopsies (81), a
2007 report of abundant EBV infection and widespread EBV
reactivation in acute MS but not in other inflammatory central
nervous diseases triggered much attention (82). However, despite
rigorous efforts, these findings could not be confirmed in
subsequent studies by others (83–85). Additional studies
demonstrated localized EBV-infection in both MS and control
brains (86, 87). Early studies reported meningeal B-cells within
specific structures, referred to as tertiary lymphoid follicles with a
germinal center-like architecture and denoted as major sites of
Frontiers in Immunology | www.frontiersin.org 6
EBV persistence in the MS brain (82), which however were found
mostly negative for EBV in other studies (83, 84). The reasons for
these opposite findings may be due to technical issues, such as
degradation of RNA, the use of different MS tissues, differences
in reagents, and non-specific staining of EBER+ cells by in-situ
hybridization leading to cytoplasmic instead of nuclear staining
(80). More recent studies, using similar techniques have detected
EBV in sporadic cells in 90% of MS cases compared to only 24%
of non-MS cases with other neuropathologies with EBV-
infection being present in microglia and astrocytes, besides B-
cells (88). The presence of EBV-infected B cells in or near the
CNS and the anti-EBV immune responses in CSF of MS patient
implicates that EBV-related products released from “activated”
infected cells (i.e. EBNA-1-DNA complexes and/or EBER-
containing exosomes) may provide persistent triggers for local
(neuro-)inflammation. Further detailed analysis of laser-cut CNS
and meningeal tissue lesions suggested low-level EBV presence
and prevalent activated EBV latency or restricted (abortive) viral
reactivation capable of triggering localized anti-EBV T-cell
responses in CNS of patients with active progressive MS (61,
87, 89).

If EBV is finally incriminated, how could latent infection play
a role? Latent EBV-infection may activate innate immune
responses and thereby drive neuroinflammation in the MS
brain (86). The detection of EBER+ cells in active white matter
MS lesions was linked to the overexpression of the innate
cytokine interferon-a (IFN-a) by cells with the morphology of
microglia and macrophages (86). IFN-a is part of the type-I
interferon family and an important player in anti-viral
immunity. Its biological effect is distinct from IFN-b, which is
also used to treat MS as discussed below. Latent EBV infection
may contribute to neuroinflammation by triggering IFN-a
production, as supported by the findings that EBERs can bind
to Toll-like receptor 3 and potentially other intracellular
receptors such as retinoic acid-inducible gene 1 (RIG-I) and
elicit IFN-a production (31). However, these findings were not
exclusive to the MS brain, as EBER+ cells were also found in
cases of stroke and CNS lymphoma (86). This is also supported
by more recent studies (87). Interestingly, recent studies have
revealed a link between innate iNKT cells and B-cell responses,
which would substantiate the potential role of EBV-derived
inflammatory products (EBER-1 in exosomes, EBNA-1-DNA
complexes) as triggers for dysregulated (autoimmune) B-cell
responses (90). Whether MS-triggering EBV activity is located
within the CNS or its boundaries remains to be determined, as
well as whether such EBV activity is an MS initiating event or a
consequence of (autoimmune)? inflammation.

EBV Status and Lymph Nodes in MS
Despite the dogma that the CNS has “immune privilege” to
mitigate immunological damage to neurons, neuroimmune
interactions may play an important role in the MS brain.
There is increasing evidence for an intimate interaction
between the brain and the immune system in the dural sinuses
(91). Lymphatic vessels in the meninges provide an important
link between the CNS and peripheral immune system and can
play a role in autoimmunity in MS (91). Vessels in the dura
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mater that drain CSF from the brain to the cervical lymph nodes
and pathogens in lymph nodes can lead to the initiation of
immune responses. B-cells seem to traffic freely across the
tissue barrier, with the majority of B-cell maturation occurring
outside of the CNS in the secondary lymphoid tissue (92).
Furthermore, CNS B-cells have access to lymphoid tissue
where they may encounter antigen and experience activation
and affinity maturation.

There is evidence to suggest that cervical lymph nodes may
serve as a latent viral reservoir due to dysregulated EBV
activation (61, 87, 89). Histopathological findings of MS tissue
from cerebral hemisphere, brain stem, and cervical lymph node
of a patient with primary progressive MS (PPMS), who died of an
ischemic stroke, showed EBER+ cells within B-cell follicles in the
paracortex of the cervical lymph node (93).

EBV and Molecular Mimicry in MS
Autoimmunity can be caused by TCR-independent bystander
mechanism or by cross-recognition of autoantigens when
antigenic epitopes shared between a pathogen and host
generate a cross-reactive B- or T-cell response that breaks self-
tolerance and causes antibodies or T-cells respectively to damage
host tissues. The concept of molecular mimicry at the level of T-
cells causing the autoimmune disease was first elaborated by
Ebringer in 1979 (94). A molecular mimicry hypothesis for MS
has been proposed, whereby epitopes in viral pathogens, such as
EBV, endogenous retroviruses, HHV-6 cross-react with epitopes
in brain proteins and elicit cross-reactive B- or T-cell responses,
which create inflammatory triggers and immunopathology
(95–97).

