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Background: Psychiatric disorders have been historically classified using symptom

information alone. Recently, there has been a dramatic increase in research interest not

only in identifying the mechanisms underlying defined pathologies but also in redefining

their etiology. This is particularly relevant for the field of personalized medicine, which

searches for data-driven approaches to improve diagnosis, prognosis, and treatment

selection for individual patients.

Methods: This review aims to provide a high-level overview of the rapidly growing field

of functional magnetic resonance imaging (fMRI) from the perspective of unsupervised

machine learning applications for disease subtyping. Following the PRISMA guidelines

for protocol reproducibility, we searched the PubMed database for articles describing

functional MRI applications used to obtain, interpret, or validate psychiatric disease

subtypes. We also employed the active learning framework ASReview to prioritize

publications in a machine learning-guided way.

Results: From the 20 studies that met the inclusion criteria, five used functional MRI data

to interpret symptom-derived disease clusters, four used it to interpret clusters derived

from biomarker data other than fMRI itself, and 11 applied clustering techniques involving

fMRI directly. Major depression disorder and schizophrenia were the two most frequently

studied pathologies (35% and 30% of the retrieved studies, respectively), followed by

ADHD (15%), psychosis as a whole (10%), autism disorder (5%), and the consequences

of early exposure to violence (5%).

Conclusions: The increased interest in personalized medicine and data-driven disease

subtyping also extends to psychiatric disorders. However, to date, this subfield is at

an incipient exploratory stage, and all retrieved studies were mostly proofs of principle

where further validation and increased sample sizes are craved for. Whereas results for

all explored diseases are inconsistent, we believe this reflects the need for concerted,

multisite data collection efforts with a strong focus on measuring the generalizability

of results. Finally, whereas functional MRI is the best way of measuring brain function

available to date, its low signal-to-noise ratio and elevated monetary cost make it a poor
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clinical alternative. Even with technology progressing and costs decreasing, this might

incentivize the search for more accessible, clinically ready functional proxies in the future.

Keywords: functional MRI (fMRI), personalized medicine, disease subtyping, biotypes, machine learning,

unsupervised learning, clustering, translational psychiatry

INTRODUCTION

Psychiatric Disease Prevalence
Psychiatric disorders have a long history of being classified based
solely on their associated symptoms, with the first systematic
analysis attempts dating back as far as the late 1800s (1). Since
the introduction of the Diagnostic Manual of Mental Disorders
(DSM) back in 1952 (2), and most notably since the inclusion
of operationalized criteria in 1978 in the DSM-III (3), statistics
on discrete pathological entities and their combination began to
accumulate, yielding the potential of understanding psychiatric
epidemiology in a consistent way. The last version of the DSM
manual (DSM-5), published in 2013 (4), contains 297 discrete
disorders categorized into 11 broad classes, grouped by evidence
of co-occurring symptoms. Current prevalence estimates indicate
that, on average, more than one in six individuals (17.6%) have
experienced at least one common psychiatric disorder within
the last year and almost three in ten (29.2%) during their
lifetime (5). In an attempt to assess both the severity of the
disorders and the response after individual treatment, several
standardized symptom scores have been developed, including
the Hamilton Depression Rating Scale (HAM-D) for Major
Depression Disorder and the Positive and Negative Syndrome
Scale (PANSS) for Schizophrenia, among others.

Heterogeneity and Alternatives to
Symptom-Based Diagnosis
Symptoms and clinical information can be relatively easy
to acquire, and their analysis can be useful to understand
the symptom prevalence in the population and assess the
effectiveness of treatment on a broad scale (6). They do
not, however, necessarily reflect anything about the underlying
mechanisms causing them. Furthermore, given the complexity
of the genetic and environmental factors at play, the same
set of symptoms can arise from different causes, while the
same biological causes may lead to different symptoms or
phenotypes (7, 8). This is particularly important when analyzing
the response to treatment, where the outcome is challenging
to predict based on the symptoms alone, and response to
medication is vastly heterogeneous, being treatment-resistant
variants of disease not uncommon (9). For example, current
estimates indicate that about 30 and 34% of medicated patients
diagnosed with depression and schizophrenia, respectively, do
not respond to treatment even after trying two or more drugs
(10, 11). This can be interpreted as an indication of the
underlying mechanistic heterogeneity of these symptom-defined
disorders. In light of this concern and with the advantage of
new technologies and an increasing amount of related data,
several initiatives have embarked on the quest to find data-
driven mechanistic disease definitions that may aid the issue.

One of the most important to date has been the Research
Domain Criteria (RDoC), which was introduced by the NIH
(National Institute of Health) in 2009 as a framework to guide
research projects in the understanding of mental disorders from
a combination of different perspectives, including not only self-
reported symptoms but also genomics, circuits, and behavior,
among others (12). The ideas behind these mechanistic-based
classifications have the potential of expanding our knowledge
of mental disorders themselves, advancing biomarker discovery,
and helping improve prognosis prediction and identify the best
treatments for individual patients whose overlapping symptoms
have distinct etiological causes, in a notion that is very much in
line with those of personalized medicine (13).

Functional MRI for Disease Subtyping
The idea of using multivariate pattern analysis to unravel
the heterogeneity mentioned above and unveil subgroups
of patients within already defined diseases is not new (12,
14, 15). However, the advent of massive biological related
datasets (the so-called high-throughput biology) in areas such
as genomics, transcriptomics, and proteomics, and the newly
available techniques to study the brain in a non-invasive way,
opened a whole new field of possibilities to study not only
the underlying mechanisms of symptom-related clusters but to
search for biologically defined subtypes of disease (or biotypes) as
well. Although initial hopes were put mainly on genetics, over
the years an increasing number of Genome-Wide Association
Studies (GWAS) have revealed that brain disorders tend to be
associated with a high number of genetic variants with tiny
effect sizes (16–18). Furthermore, individual genetic alterations
often overlap among symptom-defined diseases (19). While
some progress in genetic biomarkers has been made using
disease-specific polygenic risk scores (PRS), the usage of genetics
alone for determining brain disease subtypes has been mostly
elusive (20, 21). However, one of the most promising fields
to pursue this aim has been neuroimaging, with Magnetic
Resonance Imaging (MRI) as arguably its most proficient method
to date. This technique has been increasingly used to study
not only the structure of the brain (structural MRI) but also
to measure changes in the blood oxygen levels surrounding
particular regions as a proxy of neuronal activation (BOLD fMRI)
(22). One of the most prevalent uses of this technology has
been task-based fMRI, in which an experimental design matrix,
typically convolved with a mathematical function modeling the
hemodynamic response (called hemodynamic response function,
or HRF), is set to explain the observed signal using a General
Linear Model (GLM). While this approach has a substantial
amount of literature behind it and is highly flexible due to
relying on a Linear Model assumption (23), it has some
notorious drawbacks. First, the most common analyses rely
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on mass univariate tests, which statistically assess differences
in activation on each voxel separately, assuming independence
even among contiguous regions in space. Second, it depends
on an experimental task design, which, even though it can be
a powerful tool for answering specific questions, is relatively
hard to perform, difficult to generalize, and prone to habituation
(24). An alternative that gained momentum over the last two
decades has been resting-state fMRI, in which the subjects
perform no particular task. Since it was first employed in 1995
(25), this approach allowed researchers to study the relationship
between brain regions over time, which has been proven to
be a useful tool to study both functional connectivity (Resting-
State Functional Connectivity–RSFC), based on voxel correlation
and yielding undirected connectivity networks) and effective
connectivity (Resting-State Effective Connectivity–RSEC), based
on causal modeling and yielding directed connectivity networks).
Regardless of the analysis tool, most studies largely converged in
reporting multiple robust resting-state networks across the brain,
such as the primary sensorimotor network, the primary visual
network, frontoparietal attention networks, and the well-studied
default mode network (26). In addition, Seeley et al. proposed
in 2007 the concept of Intrinsic connectivity networks, which
refers to correlated brain regions that can be captured in either
resting state or task-based neuroimaging data (27). Furthermore,
recent studies interestingly show that the contribution of task
performing to an individual’s established connectivity networks
is rather small (28), suggesting the possibility of utilizing already
generated task-based fMRI data for RSFC as well (29).

