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Abstract Regulation of growth and cell size is crucial for the optimization of bacterial cellular

function. So far, single bacterial cells have been found to grow predominantly exponentially, which

implies the need for tight regulation to maintain cell size homeostasis. Here, we characterize the

growth behavior of the apically growing bacterium Corynebacterium glutamicum using a novel

broadly applicable inference method for single-cell growth dynamics. Using this approach, we find

that C. glutamicum exhibits asymptotically linear single-cell growth. To explain this growth mode,

we model elongation as being rate-limited by the apical growth mechanism. Our model accurately

reproduces the inferred cell growth dynamics and is validated with elongation measurements on a

transglycosylase deficient DrodA mutant. Finally, with simulations we show that the distribution of

cell lengths is narrower for linear than exponential growth, suggesting that this asymptotically

linear growth mode can act as a substitute for tight division length and division symmetry

regulation.

Introduction
Regulated single-cell growth is crucial for the survival of a bacterial population. At the population

level, fundamental laws of growth were discussed as early as the beginning of the 20th century, and

distinct population growth phases were identified and attributed to bacterial growth (Lane-Clay-

pon, 1909; Buchanan, 1918; Monod, 1949). At the time, however, growth behavior at the single-

cell level remained elusive. This changed only over the last decade, as evolving technologies enabled

detailed measurements of single-cell growth dynamics. Extensive work was done on common model

organisms, including Escherichia coli, Bacillus subtilis, and Caulobacter crescentus, revealing that

averaged over the cell cycle, single cells grow exponentially for these species (Taheri-Araghi et al.,

2015; Mir et al., 2011; Iyer-Biswas et al., 2014; Yu et al., 2017; Godin et al., 2010).

Single-cell exponential growth is expected if cellular volume production is proportional to the

protein content (Amir, 2014), as shown to be the case for E. coli (Belliveau et al., 2020). Impor-

tantly, however, such a proportionality will only be present if cellular volume production is rate-limit-

ing for growth. Cells with different rate-limiting steps could display distinct growth behavior.

Recently, detailed analysis of the mean growth rate throughout the cell cycle revealed deviations

from pure exponential growth. For B. subtilis (Nordholt et al., 2020), a biphasic growth mode was

observed, where a phase of approximately constant elongation rate is followed by a phase of

increasing elongation rate. For E. coli, a new method provides evidence for super-exponential in the

later stages of the cell cycle (Kar et al., 2021).
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A promising candidate for uncovering strong deviations from exponential growth is the Gram-

positive Corynebacterium glutamicum. This rod-shaped bacterium grows its cell wall exclusively at

the cell poles, allowing, in principle, for deviations from exponential single-cell growth (Figure 1).

The dominant growth mode depends on the rate-limiting step for growth, which is presently

unknown for this bacterium. Non-exponential growth modes may have important implications for

growth regulatory mechanisms: while exponential growth requires checkpoints and regulatory sys-

tems to maintain a constant size distribution (Mir et al., 2011), such tight regulation might not be

needed for other growth modes.

Corynebacterium glutamicum is broadly used as a production-organism for amino-acids and vita-

mins and also serves as model organism for the taxonomically related human pathogens Corynebac-

terium diphteriae and Mycobacterium tuberculosis (Hermann, 2003; Antoine et al., 1988;

Schubert et al., 2017). A common feature of Corynebacteria and Mycobacteria is the existence of a

complex cell envelope. The cell wall of these bacteria is a polymer assembly composed of a classical

bacterial peptidoglycan (PG) sacculus that is covalently bound to an arabinogalactan (AG) layer

(Alderwick et al., 2015). Mycolic acids are fused to the arabinose and form an outer membrane like

Figure 1. Growth mode analysis for four possible rate-limiting steps for cellular volumegrowth in the apically growing C. glutamicum. Here, V is the

cellular volume, A is the cell wall area, and C tð Þ is the concentration of membrane building blocks in the cytoplasm. A constant cell width is assumed

throughout, implying dA

dt
/ dV

dt
. A fixed production capacity per unit volume is assumed for the rate-limiting steps ’cell mass production’ and ’formation of

cell wall building blocks’. For the rate-limiting step ’assembly of cell wall’, a constant insertion area at the cell poles is assumed. For an analysis of the

single-cell growth mode if cell wall building block formation is the rate-limiting step for growth, see Appendix 1. Cell mass production, specifically

ribosome synthesis, has previously been indicated as the rate-limiting step for growth in E. coli (Belliveau et al., 2020; Scott et al., 2010; Amir, 2014).

Linear growth is observed if the rate-limiting step for volume growth is the cell wall assembly (shown here in a simplified representation). The protein

DivIVA serves as a scaffold at the curved membrane of the cell pole for the recruitment of the Lipid-II flippase MurJ and several mono- and bi-

functional trans-peptidases (TP) and -gylcosylases (TG). In the process of elongation, peptidoglycan (PG) precursors are integrated into the existing PG

sacculus, which serves as a scaffold of the synthesis of the arabinogalactan-layer (AG) and the mycolic-acid bilayer (MM).
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bilayer, rendering the cell surface highly hydrophobic (Puech et al., 2001). The mycolic acid mem-

brane (MM) is an efficient barrier that protects the cells from many conventional antibiotics.

C. glutamicum’s growth and division behavior is vastly different to that of classical model species.

In contrast to rod-shaped firmicutes and g-proteobacteria, where cell-wall synthesis is dependent on

the laterally acting MreB, members of the Corynebacterianeae lack a mreB homologue and elongate

apically. This apical elongation is mediated by the protein DivIVA, which accumulates at the cell

poles and serves as a scaffold for the organization of the elongasome complex (Letek et al., 2008;

Hett and Rubin, 2008; Sieger et al., 2013; Figures 1 and 2A,B). Furthermore, a tightly regulated

division-site selection mechanism is absent in this species. Without harboring any known functional

homologues of the Min- and nucleoid occlusion (Noc) system, division typically results in unequally

sized daughter cells (Donovan et al., 2013; Donovan and Bramkamp, 2014). Lastly, the spread in

growth times between birth and division is much wider than in other model organisms, suggesting a

weaker regulation of this growth feature (Donovan et al., 2013). These atypical growth properties

suggest that this bacterium is an interesting candidate to search for novel growth modes. To reveal

the underlying growth regulation mechanisms, it is necessary to study the elongation dynamics of C.

glutamicum.

Here, we measure the single-cell elongations within a proliferating population of C. glutamicum

cells, and develop an analysis procedure to infer their growth behavior. We find that C. glutamicum

deviates from the generally assumed single-cell exponential growth law. Instead, these Corynebacte-

ria exhibit asymptotically linear growth. We develop a mechanistic model, termed the rate-limiting

apical growth (RAG) model, showing that these anomalous elongation dynamics are consistent with

the polar cell wall synthesis being the rate-limiting step for growth. Finally, we demonstrate a con-

nection between mode of growth and the impact of single-cell variability on the cell size distribution

of the population. For an asymptotically linear grower, these variations have a much smaller impact

on this distribution than they would for an exponential grower, which may suggest an evolutionary

explanation for the lack of tight regulation of single-cell growth in C. glutamicum.

Results

Measuring elongation trajectories using microfluidic experiments
To measure the development of single C. glutamicum cells over time, we established a workflow

combining single-cell epifluorescence microscopy with semi-automatic image processing. Cells were

grown in a microfluidic device. We used wild type cells and cells expressing the scaffold protein Div-

IVA as a translational fusion to mCherry. DivIVA is used as a marker for cell cycle progression, since

it localizes to the cell poles and to the newly formed division septum in C. glutamicum (Letek et al.,

2008; Donovan et al., 2013).

For the choice of microfluidic device, we deviate from the commonly used Mother Machine

(Long et al., 2013), which grows bacteria in thin channels roughly equaling the cell width. The

Mother Machine is not ideally suited for C. glutamicum growth, as the characteristic V-snapping at

division could lead to shear forces and stress during cell separation, affecting growth (Zhou et al.,

2019). Indeed, in some cases, the mother machine has been shown to affect growth properties even

in cells not exhibiting V-snapping at division, due to mechanical stresses inducing cell deformation

(Yang et al., 2018). Therefore, we instead used microfluidic chambers that allow the growing colony

to expand without spatial limitations into two dimensions for several generations (Figure 2C,D,

Materials and methods). Within the highly controlled environment of the microfluidic device, a

steady medium feed and a constant temperature of 30˚C was maintained. We extracted bright-field-

and fluorescent-images over 3-min intervals, which were subsequently processed semi-automatically

with a workflow developed in FIJI and R (Schindelin et al., 2012; R Development Core Team,

2003). For each individual cell per time-frame, the data set contains the cell’s length, area and esti-

mated volume, the DivIVA-mCherry intensity profile, and information about generational lineage

(Figure 2E–G). We used these data sets to further investigate the growth behavior of our bacterium.

Thus, using this procedure, we obtained data sets containing detailed statistics on single-cell growth

of C. glutamicum.