EBV is thought to lead to marked immune activation and
stimulate autoreactive T-cells via molecular mimicry between
foreign agents and myelin peptides (98). These findings are
supported by mechanistic studies into the structure of the T
cell receptor (TCR) from an MS patient, which recognized both a
DRB1*1501-restricted myelin basic protein (MBP) peptide and a
DRB5*0101-restricted EBV peptide. Both HLA-peptide
complexes revealed a marked degree of structural similarity at
the surface presented for TCR recognition, which provided
structural evidence for molecular mimicry involving Class-II
HLA molecules (99). Recent studies in a humanized mouse
model confirm a central role for HLA-DR15 restriction
elements in causing aberrant anti-EBV immune responses with
risk of autoimmunity (100).

Prior studies addressing the possibility of molecular mimicry
in MS found clonally expanded EBNA-1-specific CD4+ T-cells
that potentially contributed to the development of MS by cross-
recognition with myelin antigens (75, 101). MS patients showed
increased T-cell responses to EBNA-1 but not to other EBV-
encoded proteins nor to other viruses such as influenza, HSV-1
and CMV. An expanded reservoir of EBNA-1-specific central
memory CD4+Th1 precursors and Th1 (but not Th17) polarized
effector cells recognized myelin antigens more frequently than
other autoantigens that are not associated with MS (101). More
recent findings shed light on how EBV may trigger mimicry-
based autoimmunity, suggesting a crucial role for EBNA-1 in
inducing mimicry-based self-reactivity as summarized in Table 1
Frontiers in Immunology | www.frontiersin.org 7
and visualized in Figure 2. Antigenic products induced by EBV
within (e.g. alpha B-crystallin (CRYab) (105, 106, 114), or
released from EBV infected B-cells (i.c. EBNA-1-DNA, LMP1,2
in exosomes, Lytic phase components) are thought to activate
HLA-DR/peptide reactive CD4+ T-cells, which then respond to
potentially “pathogenic” self-peptides or autoantigens with EBV-
related amino acid sequence homology (= mimicry) such as
myelin basic protein (MBP), myelin oligodendrocyte
glycoprotein (MOG), neurofilament light chain (NFL).
Multiple putative cross-reactive epitopes in human and EBV
proteins interacting with IgG from CSF or serum from MS
patients have been identified (Table 1). A recently identified
pathogenic self-peptide is derived from the RAS Guanyl
Releasing Protein 2 (RASGRP2), which is expressed by B-cells
but also in neurons and other brain cells. B-cells presenting
RASGRP2-derived peptides are thought to trigger autoreactive
T-cells, similar to CRYab (65, 76, 102, 104, 114). These HLA-DR-
self peptide-reactive CD4+ T-cells can cross the BBB and enter
the brain where they orchestrate an autoimmune attack by
producing inflammatory mediators leading to demyelination
and axonal injury.

A structural approach to investigate molecular mimicry
identified a structurally related pair of peptides from EBNA-1
and b-synuclein, a brain protein implicated in MS (102). Binding
experiments showed the binding of the predicted peptides to
HLA DR2b with characteristics comparable a with the well-
known Th-epitope in myelin basic protein (MBP). Structural
modeling of the peptides with HLA DR2b revealed binding to the
peptide-binding cleft similar to MBP and relative conservation of
the surface exposed, potential TCR contact residues in the two
peptides. This suggests that molecular mimicry is possible
between the EBNA-1 and b-synuclein peptides.

A recent study presented a case for molecular mimicry
between Anoctamin 2 (ANO2) and EBNA- 1 associates with
MS risk (104). ANO2 is a chloride channel protein expressed in
the CNS. MS patients showed increased autoantibody reactivity
to ANO2 with high sequence similarity between epitopes in
ANO2 and EBNA-1 (Table 1).

Whether antigenic mimicry is a cause or consequence of MS-
related inflammation and is driven by the mimicry-domains in
EBNA-1 remains to be established.
EBV and Reactivation of Human
Endogenous Viruses
The regular (stress-triggered) reactivation of EBV in or near the
CNS with associated activation of host genes and release of EBV-
encoded components, together with the loco-regional (anti-
virus/-self) inflammatory cytokine responses triggered by and
against EBV, may set-of a number of cellular signaling events in
actively responsive as well as bystander cells (B-/T-cells, glia-
astrocytes, ODCs). These EBV-induced molecular events may
lead to changes in transcriptional control/activation of viral
sequences encoded within the germline genome, in particular
endogenous retroviruses (HERV) and integrated HHV6A (each
individually detailed further below). Well known examples are
the induction of HERV-K18 (115, 116) and HERV-W (117)
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gene-products by EBV infection in B-cells and/or cytokine-
driven reactivation (118) of these endogenous viruses. The
induced HERV-K18/-W proteins may serve as “superantigens”
further inducing polyclonal Vb TCR-driven activation and
associated cytokine releases (119). On the other hand, it has
been described that endogenous retroviral elements (i.c.
HERV-W-env (Syncytin-1) may enhance lytic viral gene
expression of gamma-herpesviruses in latently infected B-cells,
making the interaction two-sided (120). Dysregulated (virus- or
cytokine-induced) expression of HERV-K/-W elements have
clear implications for the pathogenesis of multiple neurological
disease, including MS (121), secondary to the initial triggering by
EBV-driven mechanisms. Of relevance is the possible induction
of mitogen-activated protein kinase extracellular signal-regulated
protein kinase (MAPK-ERK) (122) pathway in HERV-W-ENV
expressing cells, which is characteristic of MS glia-cell activation
(9). Together, these observations strengthen the 3-viral cascade
hypothesis (123), with EBV as leading pathogen (Figure 1) and
comprising a multi-factorial interaction of virus-, altered self or
mimicry- and cytokine-driven inflammatory pathogenic events
underlying the different manifestation of MS disease, being non-
progressive (CIS), reiterating (RRMS) and progressive (SPMS,
PPMS) with increasing neurological damage.