The idea of the brain having stable connectivity between
its different regions that can be altered in illness has been an
influential hypothesis for disease subtyping. Given its potential
generalizability and the robustness of the obtained results
(26, 30), resting-state connectivity is currently the most used
fMRI approach for both searching for and validating distinct
mechanisms underlying brain disease, in an attempt to explain
the aforementioned vast heterogeneity.

Unsupervised Machine Learning on
Psychiatric Disease Subtyping
Automated pattern recognition (i.e., machine learning) can be
used to unveil subtypes in psychiatric disease in an unsupervised
way (i.e., without the presence of hardcoded labels indicating for
example if a disease is present or not). Given the complexity
of the data at play, this set of approaches has been proven
extremely useful in various settings and data domains, mainly
for clustering and dimensionality reduction (13, 28). While the
former deals with the process of finding subtypes in itself, the
latter encapsulates a set of methods to project the data into lower-
dimensional manifolds (31), in an attempt to reduce dataset
size while retaining the most valuable information, which can
substantially aid downstream model training.

In the case of functional MRI, unsupervised machine learning
has been extensively used given the unstructured nature of the
data. Its main uses include but are not restricted to parcellation
of the brain into discrete functional subunits (unraveling of
brain connectivity networks), the study of brain connectivity

dynamics (how those networks develop over time), and grouping
subjects according to their connectivity features (used for disease
subtyping in itself). While the first two mentioned uses fall into
the dimensionality reduction category, the third is inherent to
clustering, and it will be part of the focus of this review.

Over the years, many clustering algorithms have been
proposed. While a thorough classification of them is out of the
scope of this review, an introductory, coarse grain subdivision
of those applied in the analyzed studies, based on their general
properties, can be found in Table 1.

With Great Power Comes Great
Responsibility
While extremely useful when properly used, there are some
inherent issues to clustering that are worth discussing before
delving into the literature. For starters, clustering is in itself
an ill-defined problem (34). This means that, unlike in other
machine learning domains such as classification, there is neither
a unique well-defined solution nor a unique definition of what
a cluster is. That said, different algorithms will make different
assumptions on the data that will intrinsically lead to distinct
(although potentially overlapping) solutions. The choice may
then rely on knowing these assumptions hold on a particular
dataset, or on the empirical interpretation of a particular set
of retrieved components using external variables (such as using
fMRI to validate symptom or biomarker clusters, as will be
presented later).

In addition, many popular clustering algorithms (although
not all of them) require users to define the number of clusters
they expect beforehand (typically codenamed k). While there
are some exceptions (such as handwritten digit recognition, for
example, where there are exactly 10 classes to detect), clustering
is about understanding data, and recognizing the best number
of components to define is, in most cases, a problem in itself.
To solve it, researchers often rely on heuristics that compare the
solutions achieved within a range of different values, exploiting
a certain definition of cluster that the algorithm at hand uses.
Besides, there is no guarantee that there are clusters at all in the
data. Therefore, it is important to test the null hypothesis of no-
clusters in our setting as well. This can be done by adding k=1 to
the range of values to test or using statistical methods (35).

Last but not least, there is the problem of generalizability,
arguably one of the holy grails of machine learning as a whole.
The whole point of unveiling disease subtypes from our data is
to extend the results to at least a broader subset of the general
population. If a solution is only valid within the boundaries
of a particular study but breaks apart on different datasets, we
say that the model overfits the data it’s been trained on. To
counter this issue, it is common practice to run these algorithms
multiple times with different subsamplings of the dataset (by
removing random sets of samples using predefined schemes, such
as cross-validation, bootstrap, or Jackknife), and to assess how
much the clustering solution is affected. If clusters are highly
stable across samples (as measured by established metrics, such
as the Adjusted Rand Index or the Jaccard Index), the solution is
said to be robust (34, 36). While these approaches are extremely
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TABLE 1 | Coarse classification of clustering algorithms.

Algorithmic family Distance-based clustering Graph-based clustering Model-based clustering

Description A similarity/distance matrix between

samples is computed, and the raw

distance between samples is used for

grouping similar objects together.

The similarity/distance matrix is

thresholded to establish deterministic

connections (edges) between

samples, yielding a graph. Distance

metrics at the graph level are used for

determining clusters (called

communities)

A parameterized model (typically a

multimodal probability distribution) is

fitted to the data. Training consists of

finding the model parameters that

best model the data.

Advantages - Relatively low time complexity

- High Computing Efficiency (they

scale well to large datasets)

- Variety of highly efficient algorithms

to deal with graphs (32)

- Can capture the geometry of

complex manifolds, a feature of

interest in realistic datasets (33)

- High flexibility

- Well-defined metrics for model

selection (one can check how well

a given model fits the data using

likelihood based metrics).

- Natural approach to soft clustering

(probabilities are reported)

Limitations - Sensitive to the selected

distance metric

- Number of clusters usually needs to

be manually preset

- Low flexibility

- Time complexity increases

dramatically with the number of

edges in the graph (proportional to

the number of samples).

- Sensitive to how the graph is

constructed

- High time complexity (don’t scale

well for large datasets)

- Flexibility comes at a cost (one

must think carefully about which

type of model to apply).

Examples (mentioned across this review) K-means, Hierarchical Agglomerative

Clustering, fuzzy c-means, Spectral

clustering, Q-Factor analysis

Walktrap, Modularity maximization

(Newmann’s)

Gaussian Mixture Models (GMMs),

Variational Bayesian GMMs

useful to test generalizability inside our data distribution, further
validation steps are usually required to extend a solution to other
settings, such as contrasting results to data obtained on different
hospitals, or from different ethnicities [involving, for example,
schemes such as leave-one-site-out cross-validation and external
validation (37)]. The bottom line is: If a subtyping study aims to
draw conclusions for a certain population, generalizability to that
population should be thoroughly tested.

For a detailed review on machine learning for clinical
psychiatry with a special focus on testing generalizability, please
refer to (13, 38). For details on the existing unsupervised learning
methods for disease subtyping, see Marquand et al. (39). For
details on machine learning methods for resting-state fMRI data,
refer to Khosla et al. (26).

This review will analyze the reported use to date of fMRI
data for unveiling subtypes in several psychiatric disorders, and
as a tool for validating subtypes reported after the analysis of
other data modalities (such as symptom information, genetics, or
structural MRI). The strengths and weaknesses of each approach
will be discussed.

METHODS

This study followed the Preferred Reporting Items for Systematic
reviews and Meta-Analysis (PRISMA) statements (40). A
complete flow chart of the process is shown in Figure 1. The
research question intended to delve into was defined using
the PICo guidelines for qualitative systematic reviews (41):
What is the state of the art in the usage of unsupervised
subtyping for explaining the heterogeneity in psychiatric disease

symptomatology? What role does functional MRI play in
this process?

Search Methods for Article Retrieval
A systematic search of original articles was carried out on
the PubMed database, including all non-review articles from
the date of database creation up to 25 May 2020. The
string “(unsupervised learning OR clustering OR dimensionality
reduction OR subtyping) AND functional MRI” was entered
on the search engine to retrieve all available papers in which
functional MRI was used either for brain disease subtyping or for
validation of brain disease subtypes obtained via other methods,
which should include at least one of symptom information and
structural MRI data.