For subsequent analysis, the measured cell lengths were used, because of their low noise levels

as compared to other measures (Appendix 2—figure 1B). Importantly, the increases in cell length
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Figure 2. Experimental procedure and image analysis. (A, left) Phase contrast image of C. glutamicum in logarithmic growth phase, indicating the

variable size of daughter cells. (A, right) HADA labeling of nascent peptidoglycan (PG), indicating the asymmetric apical growth where the old cell-pole

always shows a larger area covered compared to the new pole. The labeling also reveals the variable septum positioning; Scale bar: 2 mm (B) Schematic

showing the generation-dependent sites of PG synthesis in C. glutamicum, including the maturation of a new to an old cell-pole. (C) Illustration of the

microfluidic device for microscopic monitoring of a growing colony. (D) Example screen-shot of the developed method to extract individual cell cycles

from a multi-channel time-lapse micrograph. The left panel shows a merging of the bright-field channel and the mCherry-tagged DivIVA together with

an individual ID# that is assigned to cells right after division. The black dots in the right panel indicate the new cell pole. (E) Example of an extracted

individual cell cycle from birth (left) until prior to division (right), showing the bright-field (top), the orientation (middle) and the localization of mCherry-

tagged DivIVA (bottom). (F) Example of the developed single cell analysis algorithm, measuring the length according to the cell’s geometry, as well as

the cell’s area and the septum position relative to the new pole. (G) Dendrogram providing the rationale for identification of single cells in a growing

colony.
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are proportional to the increases in cell area (Appendix 2—figure 1A), suggesting that cellular

length increase is also proportional to the volume increase. This proportionality is expected since

the rod-shaped C. glutamicum cells insert new cell wall material exclusively at the poles, while main-

taining a roughly constant cell width over the cell cycle (Schubert et al., 2017; Daniel and Erring-

ton, 2003).

Population-average test suggests non-exponential growth for C.
glutamicum
A standard way of characterizing single-cell bacterial growth, is to determine the average relation

between birth length lb and division length ld (Amir, 2014). For C. glutamicum, we find an approxi-

mately linear relationship between these birth and division lengths, with a slope of 0.91±0.16

(2xSEM, Figure 3A). This indicates that on a population level, C. glutamicum behaves close to the

adder model, in which cells on average grow by adding a fixed length before dividing (Jun and

Taheri-Araghi, 2015; Amir, 2014).

To investigate the growth dynamics from birth to division, we first tested if our cells conform to

the generally observed exponential mode of single-cell growth. To this end, we applied a previously

developed analysis on bacterial elongation data (Logsdon et al., 2017), by plotting ln ld

lb

� �

versus the

growth time (Figure 3B). For an exponential grower, with the same exponential growth rate a for all

cells, the averages of ln ld

lb

� �

per growth time bin are expected to lie along a straight line with slope

a intersecting the origin. By contrast, there appears to be a systematic deviation from this trend,

with cells with shorter growth times lying above this line and cells with longer growth times lying

below it, suggesting non-exponential elongation behavior. However, the significance and implica-

tions of these deviations for single-cell growth behavior are not clear from this analysis. There are

several quantities that could be highly variable between cells that are averaged out in this represen-

tation, such as possible variations in exponential growth rate as a function of birth length, or varia-

tions in growth mode over time. Furthermore, it was recently shown that exponentially growing cells

can appear non-exponential with this test in the presence of noise in the exponential growth rate

(Kar et al., 2021). Thus, a more detailed analysis of the growth trajectories is needed to rule out

exponential growth, and to quantitatively characterize the growth dynamics.

Figure 3. Population-level and single-cell level growth analysis. (A) Birth length lb plotted against division length ld for all measured cells, together with

a linear fit (blue line), which has a slope of 0.91±0.16. Gray solid line: best fit assuming a pure sizer (slope 0). Gray dashed line: best fit assuming a pure

adder (slope 1). The 95% confidence intervals of the linear fit, obtained via bootstrapping, are indicated by the blue shaded region. (B) Generation time

versus ln ld

lb

� �

for all cells (blue dots) and the average per generation time (orange squares), with the standard error of the mean shown for all generation

times for which at least three data points are available. The orange line represents a linear fit through the generation time averages that passes through

the origin. For exponential growth, the averages would lie along this line, and the slope would be equal to the exponential growth rate. (C) Growth

trajectory for a single cell (upper panel), together with its derivative for each measurement interval (lower panel). Fits to the derivative are shown for

linear growth (black dash-dotted line) and exponential growth (red dashed line).
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The variability of key growth parameters is not easily extracted from individual growth trajectories

due to the inherent stochasticity of the elongation dynamics and measurement noise (Figure 3C). In

fact, it has been estimated that to distinguish between exponential and linear growth for an individ-

ual trajectory, the trajectory needs to be determined with an error of ~6% (Cooper, 1998). Distin-

guishing subtler growth features may require an even higher degree of accuracy, which is presently

experimentally unavailable (Appendix 3). Therefore, an analysis method is needed that is less noise-

sensitive than an inspection of the single-cell trajectories, but simultaneously does not average out

potentially relevant growth features such as time-dependence and birth length variability.

Figure 4. Average elongation curve inference procedure. (A) For each cell, the length L tð Þ at different times t since birth is plotted as a function of birth

length lb. A linear fit of the resulting ‘wave front’ is performed for each time t. This allows us to determine average cell length L t; lbð Þ at time t as a

function of birth length lb. (B) 3D representation of the inference method of average length trajectories, with the added length L t; lbð Þ � lb on the z-axis.

Elongation trajectories for individual cells are indicated in gray, linear fits through all cell lengths at each timestamp are indicated by green lines. The

orange lines represent four sample average length trajectories, obtained by connecting all values of the green lines associated with one birth length.

Dotted lines represent regimes where averages are biased due to dividing cells. (C) Average elongation trajectories obtained from the fits shown in (A)

for a range of birth lengths, starting at 1.9 mm with steps of 0.1 mm (solid lines). The dashed lines represent regions where the inferred elongation

curves are biased due to dividing cells, and are excluded from subsequent analysis. (D) Cumulative fraction of cells divided as a function of grow time.

(E) Elongation trajectories for cells with birth lengths close to 2.5 mm (purple dashed lines) and birth lengths close to 2.1 mm (black dashed lines)

together with their respective inferred average trajectories (purple solid line and black solid line).
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Growth-inference method yields average elongation rate curves
To obtain quantitative elongation rate curves as a function of time and birth length, despite the high

degree of individual variation, we developed a data analysis procedure that exploits the noise-reduc-

ing properties of multiple-cell conditional averaging. The key idea is to obtain an average depen-

dence of the cellular length L t; lbð Þ on the time t since birth and birth length lb, by first obtaining the

average dependence of L t; lbð Þ on lb for each discrete value of t individually. This yields an average

elongation curve for each birth length lb, without the need to perform inference on noisy L tð Þ single-
cell curves.

The analysis procedure is as follows. First, for all cells in our data set, we determine the time since

birth t, the cellular length L at time t, and the birth length lb: Subsequently, we relate the length at

time t to the birth length, yielding a series of scatter plots for each measurement time (Figure 4A).

Importantly, these scatterplots suggest a simple apparently linear relationship between L and lb. For

each such plot, we thus make a linear fit through the data, yielding a family of curves for each time

since birth t (Figure 4B). Higher-order fitting functions result in a negligible improvement of the

goodness-of-fit, while increasing the mean error on inferred elongation rates (Appendix 2—figure

3). Note that for both purely linear and purely exponential growth, would depend linearly on: for lin-

ear growth L t; lbð Þ ¼ at þ lb, whereas for exponential growth L t; lbð Þ ¼ lb exp atÞð (Appendix 2—fig-

ure 3). From the family of relations, we compute a series of points Lðt0; lbÞ; Lðt1; lbÞ; Lðt2; lbÞf g
yielding the average growth trajectory of a cell starting out at length lb (Figure 4C). Note, we must

remove a bias in the lb associated with each average trajectory, arising from measurement noise in

the cell lengths at birth (Appendix 4). In summary, this procedure allows us to obtain an unbiased

interference of the average elongation trajectories as a function of the cell’s birth length.

Elongation rate inference reveals asymptotically linear growth mode
Our inference approach yields the functional dependence of the average added length on growth

time and birth length. We find that the average length steadily increases initially, but levels off and

shows pronounced fluctuations for larger growth times (Figure 4C). This late-time behavior (dashed

lines in Figure 4C) is caused by decreasing cell numbers due to division events (Figure 4D), which

also introduces a bias in the averaging procedure. After the first division event, the average inferred

growth would be conditioned on the cells that have not divided yet. For a given birth length, faster-

Figure 5. Inferred average elongation rates. (A) Average elongation rates for four birth lengths (dots), for the

DivIVA-labeled cells. The 2s confidence intervals obtained by bootstrapping are indicated by the shaded areas.