Future Studies on the Relationship
Between EBV and MS
Defining the roles of autoimmune responses as cause or
consequence in the pathogenesis of MS and their potential link
to viral antigen mimicry and auto-reactive EBV-infected B-cells
merits further analysis. This also holds for the putative
inflammatory role(s) of EBV-derived components (EBERs in
Frontiers in Immunology | www.frontiersin.org 8
exosomes and/or EBNA1-DNA complexes) in triggering loco-
regional activation of the MS-characteristic inflammatory MAPK
pathway in microglia (2, 9). The role and mechanism of EBV and
cytokines on activating other endogenous viruses, such as
HERVs and HHV-6 also deserves attention (9). Since all MS
patients are EBNA-1-IgG positive, the involvement of EBNA-1-
IgG immune complex formation and inflammation near CNS
should be further analysed. Single cell sorting could be utilized to
provide more definitive proof on the presence and status of EBV
(analysis of viral DNA and RNAs) in the MS brain and nearby
regional lymphoid tissues (61, 89). Frozen tissue containing (pre-
)active HLA-DR+ lesions with reactive glia-cell and ODC-
clusters from MS cases will be needed to perform single-cell B
cell receptor (BCR) and TCR sequencing as was recently done on
Alzheimer’s patient biopsy material (124). Cell types can be
selected based on cell-specific protein markers and many features
may be used simultaneously to classify cells by molecular analysis
(125). EBV-specific TCRs have been detected in the CSF from
patients with Alzheimer’s disease. However, these data are not
direct evidence of a causal link between EBV and Alzheimer’s
disease (124). A search for EBV-DNA, EBER1-RNA, EBV
encoded miRNA or EBNA-1/LMP-1 in combination with
single cell analysis of CNS cell type-specific RNA, T-cell
lineage and TCR sequence has not yet been conducted in in
MS patients to our knowledge, but methods to do so are being
developed (126, 127). Similarly, the presence, frequency and level
of HERV-K/-W RNA as well as HHV6A gene-expression in
defined cell types in MS-related (early) CNS lesions requires
further analysis. Other interesting topics include the link
between bacterial infection (periodontitis, inflammatory bowel
disease, etc.), short-chain fatty acids, and vitamin D status or
TABLE 1 | Overview of viral proteins involved in antigen mimicry in MS.

Virus Viral
protein

Self-protein Nature of cross-reaction Study Reference

EBV EBNA-1 b-Synuclein HLA DR2b binding (potentially CD4+ T-cells) Ramasamy et al. (2020), (102)
EBNA-1 a-Synuclein, CRYAb,

MBP, MOG &
neurofilament light chain

Cross-reactivity of anti-EBNA1 peptide-specific antibodies with human
brain protein extracts and purified brain proteins and identification of
sequence homologies

Vertelman & Middeldorp
(unpublished),
Middeldorp (2015)

(44)

EBNA-1 MBP Serum antibodies in MS patients Jog et al. (2020) (103)
EBNA-1 Mix of myelin proteins CD4+ T cells Lünemann et al. (2008) (101)
EBNA-1 Anoctamin 2 Antibodies in MS patients Tengvall et al. (2019) (104)
EBNA-1 Alpha-B Crystallin (CRYAb) Serum and CSF antibodies in MS cases

EBV+ LCL and MS-CNS lesions
Hecker et al. (2016)
Van Sechel et al. (1999)
Van Noort et al. (2010)

(46)
(105)
(106)

EBNA-1 hnRNP-L Serum antibodies in MS Lindsay et al. (2016) (107)
DNA-
polymerase

MBP CD4+ T-cells Wucherpfennig &
Strominger (1995)

(98)

BFRF3
(VCA-p18)

Septin-9 Antibodies in MS patients Lindsey (2017) (108)

BRRF2 Mitochondrial antigens Serum antibodies in MS Dooley et al. (2016) (109)
LMP-1 MBP CSF antibodies in MS and Mouse immunizations Lomakin et al. (2017) (110)
LMP-1 a-Synuclein Monoclonal antibody on human brain tissue Woulfe et al. (2016)

Middeldorp, unpublished
(111)

Multiple Multiple Pentapeptide epitope homology Kanduc and Shoenfeld,
(2020)

(112)

BZLF1 Unknown CD8+ T-cells in MS brain Serafini et al. (2019) (61)
HHV-6 U24 MBP CD4+ T-cells and antibodies in patients Tejada-Simon et al.

(2003)
(113)

pHERV-W env MOG HLA DR2b binding (potentially CD4+ T-cells) Ramasamy et al. (2020) (102)
Novemb
er 2021 | Volume 12 | Art
icle 757302

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Meier et al. Molecular Mimicry and Viruses in Multiple Sclerosis
“stress” factors and their influence on (chronic or repeated) EBV
reactivation in causing neuroinflammation, exemplified by the
well-defined effects of butyric acid, butyrate derivatives and
glucocorticoids on ODC activation, triggering B-cell
proliferation and switching EBV from tight latency into
reactivation and lytic replication (128–131).