Article Filtering
All retrieved studies were downloaded and analyzed using
PubMed metadata to filter review articles (“D016428:Journal
Article”, but “D016454:Review” absent in the “publication_types”
metadata field). The remaining studies were analyzed using
the ASReview (Automatic Systematic Reviews) python package
(42). This active-learning-based recommender system trains a
classifier on the provided papers’ abstracts and presents the user
with the most relevant articles to review. While all abstracts
included in this step were carefully studied, this tool has been
proven useful for prioritization. Studies whose abstracts met
the exclusion criteria (see below) were discarded. The rest was
selected for full-text review.

Inclusion/Exclusion Criteria
We retained all original non-review studies in which functional
MRI was used either for brain disease subtyping directly or
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FIGURE 1 | Paper selection pipeline. PRISMA flowchart (represented as a

ribbon plot, which flows from top to bottom) that schematizes the employed

pipeline. A total of 144 articles were retrieved from PubMed using the string

“(unsupervised learning OR clustering OR dimensionality reduction OR

subtyping) AND functional MRI”. Two articles were included after the manual

search, yielding a total of 146 input studies. After several systematic filters,

which included the exclusion of reviews, duplicated articles, and relevance to

the defined inclusion criteria, a total of 20 articles were included in the review.

for validation of brain disease subtypes obtained via other
methods, including at least one of symptom information and
structural MRI data. Disease subtyping had to be carried out
in an unsupervised way (no labels based on prior information
except for case/controls). Precise definitions of the methods and
their validation had to be included. As, given the heterogeneity
of results, we think that cluster validation is currently one of
the most important discussion topics in the field, articles trying
to replicate or validate the results of included studies were
also incorporated.

Data Extraction for Systematic Analysis
For each article included in the final review, a set of systematically
collected pieces of information was extracted and added
as an entry to a table (see Tables 2–4). This information
includes: (a) publication year, (b) reference, (c) pathology, (d)
data domain used for clustering, (e) sample size (clustering),
(f) data domain utilized for validation/interpretation, (g)
sample size (validation/interpretation), (h) feature selection
/ dimensionality reduction algorithms utilized, (i) clustering
algorithm(s) employed, (j) cluster number selection criteria,
(k) robustness assessment, (l) inclusion of healthy controls at
clustering time1 (m) testing against continuum (null hypothesis
- absence of clustering structure in the data), (n) number of

1Both direct inclusion of healthy controls or indirect referencing to normative
samples (i.e. by clustering differences between diagnosed patients and matched
controls) were considered.

reported subtypes, (o) featured brain areas/networks that were
recovered using fMRI.

Characteristics of the Included Studies
The 20 retrieved studies were classified into one of three
categories based on the nature of the analyzed subtypes and the
usage of functional MRI (Figure 2A). The classes are: (a) fMRI
used for validation of subtypes obtained via unsupervised learning
of symptom-related data, (b) fMRI used for validation of subtypes
obtained via unsupervised learning of biomarkers other than fMRI
(including structural MRI), and (c) fMRI used for brain disease
subtyping itself. Over the next three sections, we will analyze these
three cases separately, summarizing the results that the respective
studies reported and discussing the assumptions they make and
the advantages and disadvantages that they imply.

Regarding the pathological entities under study, most of
the articles analyzed patients diagnosed with major depression
disorder and schizophrenia (35 and 30%, respectively). Psychosis,
attention-deficit/hyperactivity disorder, autism disorder, and the
consequences of early violence were also included (Figure 2B).

RESULTS

fMRI Used for Validation of Subtypes
Obtained via Unsupervised Learning of
Symptom-Related Data
The unsupervised classification of psychiatric symptoms is not
new: to our knowledge, the first papers were published back
in the 1970s (12, 14, 15). The novelty of the studies presented
here relies on interpreting and validating symptom clusters in
terms of their underlying functional mechanisms. By comparing
functional MRI data coming from patients on different clusters
(or between particular clusters and healthy controls), researchers
can potentially explain which mechanisms may be at play when
yielding distinct sets of symptoms. The following paragraphs will
explore the five papers that fall into this category.

Major Depression Disorder
In a pioneering study, Taubner et al. (43) addressed the
symptomatic heterogeneity in a cohort of 20 patients with severe
depression by clustering the personality features obtained from
the Shedler-Westen Assessment Procedure (SWAP-200). As this
assessment relies on clinical judgment rather than on a patient
questionnaire, it is usually considered less noisy than other
alternatives (44). Besides, as it is purely based on observed
symptoms, it does not rely on any theoretical assumption about
the mechanisms underlying depression.

In their setup, they applied a well-established method called
Q-Factor analysis (45) to uncover a potential clustering structure
in their data. This method aims to decompose the data matrix (of
samples by features) into different components (called “factors”).
The “Q” in the name indicates that factors refer to groups of
individuals rather than to groups of features, as is the case in
standard factor analysis. By employing an elbow method (45)
on the variance explained by their factors, researchers decided to
retain the two most prominent components in their data.
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TABLE 2 | Retrieved articles in which fMRI was used to interpret symptom-based clusters.

Publication

year

Reference Pathology Data used

for

clustering

sample size

(symptoms)

Data used

for

validation

sample size

(fMRI)

Dimensionality

reduction

Clustering Cluster

number

selection

Robustness

testing

Healthy

Controls

included

Testing

against

continuum

Reported

subtypes

Featured

brain areas/

networks

2013 Taubner et al.

(43)

MDD SWAP-200

(44)

20 task fMRI

(dysfunctional

relationships)

20 Raw features Q-Factor

analysis

(45)

variance

explained

(elbow

method)

(45)

No No No 2 orbitofrontal

cortex, ventral

striatum,

temporal

pole,

middle frontal

gyrus

2015 Geisler et al.

(46)

SCZ behavioral

and cognitive

scores

129 task fMRI

SIRP

(47)

165 PCA K-means

(36)

previous

literature (48)

No No No 4 planum

temporale,

parietal

operculum,

precuneus

cortices

2018 Dickinson

et al. (49)

SCZ PANS scores

(50, 51)

549 rsfMRI 182 Raw features GMMs

(52, 53)

BIC (35) 1,000 model

initializations

(no left-out)

No Yes 3 frontoparietal

working

memory

network

2018 Maglanoc

et al. (54)

MDD BDI–BAI

(54, 55)

1,084 rsfMRI sFC

dFC

251 Raw features GMMs

(52, 53)

BIC

(35)

100 model

initializations

(no left-out)

Yes No 5 default mode

network,

frontotemporal

network

2020 Chen et al.

(56)

SCZ PANS scores

(50, 51)

1,545 rsfMRI 84 NMF

(57)

fuzzy

C-means (58)

fuzzy

silhouette

index,

Xie/Beni

index,

partition

entropy

(31)

bootstrap

resampling,

leave-one-

site-out

cross-

validation

No Yes 2 ventromedial

frontal cortex,

temporoparietal

junction,

precuneus
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TABLE 3 | Retrieved articles in which fMRI was used to interpret biomarker-based clusters.

Publication

year

Reference Pathology Data used

for

clustering

Sample size

(symptoms)

Data used

for

validation

Sample

size (fMRI)

Dimensionality

reduction

Clustering Cluster

number

selection

Robustness

testing

Healthy

Controls

included

Testing

against

continuum

Reported

subtypes

featured

brain areas/

networks

2016 Clementz

et al. (58)

Psychosis biomarker

panels

1,872 – – PCA

(57)

K-means

(36)

GAP Statistic

(59)

Jackknife

(34)

No Yes 3 –

2016 Meda et al.

(60)

Psychosis – – rsfMRI 1,125 – – – – No – – cuneus-

occipital,

fronto-

parietal,

cerebellar-

occipital,

default mode,

bilateral

temporo-

parietal,

fronto-parietal

2018 Chen et al.

(61)

ASD sfMRI

(VBM)

356 rsfMRI 356 NMF

(57)

K-means

(36)

Silhouette

index

(62)

random

splitting (34)

Yes,

Indirectly

No 3 default mode,

frontoparietal,

cingulo-

opercular,

sensory-

motor,

occipital

2019 Kaczkurkin

et al. (63)

MDD sfMRI

(cortical

thickness)

1,141 rsfMRI 40 raw features HYDRA

(64)

Adjusted

Rand Index

(62)

cross-

validation

(34)

Yes No 3 frontal

regions, right

amygdala,

right

hippocampus
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TABLE 4 | Retrieved articles in which fMRI was used to cluster subjects into biotypes.