Vertical dashed lines: average onset of septum formation per birth length. (B) Average elongation rate trajectories

for the wild-type cells, confidence intervals shown as in (A). Inset: average elongation trajectories as a function of

the time until division. (C) Average elongation rate trajectories for the DrodA mutant, confidence intervals shown

as in (A).
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growing cells divide earlier than slower-growing cells (Appendix 2—figure 2) causing this condi-

tional average to underestimate cellular elongation rates for the whole population after the first divi-

sion. Because our aim is to infer elongation curves that characterize the whole population, ranging

from slow to fast growers, for further analysis only the part of each trajectory before the first division

event is used (Figure 4D). Sub-population elongation curves can also be obtained that extend past

the first division event, but only if the entire analysis for these curves is performed only on these

slower-dividing cells (Appendix 2—figure 4).

We obtain elongation rate curves by taking a numerical derivative of smoothed growth trajecto-

ries (Appendix 5). To determine the associated error margins of the elongation rates, we use a cus-

tom bootstrapping algorithm (Efron, 1979). The resulting 2s bounds are shown as semitransparent

bands. Despite the high noise level of individual elongation trajectories, the inferred average elonga-

tion rates have an error margin of around 8%. Thus, our approach robustly infers average elongation

trajectories from single-cell growth data. Elongation rates of cells with larger birth length are consis-

tently higher than the elongation rates of cells with smaller birth length. Strikingly, the elongation

rate curves initially increase, but then gradually level off toward a linear growth mode (Figure 5). We

note a slight difference in the cell elongation rates between the strain expressing DivIVA-mCherry

(Figure 5A) and wild type cells (Figure 5B). Importantly, this difference does not qualitatively

change the mode of growth, but does show that a translational fusion to DivIVA tends to lower elon-

gation rates. This likely reflects a disturbance in the interaction between RodA or bifunctional PBPs

and the DivIVA-mCherry fusion protein, indicating that the DivIVA-mCherry fusion is not fully func-

tional. This is consistent with findings we reported earlier (Donovan et al., 2013).

To further test if the linear growth mode persists until division, we adapt our inference procedure

to obtain average elongation curves L t � td; ldð Þ as a function of the time until division t � td and divi-

sion length ld. The construction is analogous to that of L t; lbð Þ (Appendix 6). Calculating the corre-

sponding elongation rate curves, we find that that linear growth indeed extends until the division

time across division lengths (inset Figure 5B,SI, Appendix 6—figure 1). Note that with this construc-

tion, elongation rates become biased once t � tdj j exceeds the shortest single-cell total growth time.

Hence, for our analysis we only consider elongation rate curves until this point.

To test the performance of our proposed inference method, we simulated a population of grow-

ing cells with a presumed growth mode from which we sample cells lengths as in our experiments,

including measurement noise (Appendix 3). We ran simulations for cells performing linear growth,

exponential growth, and the growth mode inferred here for DivIVA-labeled cells (Figure 5A). We

find that our inference method is able to recover the input growth mode with high precision in all

cases (Appendix 4, Appendix 7), demonstrating the accuracy and internal consistency of our infer-

ence method.

Onset of the linear growth regime does not consistently coincide with
septum formation
A central feature of the obtained elongation rate curves is a transition from an accelerating to a lin-

ear growth mode after approximately 20–25 min (Figure 5). One possibility is that this levelling off is

connected with the onset of division septum formation. Given that the FtsZ-dependent divisome

propagates the invagination of the septum under the consumption of cell wall precursors (e.g. Lipid-

II), we hypothesized that the appearance of the additional sink for cell-wall building blocks could

lead to coincidental leveling-off of the elongation rates (Scheffers and Tol, 2015). To test this

hypothesis, we used the moment of a sharp increase in the average DivIVA-mCherry signal at the

cell center as a proxy for the moment of onset of septum formation (Appendix 2—figure 7): the

inward growing septum introduces a negative curvature of the plasma membrane, leading to the

accumulation of DivIVA (Lenarcic et al., 2009; Strahl and Hamoen, 2012). We observe that the

onset of septum formation does not consistently coincide with the moment at which the elongation

rate levels off (Figure 5A): for smaller cells, the onset of septum formation occurs much later. There-

fore, it seems implausible that the observed linear growth regime is due the septum acting as a sink

for cell-wall building blocks.
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Polar cell wall formation is the rate-limiting step for growth, leading to
a linear growth regime
To provide insight into the anomalous single-cell growth behavior, we model single-cell elongation

as being rate-limited by the apical cell wall formation mechanism. To formulate this rate-limiting api-

cal growth (RAG) model, we first consider the biochemical pathway that leads to cell wall formation

in C. glutamicum, as illustrated in Figure 1. The key process for cell wall formation in C. glutamicum

is polar peptidoglycan (PG) synthesis. PG intermediates are provided by the substrate Lipid-II, and

the integration of new material into the PG-mesh is mediated by transglycosylases (TGs) located at

the cell pole. At the TG sites, Lipid-II is translocated across the plasma membrane by the Lipid-II flip-

pase MurJ (Sham et al., 2014; Kuk et al., 2017; Butler et al., 2013). After PG building blocks pro-

vided by Lipid-II are incorporated into the existing cell wall by transglycolylation, transpeptidases

(TP) conduct the crosslinking of peptide subunits, which contributes to the rigidity of the cell wall

(Scheffers and Pinho, 2005; Valbuena et al., 2007; Schleifer and Kandler, 1972). During growth,

the area of the PG sacculus, and thus the number of TG sites, is extended by RodA and bifunctional

penicillin binding proteins (PBPs), recruited by DivIVA (Letek et al., 2008; Sieger et al., 2013).

To model this growth mechanism, we assume that the rate of new cell wall formation is propor-

tional to the number of TG sites. We describe the interaction between Lipid-II and TG sites by

Michaelis-Menten kinetics (Figure 6A). Specifically, if the cell length added per unit time is propor-

tional to the cell wall area added per unit time, we find

dL tð Þ
dt

¼ a
C tð ÞN tð Þ
KmþC tð Þ (1)

with L tð Þ the cell length at time t, C tð Þ the concentration of Lipid-II, Km the Michaelis constant for this

reaction, and a is a proportionality constant.

To gain insight into the cell-cycle-dependence of NðtÞ and CðtÞ, we made use of the cyan fluores-

cent D-alanine analogue HADA (see Materials and methods) to stain newly inserted peptidoglycan.

Exponentially growing C. glutamicum cells were labeled with HADA for 5 min before imaging. The

HADA stain will mainly appear at sites of nascent PG synthesis. As expected, HADA staining resulted

in a bright cyan fluorescent signal at the cell poles and at the site of septation. Still images were

obtained with fluorescence microscopy and subjected to image analysis (Figures 2A and

6B, Materials and methods).

We first verify that the HADA intensity profile at the cell poles can be used as a measure for the

peptidoglycan insertion rate. To do this, we assume that the HADA intensity profile has two relevant

contributions: fluorescent probe present in the cell plasma, and fluorescent probe attached to newly

inserted peptidoglycan. We use the minimum of the HADA intensity profile, consistently located

around mid-cell in non-dividing cells, as an estimate of the contribution from the cell plasma in each

cell, and subtract this from the entire cellular profile to obtain the corrected HADA profile (Appen-

dix 2—figure 8). We then define the polar regions where we use the corrected HADA intensity to

measure newly inserted peptidoglycan as the portions of the cell within 0.78 mm of the cell tips. Our

results are, however, not strongly dependent on this polar region definition (Appendix 2—figure

10). Subsequently, we compute a moving average of the corrected polar HADA intensity as a func-

tion of cell length (Figure 6C). These polar HADA intensities are approximately proportional to the

inferred average single-cell elongation rates (Appendix 8), as shown in the inset of Figure 6C. Thus,

the polar HADA intensities can be used as a measure for the cellular elongation rate. Assuming a

proportional relationship between elongation rate and peptidoglycan insertion rate, this implies the

polar HADA intensities are also approximately proportional to the peptidoglycan insertion rate.

Deviations of ~10% from proportionality within the error margins observed over the range of tip

intensities do not affect subsequent conclusions from the HADA intensity data.

Analyzing the HADA intensity profile for smaller segments within the polar region, we find that

the increase in intensity is unevenly distributed (Figure 6D). Close to the cell tip, the HADA intensity

remains approximately constant across cell lengths, whereas a linear increase over cell lengths is

seen further from the tip. Considering the implications of these measured intensities for CðtÞ and

NðtÞ within our model in Equation (1), we argue for a scenario where either CðtÞ is constant or

CðtÞ � Km. Our reasoning is as follows. From Equation (1), we see that the approximately constant

intensity at the cell tip can be produced in two ways: (1) CðtÞ � Km or CðtÞ is constant across cell
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Figure 6. Modeling of average elongation rates using HADA staining results. (A) Schematic depicting cell wall formation via Lipid-II and

transgrlycosylases (TG’s). The corresponding Michaelis-Menten equation describes the change of length over time as function of the Lipid-II

concentration C tð Þ and the number of the TG sites N tð Þ. (B) Demograph of C. glutamicum cells stained with HADA. Cell are ordered by length, with the

stronger signal oriented downwards. (C) Average elongation rate as a function of cell length (red), predicted from obtained average elongation rate

curves (Appendix 8), together with the average HADA staining intensity at the cell pole after background correction (blue). The cell pole is defined here

as the region within 0.77 mm (60 pixels) of the cell tip. The shaded regions indicate the 2XSEM bounds. For both curves, a moving average over cells

within 0.7 mm of each x-coordinate is applied over the underlying data. Inset: predicted average elongation rate versus average HADA staining intensity

(blue dots). A linear fit through the result (red line) is consistent with a proportional relationship. (D) Average HADA intensity as a function of cell length,

shown for four regions close to the cell tip. A moving average over cells within 0.7 mm of each x-coordinate is applied over the underlying data. (E-G)

Dots: average elongation rate curves as shown in Figure 5A. Solid lines: best fit of elongation model from Equation (2), which assumes constant

transglycosylase recruitment. Dashed lines: best fit of elongation model from Equation (3), which assumes an exponential increase of transglycosylase

recruitment.