Therapeutic Approaches Targeting
EBV-Infection in MS
Efforts to develop antiviral strategies for treating MS are underway.
Interferon-b (IFN-b) is one of the first-line treatments of MS and
an important player in antiviral immunity. However the
mechanism by which the therapeutic effect takes place remains
somewhat elusive to date. It is thought that IFN-b has
antiproliferative effects and down-regulates T-cell activation by
altering the expression of proteins involved in antigen presentation,
and promotes the differentiation of activated T cells away from a
Th1 response (pro-inflammatory) and towards a Th2 response
(anti-inflammatory). Clinically effective IFN-b therapy was
associated with a downregulation of proliferative T-cell responses
to EBNA-1 and showed efficacy in reducing pHERV-W and
HHV6-A plasma viral loads, two additional viral risk factors in
the context of MS, as will be described further below (132, 133).

New monoclonal antibody-based treatments targeting B-cells
have recently been introduced and proven highly successful in
reducing MS clinical symptoms. The idea that these treatments
impact on the B-cell-tropic EBV warrants further study (8, 134).
The B-cell depleting antibody ocrelizumab significantly reduced
annual relapse rate and dramatically limited the appearance of
new Gadolinium-enhanced T2 lesions, as well as disability
progression (135). However, this treatment proved less effective
in more advanced progressive stages of MS and is not considered
curative. The use of haemopoietic stem cell transplantation
(HSCT) has been suggested as curative MS-treatment aiming
at the elimination of pathogenic reactive lymphoid cells and to
re-boost the immune system. Interestingly, autologous HSCT
may deplete EBV from the pathogenic equation, as early studies
indicated complete elimination of endogenous EBV by HSCT
(136). However, EBV-elimination is not guaranteed after HSCT
and the HLA-DR based genetic susceptibility for MS remains,
whereas the health risks associated with HSCT are considerable
and HSCT may not be suitable for all categories of MS (137).

Studies examining the effect of antiviral and antiretroviral drugs
on MS disease activity are currently planned. In past antiviral trials
targeting herpes virus, treatment only reduced lytic viral replication
without affecting latent virus. Several nucleoside analogs have been
shown in-vitro to impact EBV lytic replication including acyclovir
and penciclovir, ganciclovir and tenofovir (138). A case report
described the resolution of MS symptoms, which remained
subsided for more than 12 years (139), in a MS patient
diagnosed with HIV after starting HIV antiretroviral therapy. It
is interesting to speculate to what extent the observed benefits
reflect an impact of anti-retroviral therapy on neuroinflammation
and on EBV-mediated disease mechanism.

A novel strategy is currently tested to eliminate EBV-infected B-
cells using an EBV-specific CD8+ T-cell therapy. Autologous or
Frontiers in Immunology | www.frontiersin.org 9
allogeneic infusion-cell therapy studies by Pender and colleagues
have focused on inducing CTL activity against latent EBV proteins
(140). A phase-1 trial of autologous EBV-specific T-cell therapy in
progressive MS showed short-term clinical improvement in 7 out of
10 patients and noted no serious adverse effects. The patients were
treated with four escalating doses of in vitro-expanded autologous
EBV-specific T-cells targeting EBNA-1, LMP1 and LMP2A. Clinical
improvement following treatment was associated with the potency
of EBV-specific reactivity of the administered T-cells. However, the
beneficial effect was sustained in a limited number of cases in this
trial (141).

Targeting neuroinflammation via Fc- (FcR), B-cell (BCR) and
Toll-like receptor signaling may also be achieved with Bruton’s
tyrosine kinase (BTK) inhibitors. BTK is a signaling molecule
involved in maturation and activation of B-cells through BCR
and FcR. BTK has been demonstrated to also play an important
role in signaling pathways of multiple Toll-like receptors (142,
143). The BTK inhibitor AG126 has recently been tested in
experimental autoimmune encephalomyelitis (EAE), the animal
model of MS, and reduced clinical symptoms, immune cell
infiltration in the CNS, microglia activation and myelin
damage, and decreased Th17 differentiation. BTK inhibitors
also impacted LMP2A mediated IL-10 production crucial for
EBV survival by increasing STAT3 phosphorylation via a PI3K/
BTK-dependent pathway (144). A recent clinical trial examined
the BTK inhibitor evobrutinib in a phase 2 clinical trial in MS.
Patients with RRMS who received 75 mg of evobrutinib once
daily had significantly fewer enhancing lesions during weeks 12
through 24 than those who received placebo (145). However,
there was no significant difference with placebo for the other
dosing regimes, nor in the annualized relapse rate or disability
progression at any dose. A second oral BTK-inhibitor
tolebrutinib, capable of passing the BBB, was also evaluated in
a phase-2b trial with similar beneficial effects for the highest 60
mg dose with minimal side-effects (146). Newer BTK inhibitors
are being developed, which more specifically inhibit BCR and
FcR mediated signaling in B-cells and myeloid cells, which may
have impact on the proposed reactive T-/B-cell and EBV-EBNA1
antigen-driven inflammation in MS lesions (147). Alternative
options to reduce neuroinflammation in MS include inhibition
of fibroblast growth factor receptor and MAPK-signaling (9, 148,
149) or use of ursolic acid, a well-tolerated oral drug that reduced
neuroinflammation and stimulates remyelinisation (150).