Publication

year

Reference Pathology Data used

for

clustering

Sample

size (fMRI)

Data used

for

validation

Sample

size

(validation)

Dimensionality

reduction

Clustering Cluster

number

selection

Robustness

testing

Healthy

Controls

included

Testing

against

continuum

Reported

subtypes

featured brain

areas/

networks

2014 Du et al. (65) SCZ functional

connectivity

93 – – Recursive

feature

elimination

K-means,

HAC

(36)

based on

previous

knowledge

algorithm

reinitialization

- no data

perturbation

Yes No 5 frontal, parietal,

precuneus,

cingulate,

supplementary

motor, cerebellar,

insular, and

supramarginal

cortices

2014 Brodersen

et al. (66)

SCZ effective

connectivity

41 PANSS

symptom

scale

41 raw features -

weights of DCM

models

VBGMM

(36)

automatic not reported Yes Yes 3 visual–parietal–

prefrontal

working-memory

network

2014 Gates et al.

(67)

ADHD effective

connectivity

80 – – raw features -

weights of DCM

models

Walktrap

(68)

automatic network

permutation

Yes Yes 5 dorsolateral

prefrontal and

frontal cortices,

intraparietal

sulcus, inferior

parietal lobule

2014 Yang et al.

(69)

SCZ functional

connectivity

51 PANSS

symptom

scale

51 raw functional

connectivity

features

maximal

clique

(70)

automatic cross-

validation

Yes Yes 2 precuneus-angular

gyri

2015 Costa Dias

et al. (71)

ADHD functional

connectivity

106 behavioral

measures

101 meta-analytic

masking

(NeuroSynth)

(72)

Walktrap

(68)

automatic random

perturbation

Yes Yes 3 nucleus

accumbens,

default mode

network

2017 Drysdale

et al. (73)

MDD functional

connectivity

220 HAM-D

scores

(symptoms)

1188 CCA (functional

connectivity -

symptoms)

(74)

HAC

(36)

CH index

(75)

random

splitting

(34) external

validation in

independent

samples

No No 4 limbic and

frontostriatal

networks

2017 Price et al.

(67)

MDD effective

connectivity

80 clinical data 80 raw features -

weights of DCM

models

Walktrap

(68)

automatic network

permutation

No Yes 2 default mode

network, dorsal

anterior cingulate

nodes

2018 Lin et al. (76) ADHD functional

connectivity

80 behavioral

measures

80 CCA (functional

connectivity -

symptoms)

(74)

K-means,

spectral

clustering

(36)

jaccard,

silhouette,

gap

- No Yes 1 default-mode,

cingulo-opercular

and subcortical

networks

2018 Tokuda et al.

(77)

MDD functional

connectivity -

biomarker

data

134 CATS score,

response to

medication

134 raw features custom

multi-view

co-clustering

automatic cross-

validation

Yes Yes 5 default mode

network, angular

gyrus node
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Furthermore, functional MRI data from an individually
tailored task paradigm using dysfunctional relationship patterns
were obtained from each patient whose data was used for
clustering, and a whole-brain correlational analysis was done
comparing the fMRI GLM parameters with the individual
values extracted within the SWAP-200 factors. This way, they
cataloged their two retrieved components as indicators of
“Depressive personality” or “Emotional-Hostile-Externalizing
Personality”, based on the analysis of the 20 SWAP-200 features
that contributed the most to their partition. Moreover, the
second component was linked to abnormal connectivity in
the orbitofrontal cortex [strongly associated with cognitive
processing and decision making (81)], the ventral striatum (a
critical component of the reward system), and the temporal pole
(involved in social emotion processing).

Even though they use simple, established methods, their
sample size may be too low to derive reliable and generalizable
conclusions. The authors call the study a hypothesis-generating
experiment that might be followed up in the future. However,
the recovery of previously reported, relevant activation networks
seems promising.

A different approach, with a larger sample size (n = 1,084),
was employed by Maglanoc et al. in 2018 (54). In this study,
researchers used symptom data derived from Beck’s depression
and Beck’s anxiety inventories (BDI and BAI, respectively) (55,
82), and combined individuals with and without a history of
depression. These scoring systems, unlike the aforementioned
SWAP-200, are self-assessed. Their reliability and competence
to discriminate between subjects with and without anxiety and
depression, however, has been extensively tested (83).

To cluster the symptom data, researchers applied a likelihood-
based approach inspired by Gaussian Mixture Models (52, 53).
One of the main advantages of this method is that it allows tuning
the most suitable number of clusters in the data with a well-
defined metric (the most common being the Akaike Information
Criterion (AIC) and the Bayesian Information Criterion (BIC)
(36)), by letting users select the solution that maximizes the
likelihood of the trained model given the data. Several drawbacks
should be considered, though, as this algorithm assumes the
data is structured in a way in which clusters of patients in
the feature space follow Gaussian distributions, which is not
necessarily the case. Moreover, this approach will always report
a solution (there is always a combination of parameters that
maximizes the likelihood given the assumptions of the model,
regardless of how good the fit to the actual data is). In this
study, although a robustness analysis is carried out and the
reported stability indices across 100 iterations are high, it is
unclear if perturbations to the data were applied at all, or if the
authors merely re-ran the algorithm on the same dataset. In the
latter case, we would recommend taking their stability claims
with caution.

Following the method described above, this study reported a
five-component solution where clusters seem to differ mainly by
disease severity. The authors noted, however, that severity alone
did not explain the retrieved components, as (in concordance
with their hypothesis) different clusters were enriched in distinct
sets of symptoms.
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FIGURE 2 | Characteristics of retrieved studies. (A) Donut plot representing the number of selected studies for each of the three defined categories: (a) fMRI used for

validation of subtypes obtained via unsupervised learning of symptom-related data, (b) fMRI used for validation of subtypes obtained via unsupervised learning of

biomarkers other than fMRI (including structural MRI), and (c) fMRI used for brain disease subtyping directly. (B) Donut plot representing the most prevalent brain

disorders that the included studies analyzed.

Finally, the authors attempted to interpret the retrieved
components using resting-state functional MRI from a subset
of the initial subjects (n = 251), from which they obtained
both dynamic and static functional connectivity networks
(dFC and sFC, respectively). While this did not lead to any
conclusion for dFC networks, significant results for two of
the clusters were found for sFC in the default mode and
the frontotemporal networks, both of which are extensively
associated with depression in the literature (84, 85).

Schizophrenia
The other three studies in this section focused on clustering
subjects with Schizophrenia. Having in mind how evident
cognitive decay is in patients with the disease (86), Geisler et al.
(46) decided in 2015 to search for subtypes on a set of 18
features derived from behavioral and cognitive scores, instead
of pure clinical variables. This built on previous research on
Schizophrenia subtyping, where it had been reported that clusters
based on pure clinical features were longitudinally unstable:
psychotic symptoms and disorganization, in particular, are highly
variable across time, which causes subjects to change labels often
when models are trained using diagnostic systems directly (48).