Messelink, Meyer, et al. eLife 2021;10:e70106. DOI: https://doi.org/10.7554/eLife.70106 10 of 38

Research article Microbiology and Infectious Disease Physics of Living Systems

https://doi.org/10.7554/eLife.70106


lengths, and the number of transglycosylases at the tip NtipðtÞ is constant, or (2) NtipðtÞ and CðtÞ anti-
correlate in such a way to produce constant insertion.

However, we consider constant Ntip tð Þ as biologically the most plausible scenario. This is sup-

ported by noting that the concentration of Lipid-II is the same directly before and after division, such

that C tð Þ, and by implication Ntip tð Þ, is similar for the shortest and the longest cell lengths (Appen-

dix 2—figure 9). In our subsequent analysis, we will therefore assume that either C tð Þ is constant, or
C tð Þ � Km. This implies that dL tð Þ

dt
in Equation (1) is directly proportional to N tð Þ.

To derive an expression for N tð Þ, we first note that the old and new cell pole in the cell need to

be treated differently. We assume the number of polar TG-sites to saturate within one cellular life-

cycle, such that the new pole initiates with N tð Þ below saturation, while the old pole – inherited from

the mother cell – is saturated. Letting the number of TG sites increase proportional to the number of

available sites, we arrive at the following kinetic description for N tð Þ

dNðtÞ
dt

¼ b N
max�NðtÞð Þ (2)

Here, Nmax is the maximum number of sites at the cell poles, and b is a rate constant. This result,

together with Equation (1), defines our RAG model. The predicted elongation rates provide a good

fit to the experiment for all studied genotypes (Figure 6E–G), although the data appear to exhibit a

stronger inflection.

Instead of assuming a constant recruitment of TG enzymes, we can construct a more refined

model that takes TG recruitment dynamics into account. There is evidence that transglycosylase

RodA and PBPs are recruited to the cell pole via the curvature-sensing protein DivIVA (Letek et al.,

2008; Sieger et al., 2013). As shown in Lenarcic et al., 2009, DivIVA also recruits itself, leading to

the exponential growth of a nucleating DivIVA cluster. Therefore, we let the recruitment rate of TG

enzymes be proportional to the number of DivIVA proteins NDðtÞ ¼ NDð0Þegt. This results in a modi-

fied kinetic description for N tð Þ (Equation (2)):

dNðtÞ
dt

¼ begt Nmax�NðtÞð Þ (3)

This refined model can capture more detailed features of the measured elongation rate curves

(Figure 6E–G), including the stronger inflection, with an additional free parameter, g, encoding the

self-recruitment rate of DivIVA.

The central assumption of our RAG model is that the growth of the cell poles, mediated via accu-

mulation of TG enzymes, is the rate-limiting step for cellular growth. To test this assumption, we

repeated our experiment with a rodA knockout (Sieger et al., 2013). The SEDS-protein RodA is a

mono-functional TG (Meeske et al., 2016; Emami et al., 2017; Sjodt et al., 2018), whose deletion

results in a phenotype with a decreased population growth rate in the shaking-flask (Sieger et al.,

2013). The cells’ viability is nonetheless backed up by the presence of bifunctional class A PBPs

capable of catalyzing transglycoslyation and transpeptidation reactions. We expect this knockout to

lower the efficiency of polar cell wall formation, thus slowing down the rate-limiting step of growth.

Specifically, we expect the knockout of rodA to mainly affect the efficiency of Lipid-II integration

into the murein sacculus. Within our RAG model, this translates to a lowering of the cell wall produc-

tion per transglycosylase site a. This would imply elongation rate curves of similar shape for the

DrodA mutant, only scaled down by a factor aWT=aDrodA. Indeed, we observe such a scaling down of

the elongation rate curves (Figure 5C), lending further credence to our model for C. glutamicum

growth.

A striking feature observed across growth conditions and birth lengths, is the onset of a linear

growth regime after approximately 20 min (Figure 5A–C). The robustness of this timing can be

understood from the RAG model: the regime of linear growth is reached via an exponential decay of

the number of available TG sites until saturation is reached. This exponential decay makes the

moment of onset of the linear growth regime relatively insensitive to variations in Nð0Þ and N
max.

Specifically, from Equation (2), it can be shown that the difference between N tð Þ and N
max is halved

every lnð2Þb minutes, which amounts to ~8 min given fitted value of b (Appendix 9—table 1).

Finally, our RAG model makes a prediction for the degree of transglycosylase saturation of the

cell poles at birth, relative to the saturation in the linear growth regime. We find that this saturation
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is comparable between wild-type and the DrodA mutant (~65% on average), but significantly higher

for DivIVA-labeled cells (~80% on average) (Appendix 9—tables 1 and 2). Note that the percentage

of the saturation levels are relative values and do not suggest that in the DivIVA-mCherry fusion

more transglycosylase sites are present in absolute numbers.

Birth length distribution of linear growers is more robust to single-cell
growth variability
After obtaining average single-cell growth trajectories, we next asked how this growth behavior at

the single cell level affects the growth of the colony. It was shown that asymmetric division and noise

in individual growth times results in a dramatic widening of the cell-size distribution for a purely

exponential grower (Marantan and Amir, 2016). For an asymptotically linear grower, however, we

would expect single-cell variations to have a much weaker impact.

To quantify the difference between asymptotically linear growth and hypothetical exponential

growth for C. glutamicum, we performed population growth simulations for both cases. For the

asymptotically linear growth, we assumed the elongation rate curves obtained from our model. For

exponential growth, we assumed the final cell size to be given by ld ¼ lb expðaðtt þ DtÞÞ þ Dl, with a

the exponential elongation rate, tt the target growth time, Dt a time-additive noise term and Dl a

size-additive noise term. All growth parameters necessary for the simulation were obtained directly

from the experimental data (Appendix 10). From this simulation, the distribution of initial cell lengths

was determined for each scenario.

The resulting distribution of birth lengths for the asymptotically linear growth case closely

matches the experimentally determined distribution (Figure 7). By contrast, the distribution for

exponential growth is much wider, and exhibits a broad tail for longer cell lengths. This suggests a

strong connection between growth mode and the effect of individual growth variations on popula-

tion statistics. C. glutamicum has a high degree of variation of division symmetry (Appendix 10—fig-

ure 1C) and single-cell growth times, but due to the asymptotically linear growth mode, the

population-level variations in cell size are still relatively small. This indicates that linear growth can

act as a regulator for cell size.

Figure 7. Simulation of population growth for asymptotically linear and exponential growth. Left: birth length

distribution for simulated asymptotically linear growth (blue dash-dotted line), and for simulated exponential

growth (orange dashed line). For both simulations, all relevant growth parameters and distributions are obtained

directly from the experimental data. Black dots: experimental birth length distribution. Right: sample of 11 cells

from the exponential and asymptotically linear growth simulations, color coded according to length.
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Discussion
By developing a novel growth trajectory inference and analysis method, we showed that C. glutami-

cum exhibits asymptotically linear growth, rather than the exponential growth predominantly found

in bacteria. The obtained elongation rate curves are shown to be consistent with a model of apical

cell wall formation being the rate-limiting step for growth. The RAG model is further validated by

experiments with a DrodA mutant, in which the elongation rate curves look functionally similar, but

with a downward shift compared to wild type (Figure 5B,C), as expected based on our model. For

C. glutamicum, apical cell wall formation is a plausible candidate for the rate-limiting step of growth,

because synthesis of the highly complex cell wall and lipids for the mycolic acid membrane is cost

intensive and a major sink for energy and carbon in Corynebacteria and Mycobacteria

(Brennan, 2003).

An analysis of elongation rates as a function of time and birth length has previously been done in

B. subtilis by binning cells based on birth length (Nordholt et al., 2020). Applying this method to

our data set yields elongation rates averaged over cells within a binning interval (Appendix 2—fig-

ure 5). Averaging our inferred elongation rates over the same bins, we find the two methods to yield

consistent results. The binning method, however, involves a tradeoff: a smaller bin width results in a

larger error on the inferred elongation rates, whereas a larger bin width averages out all variation

within a larger birth length interval. Our method does not suffer from this binning-related tradeoff,

and it provides detailed elongation rate curves at any given birth length. In other recent work

(Kar et al., 2021), average growth rate curves were calculated as a function of cell phase. Our

method provides additional detail by extracting the dependence of elongation rate on birth length

as well as time since birth.