Suppressing the function of EBNA-1, as crucial viral gene for
EBV DNA maintenance in B-cells, is being tested for treatment
of EBV-driven cancers, including lymphomas and carcinomas.
Such an approach may also prove relevant for MS treatment,
provided that EBV within B-cells indeed is a master player in MS
pathogenesis (151, 152).
HUMAN HERPESVIRUS 6 AND MS

A Brief Description of HHV-6
Human herpesvirus 6 (HHV-6) is a ubiquitous b-herpesvirus
associated with a number of clinical disorders including MS. Two
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closely but biologically distinct variants (HHV-6A and HHV-6B)
have been described with different tropisms. Although some
authors have described a possible relation between HHV-6B and
MS (153), HHV-6A is more strongly associated with MS (154,
155). HHV-6 has a seroprevalence rate of 70 to 90 percent in the
human population (156). Most adults become infected as infants
and have seroconverted by the age of two. There have been
reports of neuroinvasion and persistence of HHV-6 in children
with neurological complications, e.g. febrile seizures and
encephalitis (156, 157). The virus can reactivate, especially in
cases of immune deficiency, such as in acquired immune
deficiency syndrome (158). HHV-6 also has the capacity to be
inherited in a Mendelian fashion in up to one percent of the
population as chromosomally integrated HHV-6 in which the
complete HHV-6 genome is integrated into the telomere of every
chromosome (159).

HHV-6 Infection and MS
A question of interest is how HHV-6 can cause or contribute to
neuroinflammation in MS as it is considered a risk factor for MS
(160). New animal models have recently been established, mainly
for HHV-6A and reproduced some pathological features seen in
humans. Animal models have been slow to develop because
rodents lack CD46, the receptor for cellular entry of the virus. It
is hypothesized that HHV-6 can modulate the functions of the
CD46 receptor by binding to it and levels of soluble CD46 are
increased in the serum of patients with MS (161). Studies in a
CD46 transgenic murine model of HHV-6A infection described
persistent infection of the brain (162) with infiltrating
lymphocytes in periventricular areas of the brain indicative of
neuroinflammation. HHV-6A triggered chemokine and cytokine
production via stimulation of Toll-like receptor 9. The marmoset
model showed that animals inoculated intravenously with HHV-
6A exhibited neurologic symptoms, while marmosets inoculated
with HHV-6A intranasally stayed asymptomatic (163). Other
studies showed that HHV-6A can enter the CNS via the olfactory
pathway (164).

Several groups have reported the presence of HHV-6A in MS
plaques and normal-appearing white matter within the MS brain
as well as in normal controls (155, 165). A groundbreaking
report in 1995 obtained evidence that HHV-6 was a common
commensal virus of the brain expressed in neurons and glial cells
(165). Expression of HHV-6 antigens was observed in
oligodendrocytes in MS cases, but not in various controls.
Moreover, in MS patients, nuclear HHV-6 staining in
oligodendrocytes was most commonly associated with MS
plaques. These findings were later confirmed and HHV-6A
genome-containing cells, including ODCs, were detected in
biopsy specimens of acute MS lesions (166). In addition, an
association was found between HHV-6A reactivation and disease
activity in RRMS and secondary progressive MS (SPMS) (167).
The increase of the anti-HHV-6A/B IgG and IgM titers predicted
clinical relapses and highlighted their usefulness as disease
biomarker of clinical response to the different disease-
modifying treatments (DMTs) (155). In addition, increased
IgM serum antibody responses to HHV-6 early antigen (p41/
38) were detected in patients with RRMS when compared to
Frontiers in Immunology | www.frontiersin.org 10
patients with primary progressive MS (PPMS), SPMS, patients
with other neurologic disease, patients with other autoimmune
diseases, and normal controls (168).

HHV-6 and Molecular Mimicry in MS
Molecular mimicry between HHV-6 and brain proteins has been
suggested and may help understand the potential role of HHV-6
infection in the activation of autoimmunity and its implication in
the pathogenesis of MS (Table 1). Sequence similarity between
MBP residues 93-105 and the U24 protein of HHV-6 has been
identified (113). The precursor frequency of cross-reactive CD4+
T-cells recognizing peptides fromMBP and U24 were significantly
elevated in MS patients compared to healthy controls.

HHV6A has also been found to activate a HERV-K18-
encoded superantigen, which in turn activated T-cells carrying
receptors of the Vb13 family (169). T-cell clones, activated in this
way, had TCRs that recognized the immunodominant
encephalitogenic MBP peptide (residues 83-99) presented by
HLA DR2b, thereby demonstrating the potential for causing
immunopathology in HLA DR2b-positive MS patients (113).

Transactivation of EBV and HERV
by HHV-6
Transactivation can be triggered by viral proteins, also called
transactivators, which act in trans (i.e. intermolecularly) in the
same co-infected host cell. The transactivation of EBV by HHV-6
was described whereby HHV-6 upregulated the immediate-early
EBV Zebra gene transcription through a cyclic AMP-responsive
element associated with the Zebra gene (170, 171). Additional
studies showed that HHV-6 variant A, but not variant B, infected
EBV+ve B-cells activated the endogenous latent EBV genome
through a BZLF-1-dependent mechanism (172).