The dimensionality of the dataset as mentioned above (n =

129) was reduced using a linear principal component analysis
(PCA), which works by projecting the data into its subsequently
orthogonal most prominent modes of variation. A four-cluster
solution was later obtained running the K-means algorithm (39)
on the first eight components of this reduced space. While
a standard pipeline in data science, successfully applied in a
plethora of domains, researchers selected both the number of
principal components to keep and the number of clusters (as
K-means requires the user to define this beforehand) to match
previous literature (47), without a concrete analysis of how
this selection would affect their solution. In these cases, as was
suggested above for Maglanoc et al., there are several pipelines to

follow and determine the number of groups present in the data in
a systematic way (36). As many already presented unsupervised
algorithms, K-means will always report a solution for the given
number of clusters, and special care needs to be taken to avoid
subtypes that might be overfitting the dataset. Consequently,
while the authors were able to interpret their four obtained
clusters in terms of their mean feature values, it remains unclear
whether this corresponds to the optimal cluster solution in terms
of robustness and generalizability.

Once obtained, the clusters’ correlates with both structural
and task functional MRI [during a blocked working memory
paradigm called SIRP (87)] were explored and compared to
healthy controls (n = 165). This yielded specific patterns of
cortical thickness changes in the hippocampus, the lingual gyrus,
the occipital face, and Wernicke’s areas for different clusters,
all previously linked to schizophrenia in the literature (49, 88,
89). Interestingly, task fMRI correlates were found for two of
the clusters. One of them, defined by face episodic memory,
slowed processing speed, and increased verbal fluency, showed
an increased neural activity in the planum temporale [one of
the main reported brain areas for language processing (90)].
The other, defined by a deficit in general intellectual function,
was found to be correlated with increased neural activity in
the parietal operculum and precuneus cortices [both linked to
schizophrenia in the literature (91, 92)].

In 2018, Dickinson and colleagues published an article (49)
in which they attempted a different approach by clustering
data coming from the Positive And Negative Syndrome Score
(PANSS), a widely-used standardized schizophrenia-specific
symptom scale proposed by Kay et al. in 1987 (88, 89).
Using a sample of 549 individuals comprising only diagnosed
patients, they attempted unsupervised subtyping using the two-
step SPSS clustering algorithm (90, 91), which fits a likelihood-
based model to the data in a way that allows the handling
of both categorical and continuous variables in the same
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model. By minimizing the aforementioned Bayesian Information
Criterion (BIC) across different numbers of clusters (92), the
authors obtained an optimal solution with three components,
characterized as deficit (with enduring negative symptoms
and diminished emotionality), distress (with high emotionality,
anxiety, depression, and stress sensitivity), and low-symptomatic.
While the algorithmwas run 1,000 times with random reordering
of the data, no pipeline with cross-validation (leave out sample)
approach was reported. This carries the risk of biasing the
robustness estimates, as readers cannot know if the reported
clusters would hold in an even slightly different dataset.

Meanwhile, a subsample of 182 patients balanced across
clusters was exposed to functional MRI scans during a working
memory task. Here, their three components showed differential
activation of the frontoparietal working memory network,
including the right dorsolateral prefrontal (DLPFC) and left
parietal cortices, and the left anterior cingulate, all of which
had been linked to schizophrenia before (50, 51, 93). The low-
symptom group in term showed significantly greater activation
in the right DLPFC than the two more symptomatic groups, a
healthier patternmainly linked to workingmemory and cognitive
flexibility (94).

Lastly, a similar approach was followed by Chen et al. in 2020
(56). Using a bigger sample of 1,545 patients diagnosed with
schizophrenia, they used Non-Negative Matrix Factorization
(NMF) to reduce the dimensionality of patients’ PANSS score
data. NMF compresses the feature space into a user-defined
number of factors by decomposing the data into two non-
negative matrices: a basis matrix (called dictionary) with
factors as columns, and a factor-loading matrix representing
symptomatology of individual patients in the training set (57).
Besides, the algorithm imposes an orthonormality constraint that
promotes a sparse, more interpretable, representation (95). Using
this approach, the extensive PANSS data was reduced to just four
values (one per retrieved factor) per individual. These reduced
data were then clustered into two components using the fuzzy C-
means algorithm (96), which can be thought of as a soft version of
the k-means mentioned above, in which each subject is assigned
a probability of belonging to each cluster instead of a hard cluster
label only. This helps to deal with outliers, usually yielding more
robust solutions in real-world data (97).

It is important to highlight here the extensive validation
pipeline that this study, in contrast to the previously mentioned
in this section, applied in each described step. For dimensionality
reduction, we highlight that several standard factor concordance
indices (98, 99) were computed for a range of factors across
10,000 runs on random half-splits of the data. Clustering stability
was tested by subsampling, bootstrap resampling, and leave-
one-site-out replication on a deliberately heterogeneous external
sample of 490 patients recruited from nine hospitals across Asia,
Europe, and the US. In both steps of the pipeline, the most robust
solutions of four factors and two clusters were kept.

In addition, the two clusters, when projected on the
original PANSS data, were revealed to be mainly representing
patients with more prominent positive and negative symptoms
respectively. Using functional MRI data derived from a balanced
sample of 84 patients, researchers applied a Support Vector

Machine [a classification algorithm (100)] to sort subjects in both
clusters using functional connectivity features. An overall feature
importance analysis of this classifier was used to interpret the
components on the functional side, showing the ventromedial
frontal cortex, the temporoparietal junction, and the precuneus
as the most critical networks whose connectivity differed
between clusters. All of these networks have not only been
linked to Schizophrenia before but also, in concordance with
the authors’ interpretation of their clusters, to discriminating
between positive and negative symptoms (97–99).

fMRI Used for Validation of Subtypes
Obtained via Unsupervised Learning of
Biomarker Data
In this second section, we will discuss three studies (published
across four papers) in which the obtaining of biotypes was
attempted applying unsupervised learning techniques to sets
of biomarkers other than functional MRI itself. This is a
particularly important approach, born from the assumption that
different biological manifestations of disease can lead to the same
phenotypic outcome (as discussed in more detail below).

Psychosis
The first study is composed of two articles, published by
Clementz et al. and Meda et al. in 2016 (58, 60), on identifying
psychosis biotypes. While the first article deals with the obtaining
of the biotypes themselves, the second analyses their functional
correlates using resting-state functional connectivity.

The term psychosis refers to several pathologies that lead
to a deteriorated perception of reality (101). In concordance
with what was explained above, the authors claim that
different etiologies underlying psychotic symptoms do not
necessarily overlap with the available symptom-defined labels
(schizophrenia, schizoaffective disorder, and bipolar disorder
with psychosis), as symptomatic outcomes may represent the
convergence of distinct biological entities. With this in mind,
they gathered 1,872 samples from patients diagnosed with any
of these diseases (n = 711), their first-degree relatives (n = 883),
and comparable healthy subjects (n = 278). The data consisted
of biomarker panels comprising neuropsychological markers,
cognitive assessment tasks [such as stop signal and saccadic
control (101, 102)], and auditory paired stimuli and oddball
evoked brain responses assessed by electroencephalography
(EEG). Patient data were used for clustering, while relatives and
controls served for result validation. Authors further reduced
the dimensionality of their dataset by running a Principal
Component Analysis (PCA) per modality, selecting the number
of components to keep using the elbow in the variance explained
curve (92). This yielded a reduced set of 9 features, which were
fed into a K-means algorithm from which authors reported a
three-component solution. Cluster selection was carried out by
maximizing the gap statistic (59), which is higher for solutions
in which distances between data points within a cluster are
consistently smaller than distances between clusters. Cluster
robustness to perturbation was assessed via Jackknife (103),
an approach in which the model is trained as many times
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as individuals in the dataset, leaving each time a different
individual behind.