Our proposed growth model shares some similar features to recent experimental observations on

polar growth in Mycobacteria (Hannebelle et al., 2020). Polar growth was shown to follow ’new end

take off’ (NETO) dynamics (Hannebelle et al., 2020), in which the new cell pole makes a sudden

transition from slow to fast growth, leading to a bilinear polar growth mode. In our proposed growth

model for C. glutamicum however, the new pole gradually increases its average elongation rate

before saturating to a constant maximum. The deviation of C. glutamicum from NETO dynamics can

also be seen by comparing each of the pole intensities in the HADA staining experiment, which does

not show any signatures of NETO-like growth (Appendix 2—figure 11). It remains unclear which

molecular mechanisms produce the differences in growth between such closely related species.

However, the mode of growth described here for C. glutamicum might well be an adaption to

enable higher growth rates.

To investigate the implications of our inferred single-cell growth mode for cell-size homeostasis

throughout a population of cells, we performed simulations of cellular growth and division over

many generations. We found that our asymptotically linear growth model accurately reproduces the

experimental distribution of cell birth lengths. By contrast, a model of exponential growth predicts a

much broader distribution with a long tail for larger birth lengths. This indicates a possible connec-

tion between mode of growth and permissible growth-related noise levels for the cell. Indeed, if sin-

gle-cell growth variability is reduced by a factor 3, the distributions corresponding to both growth

modes show a similarly narrow width (Appendix 10—figure 2). However, an asymptotically linear

grower is able to maintain a narrow distribution of cell sizes even for higher noise levels, whereas for

an exponential grower this distribution widens dramatically (Figure 7).

The enhanced robustness of the length distribution of linear growers is interesting from an evolu-

tionary point of view. Most rod-shaped bacteria use sophisticated systems, such as the Min system,

to ensure cytokinesis precisely at midcell (Bramkamp et al., 2009; Lutkenhaus, 2007). Bacteria

encoding a Min system grow by lateral cell wall insertion. In contrast, rod-shaped bacteria in the

Actinobacteria phylum such as Mycobacterium or Corynebacterium species, grow apically and do

not contain a Min system, nor any other known division site selection system (Donovan and Bram-

kamp, 2014). C. glutamicum rather couples division site selection to nucleoid positioning after chro-

mosome segregation via the ParAB partitioning system (Donovan et al., 2013), and has a broader

distribution of division symmetries. We speculate that due to C. glutamicum’s distinct growth mech-

anism, a more precise division site selection mechanism is not necessary to maintain a narrow cell

size distribution.
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The elongation rates reported in this work reflect the increase in cellular volume over time. How-

ever, the increase in cell mass is not necessarily proportional to cellular volume. In exponentially

growing E. coli, the cellular density was recently reported to systematically vary during the cell cycle,

while the surface-to-mass ratio was reported to remain constant (Oldewurtel et al., 2019). It is

unknown how single-cell mass increases in C. glutamicum, but it would follow exponential growth if

mass production is proportional to protein content. This raises the question how linear volume

growth and exponential mass growth are coordinated. The presence of a regulatory mechanism for

cell mass production that couples to cell volume is implied by the elongation rate curves obtained

for the DrodA mutant. As the elongation rate is lower in this mutant, average mass production needs

to be lowered compared to the WT in order to prevent the cellular density from increasing

indefinitely.

Our growth trajectory inference method is not cell-type specific, and can be used to obtain

detailed growth dynamics in a wide range of organisms. The inferred asymptotically linear growth of

C. glutamicum deviates from the predominantly found exponential single-cell bacterial growth, and

suggests the presence of novel growth regulatory mechanisms.

Materials and methods

Key resources table

Reagent type (species) or
resource Designation Source or reference Identifiers Additional information

Gene (include species
here)

‘divIVA’; ‘rodA’ KEGG ‘cg2361’; ‘cg0061’

Strain, strain background
(Corynebacterium
glutamicum)

‘ATCC 13032’;
‘RES 167’

‘ATCC’; ‘Tauch et al.,
2002’

‘13032’;”RES 167’

Genetic reagent
(Corynebacterium
glutamicum)

‘RES 167 divIVA::divIVA-
mCherry’;”RES 167 D rodA,
divIVA::divIVA-mCherry’

‘Donovan et al., 2012’;
‘Sieger et al., 2013’

‘CDC010’;
‘BSC002’

Chemical compound, drug HADA stain Tocris Bioscience 6647/5

Software, algorithm MorpholyzerGT This paper see Materials and methods

Other CellASIC microfluidic
System

Millipore B04A

Culture and live-cell time-lapse imaging
Exponentially growing cells of C. glutamicum WT, C. glutamicum divIVA::divIVA-mCherry and C. glu-

tamicum divIVA::divIVA-mCherry DrodA respectively, grown in BHI–medium (Oxoid) at 30˚C and 200

rpm shaking, were diluted to an OD600 of 0.01. According to the manufacturer’s manual cells were

loaded into a CellASIC- microfluidic plate type B04A (Merck Milipore) and mounted on a Delta

Vision Elite microscope (GE Healthcare, Applied Precision) with a standard four-color InSightSSI

module and an environmental chamber heated to 30˚C. Images were taken in a three-minute interval

for 10 hr with a 100�/1.4 oil PSF U-Plan S-Apo objective and a DS-red-specific filter set (32% trans-

mission, 0.025 s exposure).

Staining of newly inserted peptidoglycan and visualization in
demographs
For the staining of nascent PG, 1 ml of exponentially growing C. glutamicum ATCC 13032 cells, culti-

vated in BHI–medium (Oxoid) at 30˚C and 200 rpm, were harvested, washed with PBS and resus-

pended in 25 ml PBS, together with 0.25 ml of 5 mM HADA dissolved in DMSO. The cells were

incubated at 30˚C in the dark for 5 min, followed by a two-time washing step with 1 ml PBS and

finally resuspended in 100 ml PBS. To obtain still- phase-contrast and fluorescent micrographs, 2 ml

of the cell suspension were immobilized on an agarose pad. For microscopy, an Axio Imager (Zeiss)

equipped with EC Plan-Neofluar 100x/1.3 Oil Ph3 objective and a Axiocam camera (Zeiss) was used

together with the appropriate filter sets (ex: 405 nm; em: 450 nm). For single-cell analysis and the
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visualization in demographs, custom algorithms, developed in FIJI and R (Schindelin et al., 2012;

R Development Core Team, 2003), were used. The code is available upon request.

Image analysis
For image analysis, a custom-made algorithm was developed using the open-source programs FIJI

and R (Schindelin et al., 2012; R Development Core Team, 2003). During the workflow unique

identifiers to single-cell cycles are assigned. The cell outlines are determined manually. Individual

cells per timeframe are extracted then from the raw image and further processed automatically. The

parameters length, area and relative septum position are extracted and stored together with the

genealogic information and the timepoint within the respective cell cycle. The combination of image

analysis and cell cycle dependent data structuring yields a list that serves as a base for further analy-

sis. The documented code is available at: https://github.com/Morpholyzer/MorpholyzerGeneration-

Tracker (copy archived at swh:1:rev:

d01d362ea53b9be6027f29fb85668a0ed418398a, Morpholyzer, 2021).
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Oldewurtel ER, Kitahara Y, Cordier B, Özbaykal G, Teeffelen S. 2019. Bacteria control cell volume by coupling
Cell-Surface expansion to Dry-Mass growth. bioRxiv. DOI: https://doi.org/10.1101/769786
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Appendix 1

Single-cell growth mode for apical cell wall formation as a rate-limiting
step for growth
To study growth limited by polar cell wall formation, we start by considering the Michaelis-Menten

equation describing this formation process (Main Text Equation (1)):

dL tð Þ
dt

¼ a
C tð ÞN tð Þ
KmþC tð Þ ; (A1)

with L tð Þ the cell length at time t, C tð Þ the concentration of cell wall building blocks in the cytosol,

N tð Þ the number of transglycosylases at the cell pole, Km the Michaelis constant for this reaction,

and a a proportionality constant.

In Main Text Figure 1, we consider two scenarios. (1) Abundant availability of cell wall building

blocks, that is C tð Þ � Km, and (2) scarcity of cell wall building blocks, that is, C tð Þ< Km.

A1.1 Building block insertion as a rate-limiting step for growth

In scenario (1), Equation (A1) reduces to dL tð Þ
dt

¼ aN tð Þ. In the regime of a constant number of trans-

glycosylases at the pole, this implies that dL tð Þ
dt

is constant, resulting in linear growth.