HHV-6A also transactivated other viruses. HHV-6A and
HHV-6B induced transcriptional activation of the endogenous
retroviral superantigen HERV-K18 (169, 173). An interesting
recent study reported that HHV-6A increased the expression the
envelope protein of a pathogenic version of HERV-W in human
glial cell lines, supporting the hypothesis that HHV-6 infection
may promote neuroinflammation (174).
HUMAN ENDOGENOUS RETROVIRUS W

A Brief Description on HERVs
Human endogenous retroviruses (HERVs) are remnants of
ancient RNA viruses that have DNA copies of their genome
incorporated into the human genome (175). HERVs compose
approximately 8% of human DNA, although many HERVs have
undergone loss of function mutations in critical genes or become
highly truncated (176, 177). The possible roles of different HERV
family members in MS have been comprehensively reviewed
recently, including how immune activation, inflammation, and
oxidative stress can influence the transcription of HERV genes
(178). HERV-W family members have particularly attracted
attention. Among the 13 HERV-W loci with full-length env
genes coding for viral envelope proteins in the human genome
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(179), only a single gene located in chromosome 7q21.2 and
coding for Syncytin-1 has an uninterrupted open reading frame.
Syncytin-1 has evolved or undergone exaptation to perform an
important fusogenic function in human placentation in the fusion
of cytotrophoblasts to form the placental syncytiotrophoblast
(180). Another HERV env protein termed Syncytin-2 from a
different HERV family, HERV- FRD, has also been similarly
exapted to play an essential fusogenic role in forming the
placental syncytiotrophoblast (181).

HERV-W Envelope Proteins and MS
An MS-associated retrovirus termed MSRV, also a member of the
HERV-W family, has been particularly implicated in MS because
virus particles and reverse transcriptase activity were detected in MS
patients (182). MSRV env protein has been found to be present in
microglia associated with myelinated axons in MS lesions, and
implicated in inflammatory myelin and neuron damaging activity
by microglia in vitro (183). A humanized IgG4 monoclonal
antibody to MSRV env has been reported in a clinical trial to
show a neuroprotective effect in RRMS (184). MSRV env has also
been detected in macrophages, astrocytes and infiltrating
lymphocytes within lesions (185). The MSRV env is 87% identical
to Syncytin-1 in amino acid sequence by BLAST analysis (95), and
to clearly differentiate the two proteins and their origins, which has
in the past caused confusion in the literature, MSRV is now referred
to as pathogenic HERV-W or pHERV-W (183). The genomic
origin of the pHERV-W env protein remains a puzzle in view of the
absence of a full-length gene for a HERV-W env protein other than
Syncytin-1. However, it has been proposed that pHERV-W env
may be derived from a HERV-W gene on the X chromosome at
Xq22.3, which has a premature stop codon at position 39, through a
process of somatic mutation or trans-splicing (186).

HLA Class II DR2b (composed of the DRB1*1501 b chain
that pairs with a relatively invariant DRA1*0101 a chain) is the
strongest genetic risk factor for multiple sclerosis (187). pHERV-
W env, Syncytin-1 and Syncytin-2 on one hand and the three
myelin proteins that are principal targets of an autoimmune
response in multiple sclerosis (MBP, PLP and MOG) showed
sequence similarities between potential Th cell epitopes within
pairs of viral and myelin peptides predicted to bind HLA DR2b
(95). A set of the sequence homologous peptides from pHERV-
W env, Syncytin-1, Syncytin-2, and MOG were shown to bind to
HLA DR2b molecules in an in-vitro assay (102). These results
were consistent with a molecular mimicry hypothesis (95, 102)
that brings together the genetic (i.e. HLA) and viral (i.e. HERV-
W) factors that influence susceptibility to MS (Table 1).
Furthermore, it is speculated that EBV may provide the
necessary immune activation and inflammatory stimuli that
permits transcription of the pHERV-W env gene (95, 102),
and also that the EBV protein EBNA-1 may provide the trans-
splicing activity needed to synthesize the full-length pHERV-W
env protein (102). It has also been postulated that HHV-6 may
synergize with pHERV-W to initiate MS (174).

Syncytin-1, Syncytin-2, and MS
Syncytin-1 binds to the Na-dependent amino acid transporter-1
and -2 (ASCT1 and ASCT2) (188), which are also expressed in
Frontiers in Immunology | www.frontiersin.org 11
neurons and glia (189). It has been suggested that Syncytin-1
expression increases in monocytes during infections and MS
relapses, two conditions reflecting inflammation (119). Syncytin-
1 has been reported to be up-regulated in activated lymphocytes,
monocytes, and effector NK cells, suggesting a role in the first
steps of immune cell activation (119). However, these studies
used a commercial antibody against an unknown peptide of
unspecified length from the N-terminus of the Syncytin-1
protein, and it is possible that this antibody recognizes
pHERV-W env instead of Syncytin-1 in the targeted tissues
because of the 87% amino acid sequence identity between the
two proteins. Therefore, further clarification is needed on
whether these studies (119) detect and differentiate pHERV-W
env and Syncytin-1.