As hypothesized, cluster assignment did not merely
recapitulate the DSM derived labels: they observed that clusters
(or biotypes) differed beyond outcome severity, and manifested
distinct overall profiles, such as (1) impaired cognitive control
and low sensorimotor response, (2) impaired cognitive control but
exaggerated sensorimotor response and (3) near-normal cognitive
and sensorimotor characteristics. Furthermore, differential
cortical thickness of key brain areas was found via voxel-based
morphometry (VBM) such as the frontal, cingulate, temporal,
and parietal cortices, as well as the basal ganglia and thalamus.

In the follow-up study, individuals in an independent sample
(n = 1,125) were assigned to the already defined clusters.
When comparing patients to relatives and healthy controls,
the authors found significantly reduced functional connectivity
(both globally and across specific biotypes) in nine networks
consistent with previous reports (104–109), and with areas
known to be compromised in psychiatric disorders in general,
including cognitive control, working memory, attention and
introspective thought maintenance. Importantly, all these deficits
are claimed to track cognitive control factors more closely,
suggesting potential implications for both disease profiling and
therapeutic intervention.

The remaining two studies used structural MRI to find disease
subtypes and projected their findings into resting-state functional
connectivity data afterward.

Autism Disorder
The first of the two, published by Chen et al. in 2018 (61),
attempts to find Autism Disorder (ASD) subtypes in a sample
of 356 diagnosed patients. Taking into account the evidence of
atypical neuroanatomy within patients with ASD (110), and the
fact that subjects exhibiting different clinical symptoms showed
distinct brain structural abnormalities (111), the authors used
features extracted from a voxel-based morphometry analysis on
structural MRI. Interestingly, the clustering was not performed
on these features directly. Instead, researchers computed the
structural difference between each ASD diagnosed patient and
a set of matched healthy controls (n = 403), and then
applied the aforementioned Non-negative Matrix Factorization
algorithm for dimensionality reduction into 60 components
representing differences in brain structure between cases and
controls. By applying a simple K-means algorithm, authors were
able to retrieve a three-component solution. Cluster number
selection was carried out by maximizing the silhouette index
(62), a statistic that, as many presented already, reflects how
concentrated the values of the resulting components are within
their respective clusters. While robustness analyses were carried
out (by running the algorithm 10 times with random 80% subsets
of the data), it is worth mentioning that authors do not report
having tested the presence of clusters at all in the data (i.e.,
number of clusters equals to one).

When validating and interpreting their results, authors
first reported differences in disease severity between clusters,
as assessed by the Autism Diagnostic Observation Schedule

(ADOS) score (112). Besides, when comparing the resting-
state functional connectivity networks for each patient in each
cluster to healthy controls, they found statistically significant
differences in two of the clusters. In both cases, ASD patients
showed diminished connectivity in the default mode network,
the frontoparietal network, the cingulo-opercular network,
the sensory-motor network, and the occipital network, all
of which had been linked to autism disorder before (113–
117). While more validation studies are needed, this paper
provides evidence toward ASD not being a neuroanatomically
homogeneous disease.

Internalizing Disorders
The last study in this section focused on finding structural
subtypes in subjects with internalizing disorders, which are
characterized by anxiety, depressive, and somatic symptoms. In
this study, Kaczkurkin et al. (63) took a different approach to
disease subtyping. Instead of clustering diagnosed patients in a
fully unsupervised way, they used a semi-supervised approach
called HYDRA (64), which uses the binary case-control labels
to find different disease subtypes regarding their difference to
controls. This way, the approach is conceptually similar to the
paper by Chen et al. cited immediately above, although the
difference between cases and controls is not processed directly,
but a part of the clustering algorithm.

Thus, using HYDRA in volumetric and cortical thickness data
from 1,141 individuals (715 cases and 426 controls), they found a
two-cluster solution when maximizing robustness as assessed by
the Adjusted Rand index (ARI) during a 10-fold cross-validation
scheme (which consists of running the algorithm 10 times, each
leaving a different random tenth of the data out). In addition,
the functional connectivity of 40 subjects balanced across these
two defined categories was obtained in the frequency space (118),
which has the advantage of enabling the direct comparison of
structural and functional measures using the same atlas (119).
The functional measures reflect the average connectivity of a
particular region of interest, in this case, delimited by differential
structural features. By physically delimiting their functional
search by the structural characteristics of their clusters, authors
make the assumption that detected changes in connectivity would
be directly influenced by the changes in structure, which is a
debated concept that was not put directly in place by the studies
proposed so far (120, 121). When interpreting the retrieved
clusters, researchers reported that one of them was marked
by reduced cortical thickness, and showed impaired cognitive
performance and higher levels of psychopathology. On the
functional side, moreover, this same cluster displayed abnormal
connectivity in frontolimbic regions, which is consistent with
poorer cognitive performance as reported in the literature (122).

fMRI Used for Brain Disease Subtyping
Directly
The last results subsection will deal with studies in which
biotype obtaining was attempted from functional MRI data itself.
Eleven articles (ten original studies and a relevant replication)
comprising four disorders were included, of which ten relied
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on resting-state functional or effective connectivity and one in
a task-based setting.

Schizophrenia and Related Disorders
Starting with Schizophrenia and its related disorders, in 2014,
Du et al. (65) published an article in which the distinction
between Schizophrenia (SZ) itself, psychotic bipolar disorder
(BD), Schizoaffective disorder with depressive episodes (SADD),
and Schizoaffective disorder with manic episodes (SADM), all of
which share overlapping sets of symptoms and genetic landscapes
(123, 124), was recapitulated using functional connectivity data
clustering (65). This built upon the fact that, for all four,
differences in functional connectivity between cases and controls
had been reported, which had significantly raised the interest in
delineating the functional implications of these diseases over the
last few years (125, 126). In addition, the authors attempted to
shed light on the controversy on whether SAD is an entity in
itself or the manifestation of some degree of interaction between
SZ and BD (127). To process their data, they used Independent
Component Analysis [ICA, a standard technique for obtaining
correlated brain networks (128)] to yield functional connectivity
data from a sample of 93 subjects, balanced across all diagnosis
categories (including healthy controls).

While pioneering the use of unsupervised learning on resting-
state data, this paper illustrates one of the major issues with
feature selection in clustering (129). Given that, a priori, this
study deals with a high number of brain connectivity features
and a relatively low number of samples, the authors proceeded
to reduce the dimensionality of their data. However, instead of
using an unbiased technique such as the aforementioned PCA
or NMF, the authors fitted classifiers to discriminate between
the five classes in a supervised manner and retained the most
informative features. They accomplished this by using a standard
technique called Recursive Feature Elimination (130), which
measures how impactful the removal of certain features (in this
case brain networks) is for a classifier to distinguish between
entities. Even though they arrive at a nearly perfect 5-cluster
solution (recapitulating their original four diseases and healthy
controls), the problem arises from the fact that the features they
used were selected to overfit the classification they already had,
which makes the clustering trivial. Furthermore, we believe a
warning of caution should be raised on the final conclusion of
the study, which uses the distances between retrieved clusters
(which had been artificially maximized) as evidence to support
the hypothesis of Schizoaffective disorder being an independent
etiological entity.

Another article that dealt with dissecting the mechanistic
underpinnings of Schizophrenia and its potential subtypes was
published by Brodersen et al. in (66, 86). In this proof-of-concept
study, the authors employed Dynamic Causal Modeling (DCM)
to retrieve a directed connectivity model from a balanced sample
of 83 subjects, including diagnosed patients and healthy controls.
While they present a plethora of demonstrative approaches
in their study, here we will only discuss their unsupervised
clustering, which implicated two separate pipelines: first, authors
were able to recapitulate the classification between cases and
controls with relatively high accuracy (∼71%) using only

clustering on the whole sample. Second, and arguably more
interesting to this review, the exclusion of the healthy controls
led to a clustering solution of three components (n = 41), which
seemed to differ mainly by symptom severity, as assessed by the
aforementioned PANSS scale.