A1.2 Building block availability as a rate-limiting step for growth

In scenario (2), the dynamics of building block creation, usage, and dilution need to be considered

to determine the cellular elongation rate behavior. For the number of building blocks in the cytosol

as a function of time n tð Þ, we can write the following differential equation:

dn tð Þ
dt

¼ aV tð Þ � b
dV tð Þ
dt

: (A2)

Here, a encodes building block production rate per unit volume, and b encodes building block

usage by the cell wall formation mechanism, making use of dA tð Þ
dt

/ dV tð Þ
dt

. To connect Equation (A2) to

Equation (A1), we note that C tð Þ ¼ n tð Þ
V tð Þ. Restricting ourselves to the regime C tð Þ� Km, we can

rewrite Equation (A1) to

dV tð Þ
dt

¼ c
n tð Þ
V tð Þ ; (A3)

where we made use of dL tð Þ
dt

/ dV tð Þ
dt

: Here, c encodes the proportionality between volume increase

and the concentration of building blocks.

Combining Equation (A2) with Equation (A3), we obtain a set of coupled nonlinear differential

equations governing the time-evolution of V tð Þ: These equations have no simple analytic solution;

however, we can numerically explore the dependence of V tð Þ on the differential equation parame-

ters. To do this, we first absorb c into n tð Þ, leaving us with two free parameters and two boundary

conditions. The boundary conditions we set by imposing V 0ð Þ ¼ 1 and V 1ð Þ ¼ 2. In Appendix 1—fig-

ure 1A, we see that depending on the choice for a and b we can have either sublinear, approxi-

mately linear, or superlinear growth. This demonstrates that the single-cell growth mode is

dependent on the physiology of building block creation and depletion in the cell.
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Appendix 1—figure 1. Elongation curves assuming building block availability is the limiting step for

growth. (A) Numerically obtained solutions for V tð Þ, from the set of coupled differential equations

Equation (A2) and Equation (A3). For all solutions, V 0ð Þ ¼ 1 and V 1ð Þ ¼ 2 are imposed. (B)

Solutions as in (A), but with the additional constraint that the concentrations before and after

division are the same, i.e. C t ¼ 0ð Þ ¼ C t ¼ tdivð Þ. Solid lines: solutions for V tð Þ: Dashed lines:

corresponding dV tð Þ
dt

, which are proportional to the concentration C tð Þ per Equation (A3).

We can further constrain the solution space by demanding that the concentration of building

blocks C tð Þ ¼ n tð Þ
V tð Þ is the same at birth and division. In this scenario, the observed variation in elonga-

tion curves is smaller (solid lines Appendix 1—figure 1B), however the corresponding elongation

rates (dashed lines Appendix 1—figure 1B) still show marked qualitative differences between

parameter choices.
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Appendix 2

Supplementary figures

Appendix 2—figure 1. Comparing cell length and cell area measurements. (A) Length added versus

area added over the cell lifetime for all cells included in our analysis (blue dots), together with

averaged values at 0.2 mm intervals (orange squares) and 95% confidence intervals (orange vertical

lines). The results are consistent with a proportional relationship (orange line). (B) Histogram of the

normalized increase at first measurement interval using cell lengths (blue) and areas (orange). For

the cellular lengths, this quantity is defined as L t¼3minð Þ�L t¼0ð Þ
lbh i , whereas for the areas it is defined as

A t¼3minð Þ�A t¼0ð Þ
Abh i , with A tð Þ the area at time t and Ab the birth area. The wider distribution for the areas

suggests a higher measurement noise for this quantity. (C) Area growth rate for DivIVA-labeled cells

using estimated cell areas. The trajectories are consistent with those obtained from cell lengths

(Main Text Figure 5A).
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Appendix 2—figure 2. Mean elongation rate versus generation time for cells in four different birth

size bins. Linear fits are indicated by solid lines. As generation times within a birth size bin tend to

be shorter for faster-growing cells, the elongation rate curves obtained with our method become

biased after the first division event. This justifies only using the part of the elongation rate curves

until the first division event for further analysis.

Appendix 2—figure 3. Elongation rate curves for different orders of the wave front fit of Main Text

Figure 3A: Linear (A), quadratic (B), and cubic (C). (D) c2 of the fit of the wave front of Main Text

Figure 3A for different fitting orders, together with the mean error on the elongation rate curves.

Appendix 2—figure 3 continued on next page
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Appendix 2—figure 3 continued

The negligible improvement of the goodness-of-fit after the first order justifies the use of a linear fit

for further analysis.

Appendix 2—figure 4. Conditional elongation rate curves, conditioned on DivVIA-labeled cells that

have a generation time larger than a set cutoff value: 48 min (A), 51 min (B), 54 min (C) and 57 min

(D). The inferred elongation rate curves still display similar growth behavior to the unconditioned

population (Main Text Figure 5A), but exhibit an overall downwards shift with increasing cutoff

times. For larger cutoff times, the number of cells included decreases, resulting in larger errors on

the inferred elongation rates. The linear growth phase observed until the cutoff time for the

unconditioned population is seen to persist for longer grow times.
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Appendix 2—figure 5. Elongation rate curves obtained through a binning procedure. Cells are

divided into birth length bins, and for each bin the average length as a function of grow time is

calculated. The resulting elongation curves are smoothened according to the same procedure as the

elongation curves presented in the main text (see Appendix 5). From the smoothened elongation

curves, elongation rates are calculated as a function of grow time. Results are shown for a bin width

of 0.1 mm (A), 0.2 mm (B), 0.3 mm (C), 0.4 mm (D), where each lb indicates the center of the birth

length bin.

Appendix 2—figure 6. A linear fit through the cell lengths at each time step would be enough to

describe exponential growth (A, offset is zero for all time stamps) as well as linear growth (B, slope

is equal to 1 for all time stamps). C. glutamicum (C) matches neither of these growth modes.
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Appendix 2—figure 7. The average DivIVA-mCherry signal from the cell center over time is shown

for DivIVA-labeled cells (A) and DrodA DivIVA-labeled cells (B). The cell center is here defined as the

region between 20% and 80% of the total cell length. The onsets of septum formation, derived from

the DivIVA signal-mCherry signal, are indicated by the dashed lines; these do not consistently

coincide with the levelling off of elongation rates (Main Text Figure 5A). This is inconsistent with the

leveling off being due to a competition between polar growth and septum formation.

Appendix 2—figure 8. Calculation of corrected polar HADA intensity, illustrated for two HADA pro-

files. Solid line: HADA intensity profile. Dashed horizontal line: minimum of HADA profile. Dashed

vertical lines: boundary of polar region. Shaded area: calculated total polar intensity. Results shown

for a cell with a length of 2.3 mm (A) and 4.4 mm (B).

Appendix 2—figure 9. Average properties of wild-type cells as a function of length. Values are

shown over the range of observed lengths in the HADA staining experiment, using a moving

average with the same width (±0.7 mm) as in Main Text Figure 6C. (A) Red line: average time until

division, together with the two standard deviation bounds (red shaded area). Orange line: average

Appendix 2—figure 9 continued on next page
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Appendix 2—figure 9 continued

time since birth, together with two standard deviation bounds (orange shaded area). (B) Blue line:

average birth length for each birth length bin (blue line), together with the two standard deviation

bounds (blue shaded area).

Appendix 2—figure 10. Proportionality between average pole intensity and predicted average

elongation rate for different polar region definitions. Average elongation rate as a function of cell

length (red), predicted from obtained average elongation rate curves, together with the average

HADA staining intensity at the cell pole after background correction (blue). Results are shown for a

polar region defined to be within 0.51 mm (A) and 1.0 mm (B) of the cell tip.

Appendix 2—figure 11. Ratio of intensities between the weaker and the stronger pole of each cell

in the HADA staining experiment. Polar intensities are calculated as described in Appendix 2—

figure 8. Here, Iweak denotes the intensity of the cell pole with the weaker HADA intensity signal,

and Istrong denotes the intensity of the pole with the stronger signal. For NETO-like growth

(Hannebelle et al., 2020), a clustering of values around 0 (before new end take off) and 1 (after new

end take off) would be expected, which is not observed here.
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Appendix 3

Measurement noise estimate
To obtain an estimate for the measurement noise from our time-series growth data, we make use of

length measurements at subsequent time intervals. For short enough time intervals, the variance of

the length differences between intervals can be used as a measure of the measurement noise. How-

ever, since we expect cellular growth to also significantly contribute to this variance within the 3 min

measurement interval, we have to separate out the two contributions.

To separate out the two contributions to the variance in subsequent length measurements, we

write this variance as

Var lm tþDtð Þ� lm tð Þð Þ ¼ Var l tþDtð Þ� l tð Þð Þþ 2s2

n (A7)

with lm tð Þ the measured length at time t, l tð Þ the actual length at time t, and sn the standard devia-

tion of the measurement noise. This expression can be derived by noting that for a single elongation

trajectory, we have

lm tþDtð Þ� lm tð Þ ¼ l tþDtð Þþ �� l tð Þþ �ð Þ ¼ l tþDtð Þ� l tð Þþ
ffiffiffi

2

p
�; (A8)

with � the measurement noise. A solution for sn can be found if the functional form of

Var l tð Þ; l tþDtð Þð Þ is known, by obtaining values for multiple Dt and treating sn as a fitting parameter.