However, the immunological role of potential MOG-cross-
reactive Th cell epitopes potentially present in Syncytins-1 and -2
are an enigma that needs resolution. It is possible that these
epitopes in these two ‘natural’, and therefore potentially
tolerogenic, human proteins may have an immune regulatory
role in preventing molecular mimicry-led immune damage. The
87% amino acid sequence identity between Syncytin-1 to
pHERV-W env and the 38% amino acid sequence identity
between Syncytin-2 and pHERV-W env by BLAST analysis
make further study of Syncytin-1 and -2 important. Both
Syncytins-1 and -2 functions have immunosuppressive
functions (190). Syncytin 2 decreased Th1 cytokine production
(191), and Syncytin-1 inhibited production of TNF-a, IFN-g, and
CXCL10 (192). However, such immunosuppressive functions
have not been demonstrated for pHERV-W env, which instead
shows inflammatory properties (183, 185, 192). The basis for the
differences in immunological properties of three homologous
proteins pHERV-W env, Syncytin-1 and Syncytin-2, however,
remain to be fully elucidated. Differences in fusogenic functions
are related to differences in amino acid sequences because only
Syncytin-1 and Syncytin-2, and not pHERV-W env, have
sites for cleavage by the protease furin that is necessary for
initiating membrane fusion of cytotrophoblasts to form
syncytiotrophoblasts in the placenta (190). The putative 16-
amino acid immunosuppressive domain of Syncytin-1 differs
from the corresponding sequence in pHERV-W env by a
charge-altering glutamic acid to lysine change (102) that may
eliminate immunosuppression. Differential binding of
monoclonal antibodies to Syncytin-1 and pHERV-W env
demonstrate antigenic differences and there also differences in
membrane localization and oligomerization properties of the two
proteins (193). Furthermore, Syncytins 1&2 are mainly expressed
in the developing placenta and are also present as components of
placental exosomes formed in a tolerogenic environment, while
pHERV-W env is known to be produced in an inflammatory
environment in the CNS (183, 185). These differences between
the two Syncytins and pHERV-W env may be pertinent to
their varying roles in the etiology of MS, and require
further investigation.

pHERV-W and MS
As virus particles displaying reverse transcriptase activity,
pHERV-W has been particularly implicated in MS (194–196).
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It has been shown that the expression of the pHERV-W env gene
product is significantly elevated in brain lesions in MS plaques
and associated with the extent of active demyelination and
inflammation (171, 172, 174, 175). pHERV-W can induce T-
cell responses and pro-inflammatory cytokines release (197,
198). Sequencing pHERV-W in MS prompted the initial link
between the HERV-W family and MS (199). pHERV-W
mediates T-cells to cause neuropathology in-vivo (200). The
HERV-W gene at Xq22.3 has been suggested as the potential
cause for the higher prevalence of MS in women. However, the
reported role of pHERV-W load in peripheral blood
mononuclear cells (PBMCs) as a biomarker for MS needs
more investigation (201).

During efficacious therapy with IFN-b, a longitudinal
evaluation of patients revealed that viremia fell rapidly below
detection limits; notably however, one patient, after initial
clinical and virological benefit, had pHERV-W rescue,
preceding strong disease progression and therapy failure
(202). It was suggested that the evaluation of plasma pHERV-
W could be considered the first prognostic marker for the
individual patient to monitor disease progression and therapy
outcome (203). A study of patients with optic neuritis, a disease
frequently prodromic to MS, makes this possibility stronger as
patients had significantly higher pHERV-W positivity than
control groups (203).

Approaches Targeting pHERVs MS
One approach focusing on the postulated role of pHERV-W in
the etiology of MS has been to initiate clinical trials with
temelimab, an IgG4 humanized monoclonal antibody against
the proinflammatory pHERV-W env (184, 204). Additional
first attempts have been made in a clinical study with the HIV
integrase strand inhibitor, raltegravir, which did not impact on
disease activity but found interesting correlations between
HERV-W markers, EBV shedding and new MRI lesions,
independent from treatment effects (205). Other attempts are
being made to induce tolerance and/or induce regulatory T-
cells in MS, against specific encephalogenic peptide epitopes.
Tolerogenic dendritic cells pulsed with peptides shown promise
in preliminary clinical trials (206). Novel approaches have
shown promise in mouse models of EAE for inducing
regulatory CD8+ T cells (207) and regulatory CD4+T
cells (208).
THE INFLAMMATORY CASCADE IN
MS PATHOGENESIS

Our understanding of the underlying immunopathology of
MS is still incomplete. We propose that EBV, pHERVs and
HHV-6A are part of an inflammatory cascade with mimicry-
driven autoimmunity contributing to the pathogenesis of MS
in genetically susceptible individuals (Figure 1). Based on the
strong epidemiological link between EBV and MS our
hypothesis predicts a leading pathogenic role for EBV and
its products (Figure 2) in triggering CNS-localized
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inflammatory lesions characteristic of MS. This is paralleled
by endogenous virus reactivation and interaction between the
3 viruses within and beyond the CNS-proximal immune
system and points to testable pathogenic parameters and
targeted treatment options.

In summary: EBV-infected B-cells in Latency-I programme
circulate in blood and home to head and neck lymphoid tissues
near the CNS, especially to meninges or brain lymphatics linked
to Ring of Waldeyer lymphoid system, including tonsils (209–
211). The EBV genome gets activated during passage through
these lymphoid structures to replicate and produce new Lat-II/III
B-cells (proliferative blast stage) that switch to the resting stage
again (Lat-I/-0) when leaving lymphoid structures and re-
entering the circulation (25). However, defined epigenetic
triggers including hormonal stress factors, other infections
(bacterial or viral) and related products or induced
inflammatory cytokines may lead to EBV lytic reactivation
and/or uncontrolled proliferation of EBV-infected B-cells and
release of EBV products like EBNA-1-DNA complexes and
EBER-exosomes, thus inducing or enhancing local
inflammation and antigenic cross-presentation (Figure 2).
EBV-infected B-cells are normally successfully eliminated by
EBV-specific T-cel ls , however , overstimulation and
uncontrolled proliferation may induce a state of T-cell
exhaustion as seen in infectious mononucleosis, X-linked
lymphoproliferative syndrome and HIV infection, allowing
EBV-positive B-cells to escape T-cell surveillance (8, 56, 57,
62). Overactive EBV-Lat-III B-cells may then trigger further local
inflammation and activation of endogenous pHERV-W/-K and
HHV-6A in regional virus- or cytokine-activated cell types
(lymphocytes, microglia, astrocytes and oligodendrocytes
(Figure 1). This localized inflammation impacts on the
integrity of the blood-brain barrier and facilitates translocation
of (EBV-infected) B-cells, inflammatory cytokines, exosomes as
well as anti-EBV antibodies (esp. anti-EBNA1), immune
complexes and EBV-specific immune cells.