To reach these solutions, researchers applied a Variational
Bayesian Gaussian Mixture Model, a variant of the likelihood
approach presented above for Maglanoc et al. which runs
automatic cluster selection by estimating how many components
of a prior distribution are present in the data. While this
algorithm is appealing for small studies, finite Gaussian Mixture
Models as the ones presented above are still preferred in many
settings, given their lower computational complexity and their
fewer associated implicit biases (131).

While a mere pilot study where the main goal was to explore
and define a working pipeline, the authors use these results
as an argument to defend the exclusion of healthy controls
in the unsupervised learning procedure, as the likelihood of
the already-known binary factor is high (the variance in the
data might in many cases be dominated by the disease-control
distinction). However, we believe that a follow-up study should
review if these premises hold in a bigger sample, and assess how
generalizable and robust the solutions are using internal and
external validation, as was highlighted throughout the review.

A different approach was taken by Yang et al. in 2014
(69) when investigating early-onset Schizophrenia (EOS) in a
small sample of 52 individuals, balanced across medication-naïve
diagnosed patients and age and gender-matched healthy controls.
The authors used a pipeline called gRACIAR (generalized
ranking and averaging independent component analysis by
reproducibility) (132) to obtain both subject-specific functional
connectivity networks (via Independent Component Analysis)
and a meta graph concerning intersubject similarity within
each functional connectivity network. Using a maximal-clique
community detection algorithm, a clustering procedure that,
unlike all presented above, works on a graph level (70),
researchers reached a clustering solution for each of the retrieved
networks. Importantly, the similarity thresholds for drawing the
edges of the mentioned metagraph were selected based on the
average solution robustness to permutation tests during cross-
validation.

While no communities (the equivalent to clusters in graph
theory) were retrieved for the majority of the explored networks,
two of them yielded interesting results. First, a component
involving the precuneus-angular gyri (PCU-AG, associated
with the default mode network), was detected to significantly
recapitulate the case-control separation, which suggested a novel
association between these functional connectivity features and
EOS. Second, a network involving bilateral superior temporal
gyri and bilateral inferior frontal gyri yielded a solution enriched
in diagnosed patients, which seemed to recapitulate the difference
between positive and negative symptoms (as assessed for example
with the PANSS scale).

While the retrieved clusters revealed little new about the
disease substructure across subjects as a whole, this approach
allowed for the discovery of associations within networks that
had not been previously reported. Furthermore, the question
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of whether more interesting clustering solutions from an EOS
functional subtyping point of view could be retrieved with a
bigger sample size remains.

Major Depression Disorder
Shifting to Major Depression Disorder, Drysdale et al. (73)
reported in 2017 a four-cluster solution from resting-state
functional connectivity data, using a training sample of 220
diagnosed patients. For dimensionality reduction, they applied an
algorithm called Canonical Correlation Analysis (CCA), which,
instead of selecting the most prominent modes of variation in
one dataset as many of the approaches presented above (such
as PCA or NMF), takes two data modalities and returns a space
in which the correlation between them is maximized (74). In
this case, the authors decided to apply it to a combination of
the functional connectivity data, coming from fMRI, and the
subjects’ HAM-D scores [one of the most common self-assessed
symptom scales for MDD (133)]. This type of analysis can be
particularly useful for high-dimensional data where the major
components of variability are not expected to be related to the
problem at hand. In this case, the assumption is that there might
be other sources of variance, such as sex, age, brain size, etc. that
might overshadow the implications in functional connectivity
of potential MDD subtypes. This way, a transformation of the
biological data that correlates with psychiatric symptomatology
is reported, making it likely that the downstream clustering will
focus on relevant connectivity features.

After applying this pipeline, the authors retained the first
two canonical variates (which one could see as analogous to
principal components in this context) obtained fromCCA, which
they interpreted as anhedonia and anxiety-related by checking
correlation with individual symptoms. Using a Hierarchical
Agglomerative Clustering approach, they reached a four-
component solution by maximizing the so-called Calinski-
Harabasz (CH) index, a statistic similar to the Silhouette
presented before, that measures how similar a datum is to its
own cluster compared to others (75). Drysdale et al. (73), These
components lay on each of four quadrants defined by two axes,
interpreted by the authors as anhedonia and anxiety-related.
Interestingly, both clusters associated with high anxiety profiles
were linked to abnormal connectivity patterns in the frontal
amygdala [fear-related behavior and reappraisal of negative
emotional stimuli (134)] and abnormal hyper-connectivity in
the reward system was especially pronounced in anhedonia-
related clusters.

Aside from providing innovative methods and focusing
thoroughly on the generalizability of the achieved results, this
article incentivized active discussion in the field, especially after
a replication attempt published by Dinga et al. in 2019 (78).
When failing to reproduce the original results after applying
nearly the same pipeline on a smaller independent cohort of
187 diagnosed individuals, the authors highlighted potential
statistical weaknesses in the original study.

First, they claimed there was a statistical bias in the reported
CCA results.While the original article alleged that both canonical
variates’ correlation with symptoms were statistically higher
than random, the problem arose from a two-step process that

Drysdale et al. applied. From the functional connectivity matrices
obtained from fMRI, they selected voxels whose activations were
most correlated with symptoms and then employed only those
features on the CCA analysis. Furthermore, the first selection
step was ignored in the statistical tests they ran [based on
Wilk’s lambda statistic, typically used for this purpose across
the literature (135)], and permutation testing in the replication
study showed that the significant correlations between symptoms
and connectivity faded away when taking into account this pre-
selection of voxels. This made it seem likely that the original
procedure was selecting noise in the direction of the hypothesis.
Moreover, CCA is known to be prone to overfitting (reporting
correlates between modalities that are much stronger than they
would be on an independent dataset). While Drysdale et al. did
not evaluate this problem directly, 10-fold cross-validation in the
replication revealed it was a significant issue, raising even more
caution toward the reported CCA factors.

Lastly, even whenDrysdale et al. assessed internal and external
validation of their findings (by measuring cluster stability across
10,000 random splits of the data, and using an independent
multisite dataset, respectively), they did not test the null
hypothesis of whether there was an inherent clustering structure
in the data against the possibility of a continuum (a single,
unimodal distribution). When testing this using previously
described methods (79), they found no significant evidence
supporting a clustering structure. In summary, while some details
of the proceedings were not the same as in the original, this
article shows how important thorough statistical testing (which
considers every step involved in all relevant pipelines) is in these
complex scenarios of multiple data integration and how crucial
replication attempts are. While Dinga et al. do not discard the
possibility of subtypes of depression that are identifiable at a
functional level, they raise a warning of caution about the lack
of strong evidence supporting it, and call for more extensive
methodological evaluation in an incipient field.

In another pioneering study, Price et al. were the first to our
knowledge, in 2017, to use effective connectivity to build directed
resting-state networks using causal modeling forMDD subtyping
(67). The pipeline employed (called Group Iterative Multiple
Model Estimation, or GIMME) has been shown to reliably
recover both the presence and direction of connectivity among
brain regions per individual in simulations (136). Using a sample
of 80 diagnosed patients with Major Depression, the authors
built a similarity matrix between model parameters among
individuals, which they thresholded into a graph. Here, they
reached a two-component solution via a clustering algorithm
called Walktrap (68), which works under the assumption that
short-distance random walks in a graph tend to stay in the same
community. It is a hard-clustering algorithm, in the sense that a
label is assigned to every patient, without any associated metric
reflecting how confident the model is in each case. Furthermore,
even though this approach arrives automatically to an optimal
number of clusters in the data (according, that is, to its own
definition of what a cluster is), neither cluster robustness analyses
nor estimates of how generalizable their solution might be on
external data were provided in this study. Besides, although
innovative in their methodologies based on causal, directed
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connectivity, their method is computationally demanding, which
limits the resolution of the brain activation networks they can use
when compared to methods based on functional connectivity.