To obtain this functional form, we make use of the observed linear growth regime after ~20 min

(Main Text Figure 5). We observe that the elongation rate is approximately constant in this regime

for cells of all birth lengths, and now assume that this is also true for cells individually within this

regime. The contrary would imply that non-constant single-cell elongation rates precisely cancel out

across time and birth lengths to produce linear growth, which seems biologically implausible.

For linearly growing single cells, the standard deviation of l t þ Dtð Þ � l tð Þ is proportional to Dt,

implying that the term Var l tð Þ; l t þ Dtð Þð Þ is of the form

Var l tþDtð Þ� l tð Þð Þ ¼ cDt
2; (A9)

with c an unknown parameter. To simultaneously obtain c and sn, we fit Equation (A7) under substi-

tution of Equation (A9) to the DivIVA-labeled cell data over the regime between the onset of linear

growth (18 min, black dashed line Appendix 3—figure 1) and the first division event (36 min, gray

dashed line Appendix 3—figure 1). From this fit, we obtain the estimates sn ¼ 0.060 � 0.018 �m

and c¼ 4:5x10�5� 0:47xm2 min�2, where the error margins are determined via bootstrapping. This

value of sn is used in the correction procedure for assigned birth lengths described in Appendix 4.
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Appendix 3—figure 1. Estimation of measurement noise procedure. Blue dots: variance of lm tð Þ �
lm 0ð Þ as a function of grow time for the DivIVA-labeled cells, with lm tð Þ the measured cellular length

at grow time t. A fit of Equation (A7) under substitution of Equation (A9) (blue line) is made to the

points between the onset of linear growth (black dashed line) and the moment of first division (gray

dashed line). The value of the extrapolated fit (blue dashed line) at t=0 is equal to 2s2

n, with sn the

standard deviation of the measurement noise. The 95% confidence intervals of the model fit (blue

shaded area) are obtained via bootstrapping.
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Appendix 4

Bias correction procedure for assigned birth lengths
Before calculating average elongation rate curves, a statistical bias arising in the assignment of birth

lengths to each curve needs to be corrected for. This bias is not specific to the inference method

introduced in this paper, but arises in any procedure involving the assignment of lengths to a cells

within a population, if there is noise in the measurement of individual cell lengths.

Due to measurement noise, cells will be assigned to birth lengths that systematically differ from

their actual birth lengths. Specifically, given that the birth lengths in the population follow a symmet-

ric, unimodal distribution, cells with a measured birth length larger than the population mean will on

average be assigned a birth length that is larger than their actual length. Conversely, cells with a

birth length smaller than the population mean will on average be assigned a birth length that is

smaller.

The magnitude of the systematic deviation in the assignment of birth lengths is calculated as fol-

lows. Given that the cellular birth lengths follow a Gaussian distribution PlðlbÞ with mean �l and stan-

dard deviation sl, and the measurement noise follows a Gaussian distribution PnðDlÞ with mean 0

and standard deviation sn, the distribution of measured lengths will again be a Gaussian, with mean

�m ¼ �l and standard deviation sm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2

l
þ s2

n

q

.

For a given measured birth length lm, we now consider the probability distribution of correspond-

ing actual birth lengths Pl lbjlmð Þ. This distribution is given by

Pl lbjlmð Þ ¼ Pl lbð ÞPn lm� lbð Þ: (A4)

The product of two Gaussian distributions is again Gaussian, with a mean equal to

lbjlmh i ¼ s2

n
�l þ s2

l

R

lbPn lm� lbð Þdlb
s2
n
þs2

l

¼ s2

n
�l þs2

l
lm

s2
n
þs2

l

: (A5)

Equation (A5) thus provides the transformation needed to remove the systematic bias in the

assignment of birth lengths, and to determine the most likely birth length lb to a cell with a mea-

sured birth length lm. For an estimation of the experimental measurement noise, see Appendix 3.

For the length increase since birth, there is no systematic bias once the bias in birth length has

been removed. We can see this as follows. For each single-cell elongation trajectory, the measured

length lm tð Þ at time t is given by

lm tð Þ ¼ lb þDlt þ �; (A6)

with � the measurement noise and Dlt the length increase since birth at time t. As the measurement

noise � has a zero mean, there is no systematic bias in length increases after birth, provided that we

have an unbiased estimate for the birth length lb.

To test the derived correction procedure for assigned birth lengths, we performed a simulation of

a population of growing cells, with the length measurement subject to noise. The measurement

noise was sampled from a Gaussian, with the same standard deviation as estimated for experiment

(Appendix 3). The single-cell growth mode was chosen as an input parameter. We analyzed two

choices for input growth mode: linear (Appendix 4—figure 1A,C, dashed lines) and exponential

(Appendix 4—figure 1B,D, dashed lines), with elongation rates comparable in magnitude to mea-

sured elongation rates.
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Appendix 4—figure 1. Elongation rate inference on simulated data sets, with and without bias cor-

rection procedure for assigned birth lengths. For all panels: dashed lines: input elongation rates.

Dots: mean inferred average elongation rates, obtained by applying our inference procedure to

1000 simulated data sets. Shaded areas: 2s bounds on the inferred elongation rates. For all

simulated data sets, the measurement noise is drawn from a Gaussian distribution with a standard

deviation of 0.075 mm, matching the estimated experimental noise (Appendix 4). The population

size and birth length distribution are chosen to match those observed for the DivIVA-labeled cells.

Simulation conditions: (A) Linear input elongation rates constructed by setting l tð Þ ¼ lb þ 0:26lbt. No

bias correction procedure for assigned birth lengths is applied. (B) Exponential input elongation

rates constructed by setting l tð Þ ¼ lbe
0:26t : No bias correction procedure for assigned birth lengths

is applied. (C) Input elongation rates as in (A). The bias correction procedure for assigned birth

lengths is applied. (D) Input elongation rates as in (B). The bias correction procedure for assigned

birth lengths is applied.

For each single-cell growth mode, we applied our elongation rate inference procedure to simu-

lated cell lengths subject to measurement noise. Without correcting for a bias in assigned birth

lengths, we find a systematic deviation between inferred elongation rates and input elongation rates

in both cases (Appendix 4—figure 1A,B). With the implementation of the correction for assigned

birth lengths, the input elongation rates are, however, accurately recovered (Appendix 4—figure

1C,D).

Minor deviations from the input elongation rates can still be seen for exponentially growing cells

(Appendix 4—figure 1D), arising from applying a Gaussian smoothing to elongation curves that are

locally nonlinear due to limited time resolution. However, this effect is small compared to the uncer-

tainty on the inferred elongation rates.
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Appendix 5

Smoothing of elongation curves
We obtain elongation rate curves (Main Text Figure 5 and Figure 6C) by taking a numerical deriva-

tive of smoothed growth trajectories. For the smoothing, a Gaussian smoothing procedure was

used. In this procedure, a moving average is applied twice over groups of three subsequent time

stamps of average elongation curves. As a check of the validity of the smoothing procedure, we also

compare elongation rates before and after smoothing (Appendix 5—figure 1).

Appendix 5—figure 1. Average elongation rate curves obtained after Gaussian smoothing of the

inferred average elongation curves (dots), together with average elongation rate curves obtained

from unsmoothed average elongation curves (dashed lines).
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Appendix 6

Calculating mean elongation curves as a function of time until division
The construction of the average elongation curves L t � td; ldð Þ as a function of the time until division

t � td and division length ld is as follows. We relate the length at time t � td to the division length ld

for all cells, and use linear fits to obtain a family of curves Lt�td
ldð Þ for each t � td: From this family of

relations Lt�td
ldð Þ, we can subsequently compute L t � td; ldð Þ for any choice of ld. The resulting mean

elongation rate curves are shown in Appendix 6—figure 1.

Appendix 6—figure 1. Inferred elongation rates as a function of the time until division, shown for

DivIVA-labeled cells (A), wild-type cells (B) and the DrodA mutant (C). To obtain these curves, the

elongation rate inference procedure described in the Main Text was applied, with the modification

that L t � tdiv; ldð Þ was calculated, rather than L t; lbð Þ. This yields average elongation rate curves as a

function of division length, which are unbiased until the growth time of the shortest-lived cell (left

endpoints of the elongation rate curves). The inferred linear growth regime for later grow times

persists until division.
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Appendix 7

Testing the elongation rate inference procedure
To test our elongation rate inference procedure, we generated a simulated data set with elongation

rates as inferred by our inference procedure for DivIVA-labeled cells (Main Text Figure 5). The distri-

bution of birth lengths and division lengths of the simulated cells are taken to match the experimen-

tally observed distributions. On each simulated data point, a measurement noise as determined in

Appendix 3 is applied. On the simulated data set subject to noise, we apply the assigned birth

length correction procedure as described in Appendix 4, and subsequently apply our elongation

rate inference procedure. We find that the input elongation rates are accurately recovered (Appen-

dix 7—figure 1), demonstrating the internal consistency of our inference approach.