This basically EBV-driven process may lead to the activation
of CNS-resident myeloid cells (microglia, astrocytes) into an M1-
state (2, 9) and triggering pHERVs and HHV-6 together driving
auto-reactive immune responses and damage to CNS-resident
microglia and ODCs leading to neuronal damage by targeting
and other neural self-antigens via molecular mimicry (Table 1).
By eliminating EBV from the equation (i.c. by HSCT, anti-B-cell
or anti-EBV T-cell therapy), and by inhibiting specific receptor-
driven signaling (BTK, MAPK-ERK, JAK/STAT) or inducing the
natural silencers of these signaling pathways (DUSP6), the multi-
component inflammatory cascade underlying MS may be halted
(2, 9, 210), overall reducing glia cells and astrocyte activation and
inducing myelin damage repair to ultimately restore
neural functions.
CONCLUDING REMARKS

Although gaps remain in our detailed understanding of the
etiology of MS, the role of physiological, hormonal or
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cytokine-induced stress conditions triggering reactivation of
persistent viral infections and driving aberrant innate and
adaptive antiviral immune responses in MS deserves further
attention. There is increasing evidence that an inability to
adequately control reactivating infection with EBV, pHERV-W
and HHV-6 in or near the CNS contributes to the
immunopathology in MS, with MHC-II and antigenic mimicry
enhancing the autoimmune component of MS pathogenesis.
Additional investigations will help understand the conundrum
of environmental triggers, reactivating viruses and genetic
susceptibility factors in MS.
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Endogenous Retrovirus-Encoded Syncytin-2 Contributes to Exosome-
Mediated Immunosuppression of T Cells†. Biol Reprod (2020) 102(1):185–
98. doi: 10.1093/biolre/ioz124

192. Tolosa JM, Schjenken JE, Clifton VL, Vargas A, Barbeau B, Lowry P, et al. The
Endogenous Retroviral Envelope Protein Syncytin-1 Inhibits LPS/PHA-
Stimulated Cytokine Responses in Human Blood and Is Sorted Into Placental
Exosomes. Placenta (2012) 33(11):933–41. doi: 10.1016/j.placenta.2012.08.004

193. Charvet B, Pierquin J, Brunel J, Gorter R, Quétard C, Horvat B, et al. Human
Endogenous Retrovirus Type W Envelope From Multiple Sclerosis
Demyelinating Lesions Shows Unique Solubility and Antigenic
Characteristics. Virol Sin (2021). doi: 10.1007/s12250-021-00372-0

194. Mameli G, Astone V, Arru G, Marconi S, Lovato L, Serra C, et al. Brains and
Peripheral Blood Mononuclear Cells of Multiple Sclerosis (MS) Patients
Hyperexpress MS-Associated Retrovirus/HERV-W Endogenous Retrovirus,
But Not Human Herpesvirus 6. J Gen Virol (2007) 88(Pt 1):264–74.
doi: 10.1099/vir.0.81890-0

195. Dolei A. Endogenous Retroviruses and Human Disease. Expert Rev Clin
Immunol (2006) 2(1):149–67. doi: 10.1586/1744666x.2.1.149

196. Nissen KK, Laska MJ, Hansen B, Terkelsen T, Villesen P, Bahrami S, et al.
Endogenous Retroviruses and Multiple Sclerosis-New Pieces to the Puzzle.
BMC Neurol (2013) 13:111. doi: 10.1186/1471-2377-13-111

197. Arneth B. Up-To-Date Knowledge About the Association Between Multiple
Sclerosis and the Reactivation of Human Endogenous Retrovirus Infections.
J Neurol (2018) 265(8):1733–9. doi: 10.1007/s00415-018-8783-1

198. Arru G, Mameli G, Astone V, Serra C, Huang YM, Link H, et al. Multiple
Sclerosis and HERV-W/MSRV: A Multicentric Study. Int J BioMed Sci
(2007) 3(4):292–7.

199. Grandi N, Tramontano E. HERV Envelope Proteins: Physiological Role and
Pathogenic Potential in Cancer and Autoimmunity. Front Microbiol (2018)
9:462. doi: 10.3389/fmicb.2018.00462

200. Firouzi R, Rolland A,Michel M, Jouvin-Marche E, Hauw JJ, Malcus-Vocanson C,
et al. Multiple Sclerosis-Associated Retrovirus Particles Cause T Lymphocyte-
Dependent Death With Brain Hemorrhage in Humanized SCID Mice Model. J
Neurovirol (2003) 9(1):79–93. doi: 10.1080/13550280390173328
Frontiers in Immunology | www.frontiersin.org 18
201. Perron H, Bernard C, Bertrand JB, Lang AB, Popa I, Sanhadji K, et al.
Endogenous Retroviral Genes, Herpesviruses and Gender in Multiple
Sclerosis. J Neurol Sci (2009) 286(1-2):65–72. doi: 10.1016/j.jns.2009.04.034

202. Garcia-Montojo M, Dominguez-Mozo M, Arias-Leal A, Garcia-Martinez Á,
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