Appendix 7—figure 1. Recovery of inferred elongation rates from simulated growth Dashed lines:

input elongation rates, as inferred for DivIVA-labeled cells (Main Text Figure 5A). Dots: average of

elongation rates inferred from simulated growth experiment. Shaded areas: 95% confidence

intervals inferred from simulated growth experiment, obtained via bootstrapping.
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Appendix 8

Prediction of average elongation rate as a function of cell length
To calculate the predicted average elongation rates shown in Main Text Figure 6C, we make use of

our time-series data for wild-type cells, and the inferred mean elongation rates shown in Main Text

Figure 5B.

We start by calculating the time-averaged elongation rate �l0 i for each cell i in the wild-type data

set, where the prime denotes a time derivative, by dividing the length added between birth and divi-

sion by the total growth time. We then assume that the elongation rate for a cell at a time t is

approximately given by a rescaling of the population-averaged elongation rates L
0
t; lbð Þ by the time-

averaged elongation rate of the cell �l0 i. Specifically, we calculate the estimated elongation rate at

time t by

l
0
i
tð Þ ¼ L

0
t; lbð Þ

�l0 ini
Pt

i

div

t¼0
L0 t; lbð Þ

; (A10)

with ni the number of time intervals in the growth trajectory of cell i, and t
i

div its division time. For

times t later than the first population division event Tdiv, we obtain a value for L0 t; lbð Þ by extrapolat-

ing the linear growth regime, setting L
0
t; lbð Þ = < L

0
t; lbð Þ>20min<t<Tdiv .

From the ensemble l
0
i
tð Þ

� 	

of estimated elongation rates of all cells at each time since birth, we

calculate the average elongation rate as a function of cell length by taking a moving average over

the corresponding measured li tð Þf g. The standard error on the mean is calculated from the standard

deviation and the number of cells of each moving average bin.
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Appendix 9

RAG model fitting procedure
The model fits shown in Main Text Figure 6E–G are obtained via the ParametricNDSolve function in

Mathematica. The obtained parameter values are shown in Appendix 9—tables 1 and 2.

Appendix 9—table 1. Parameter values obtained by fitting Main Text Equation (2) to inferred

elongation rate curves.

The values shown in column 4 and 6 are an average over the four birth lengths of each condition.

Genotype lb [�m] b [t�1] bh i [t�1] N t¼0ð Þ
Nmax

N t¼0ð Þ
Nmax

D E

wild-type 2.1 0.088 0.085 0.67 0.62

2.3 0.068 0.62

2.5 0.093 0.62

2.7 0.089 0.58

divIVA::divIVA-mCherry 2.0 0.109 0.088 0.69 0.80

2.2 0.100 0.77

2.4 0.087 0.84

2.6 0.054 0.88

divIVA::divIVA-mCherry DrodA 1.7 0.063 0.087 0.61 0.64

1.9 0.094 0.65

2.1 0.084 0.64

2.3 0.11 0.65

Appendix 9—table 2. Parameter values obtained by fitting Main Text Equation (3) to inferred

elongation rate curves.

The values shown in columns 5 and 7 are an average over the four birth lengths of each condition.

Genotype lb [�m] b [t�1] g [t�1] <begt>t<20min [t�1] N t¼0ð Þ
Nmax

N t¼0ð Þ
Nmax

D E

wild-type 2.1 0.016 0.162 0.13 0.72 0.67

2.3 0.039 0.086 0.67

2.5 0.058 0.080 0.65

2.7 0.082 0.050 0.62

divIVA::divIVA-mCherry 2.0 0.072 0.06 0.14 0.71 0.82

2.2 0.050 0.09 0.79

2.4 0.025 0.14 0.86

2.6 0.005 0.25 0.92

divIVA::divIVA-mCherry DrodA 1.7 0.023 0.094 0.12 0.67 0.68

1.9 0.039 0.092 0.69

2.1 0.064 0.050 0.67

2.3 0.064 0.100 0.68
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Appendix 10

Population simulation method
The goal of the population growth simulations is to obtain the distribution of cellular birth lengths

assuming two different growth modes: asymptotically linear and exponential elongation. Both simu-

lations extract all necessary growth parameters and distributions from the experimental data. For

the asymptotically linear growth mode, the simulation serves as a check whether the assumed

growth mode indeed recovers the correct cellular length distribution. For the exponential growth

scenario, the simulation reveals the cellular length distribution an exponential grower would have if

it had inherent noise levels similar to C. glutamicum allowing for a fair comparison. Both simulations

start with a single cell and continue for 20 generations, after which the birth lengths of the last gen-

eration are binned and plotted. Repeated simulations with different lengths of the starting cell do

not show discernable differences.

Exponential growers
For the exponential growers, cells are assumed to elongate according to

l tð Þ ¼ lb exp atð Þ þ z tð Þ (A11)

The exponential growth rate a is chosen as the slope of the linear fit of ln ld

lb

� �

versus td that inter-

sects the origin, as shown in Main Text Figure 3B. A size-additive noise term is indicated by zðtÞ,
which will be specified below at the time of division. For a cell with a given birth length lb, the target

final length lt is determined via a linear fit of lb versus ld, as shown in Main Text Figure 3A. The tar-

get growth time tt is then given by tt ¼ 1

a
ln lt

lb

� �

. A time additive noise term Dt is added to tt according

to experimentally observed growth time variations (Appendix 10—figure 1D). Additionally, a size-

additive noise term Dl encodes the division length variation due to zðtÞ, which is also directly

obtained from experiment (Appendix 10—figure 1E).

The full expression for the division length ld is then given by

ld ¼ lbexpðaðtt þDtÞÞþDl (A12)

At division, the characteristic V-snap of C. glutamicum occurs, separating the two daughter cells.

During this V-snap, the length of the daughter cells rapidly increases: the average measured birth

length is 0.57 times the average measured division length (2.3 mm and 4.0 mm respectively), instead

of the expected ratio of 0.5. To account for this V-snap effect, we calculate the distribution of added

lengths during the V-snap. We find that the average added length depends on the division length:

longer cells add less length during the V-snap than shorter cells (Appendix 10—figure 1B). To take

this length dependence into account, we subdivide the data set into three division length bins, and

obtain a distribution of added lengths during the V-snap for each bin. When a simulated cell divides,

an added length during V-snap is randomly drawn from the distribution corresponding to its division

length.

After division, the length asymmetry of the two daughter cells is chosen by drawing a random

value from the experimentally observed division asymmetry distribution (Appendix 10—figure 1C)

corresponding to the obtained division length. This distribution is found to be narrower for the

shortest birth lengths (Appendix 10—figure 1C), thus two distributions are used.

Asymptotically linear growers
For asymptotically linear growers, cells are assumed to elongate according to

lðtÞ ¼ lb þltþgðexpð�btÞ� 1ÞþhðtÞ; (A13)

which is obtained by inserting Main Text Equation 3 into Main Text Equation 1, integrating and

grouping constant terms into l and g. An additive noise term hðtÞ is added to this to account for sin-

gle-cell variability around the inferred average growth trajectory. We assume the cells to have the
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same target final length lt as in the exponentially growing scenario, determined via a linear fit of lb
versus ld. For cells close to observed division times, the term proportional to g can be approximated

as being constant in time, simplifying the growth mode to linear growth (Main Text Figure 5A). A

time-additive noise term Dt will then act as size-additive noise and can thus be absorbed into one

additive noise term Dl, obtained from the experimental distribution of final sizes ld around the target

final sizes (Appendix 10—figure 1F). The expression for the division length is thus given by

ld ¼ lt þDl: (A14)

The division asymmetry and V-snap effect are incorporated in the same way as for the exponen-

tial grower simulation.

Appendix 10—figure 1. Input used for simulations of exponential and asymptotically linear growth.

For both simulations, a linear fit of the division length versus birth length is used to define a target

length (A). The length added during the V-snap at division is randomly drawn from the distribution

corresponding to the division length of the simulated cell (B). The experimental data is divided into

three subpopulations according to division length (red, green, and orange distributions), as the

average length added during V-snap decreases with division length (dashed lines). The asymmetry

of the daughter cells is randomly drawn from the distribution corresponding to the combined length

of the simulated daughters (C). As the asymmetry is lower for the smallest daughter cells, the

experimental data is divided into two subpopulations (red and green distributions). For the

simulation of exponential growth, two noise sources are needed as input. The time-additive noise is

randomly drawn from the distribution of deviations from target growth times (D). This distribution is

obtained from the deviations of single-cell growth times from the average of their birth length bin.

All growth variability not captured by growth time variations is calculated for four narrow birth

length bins (blue, orange, green, and red points) (E). From the distribution of deviations of added

lengths from a linear fit for each initial size bin, a size-additive noise term is randomly drawn. For the

linear growth simulation, only a single additive noise term is required, which is randomly drawn from

the distribution of deviations of cells lengths at division from the target division length (F).
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Appendix 10—figure 2. Birth length distributions as in Main Text Figure 7, but with single-cell vari-

ability in division symmetry, growth time, and (residual) length deviation reduced by a factor 3. The

second peak in the length distribution of exponential growth is attributed to the large time

deviation of one single cell seen in Appendix 10—figure 1D.
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