Mapping back their retrieved components to functional
connectivity, authors observed that one of the two retrieved
groups showed a connectivity pattern across DMN nodes
concordant with what was previously reported on average
depressed patients (85). The other subgroup showed, however,
a different pattern in this region, with increased dorsal
anterior cingulate-driven connectivity paths. This group also had
significantly higher comorbidity with an anxiety disorder and
highly recurrent depression, which led to a poorer outcome of the
disorder. Interestingly, altered connectivity in anterior cingulate
regions (belonging to the DMN) has beenmore recently linked to
persistent sadness and higher recurrence rates (137), which goes
in concordance with these results.

In summary, while the employed sample size is small and
further validation is highly encouraged, this study illustrates how
graph theory and causal modeling can be used together to shed
light on the mechanistic heterogeneity behind major depression
in particular and brain disorders in general.

As previously mentioned, an issue that researchers often
encounter when applying clustering algorithms to a problem is
that, even when a relevant structure is present in the data, it can
be overshadowed by variance factors that are ultimately unrelated
to the problem. The most typical ways of dealing with this issue
are to control for known confounders in our models, such as age
or sex (138), to directly model and remove their variability (139),
or to transform data in a way that maximizes its correlation with a
highly informative variable [as previously presented for CCA and
symptom scores (73)]. Tokuda et al. (77), however, introduced
a custom algorithm that tackled the problem in a very different
way: they arrived at multiple solutions (or views) simultaneously,
which corresponded to different modes of variation in the data.
This way, they could select a posteriori if any of them was actually
related to subtypes of disease (in this case MDD) and still extract
potentially useful insights about their samples from the rest.
Furthermore, each of these views attempts to solve a so-called
co-clustering problem, in which both subjects and features are
grouped. This means that individual solutions won’t be forced
to adopt all the available information, ideally using only those
features that are relevant to them. Moreover, the algorithm they
propose is capable of simultaneously dealing with categorical and
continuous variables, allowing researchers to integrate resting-
state functional connectivity data with other data domains,
such as BDI questionnaires, biomarker panels, genetics, and
methylation data from a preselected set of related genes.

When applying this approach to a sample of 134 subjects,
balanced across diagnosed patients and healthy controls, the
authors reached a five-component solution after selecting the
view that maximized the Cohen’s D coefficient [a statistic
that measures effect size (140)] between the two groups.
Interestingly, two clusters were mainly composed of controls,
whereas the other three included diagnosed patients almost
exclusively. Moreover, these threeMDD-related reported clusters
were observed to differ significantly by functional connectivity
between the Angular Gyrus (and other already reported brain

areas in default mode network), child abuse trauma scale scores
(CATS), and selective serotonin reuptake inhibitor treatment
outcomes (although all of these were used directly for clustering).
Cluster stability (robustness) was tested via leave-one-out cross-
validation (similar to the aforementioned Jackknife) on the whole
pipeline, but no external validation was accounted for. While
the employed sample size is relatively small, and the results
demand replication in independent datasets, this article proposes
an innovative and assertive approach with a high potential for
integrating distinct data domains.

Attention Deficit Hyperactivity Disorder
Another article that relied on effective directed connectivity, and
applied the aforementioned GIMME algorithm, was published in
2014 by Gates et al. (120). In this study, the authors attempted to
cluster a sample containing also 80 individuals, balanced across
subjects diagnosed with attention-deficit/hyperactivity disorder
(ADHD) and healthy controls.

After following a pipeline nearly identical to the one presented
above for Price et al. (67), the study reported a solution with
five components, two of which were almost exclusively composed
of ADHD-diagnosed patients. First, researchers generated a
network in which subjects were connected when the similarity
between their directed connectivity patterns is high (how high
was determined by measuring cluster robustness under a cross-
validation scheme). For clustering, they used a hard community
detection similar to the Walktrap mentioned above, which
partitions the network into non-overlapping communities by
maximizing a metric called modularity (that compares the
number of edges within a community to those that connect it to
other partitions) (141).

The obtained subgroups were reported to be highly
distinguishable by their differential connectivity in regions
such as the dorsolateral prefrontal and frontal cortices, the
intraparietal sulcus, and the inferior parietal lobule, all of which
had been previously linked to ADHD in the literature (142).
Furthermore, the inclusion of healthy controls at clustering
time, and their presence even in clusters highly dominated
by diagnosed subjects, made it interesting to consider that
the reported brain findings may reflect liability for ADHD in
subgroups that are biologically at risk. Rather than ADHD
per se, the controls in these groups may represent individuals
at risk for ADHD who had sufficient protective factors in
their development (or their genome) to avoid exhibiting the
syndrome. Although inconclusive, this article, as many in this
review, provides evidence toward the presence of biological
subtypes in yet another psychiatric disease, which can be
recovered at a functional level.

Using a functional connectivity pipeline on a sample of 106
children (aged 7–12 years), including both diagnosed patients
and controls, Costa Dias et al. also attempted to find data-
driven subtypes of ADHD in their article published in 2015
(71). One of the main highlights of this study is that, in
order to reduce the original dimensionality of their functional
connectivity data obtained from resting-state fMRI, the authors
restricted the problem physically, by including only brain areas
that had been previously reported as related to the disease.
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To accomplish this, they built a mask using a meta-analytic
tool called NeuroSynth (143), which yielded a set of brain
regions that highly overlapped with the reward system. This
constitutes a well-studied connectivity hub, which interacts with
other brain networks to promote decision-making, and has been
extensively shown to be altered in ADHD (72). From the resulting
connectivity features, researchers extracted a meta-correlation
matrix that was thresholded into a graph, and applied the same
network-based modularity-based algorithm mentioned for the
previous paper by Gates et al. Using this approach, authors
arrived at a three-cluster solution, whose stability was assessed
by randomly perturbing the aforementioned network 20 times.
Robustness was then assessed using a metric called variation
of information (VOI), which measures how much information
differs between the two sets of community assignments, and
varies from 0 (identical) to 1 (completely dissimilar) (144).

This article reported that connections between the nucleus
accumbens and the default mode network were atypical in
ADHD across all the three subgroups, a finding that was
previously reported by the same group (145). The authors,
however, arrived at this conclusion by comparing diagnosed
patients to controls in each of the three reported communities.
Furthermore, one of the main drawbacks of this study was that
it seems to have failed to recapitulate disease manifestation along
with the clustering solution, making it seem likely that the factors
of variance captured by the applied methods do not correspond
to the disease axis. Specifically, this would mean that the most
prominent mode of variation in connectivity across the reward
system does not correspond, at least in their sample, to the
manifestation of the disease.

Having this issue in mind, Lin et al. published in 2018 (76)
what constituted the last attempt to date (to our knowledge) to
find biotypes of ADHD using resting-state fMRI. In this article,
the authors used a sample of 80 diagnosed subjects and 123
matched healthy controls, to extract networks that, across the
entire dataset, were differentially activated between both groups.
This approach yielded differential activations predominantly
between the default-mode, cingulo-opercular and subcortical
networks, all of which had been previously reported as related to
ADHD as a whole (62, 146). They then attempted to use this data
to specifically contrast what they called a dimensional biotype (i.e.
heterogeneity arises from variation over a continuum of the same
entity) against a categorical biotype (different pathological entities
explain the observed variability in the data, which converge in
similar symptomatology).

To further deal with unwanted modes of variation, they
applied a variant of the aforementioned canonical correlation
analysis (CCA) to bring into the picture the maximum
correlates between their differential functional connectivity and
symptomatic scores. From this analysis, they were able to retrieve
just one significant mode of covariation between both data
modalities, which was interpreted as the first piece of evidence
supporting a dimensional biotype. Moreover, they attempted to
cluster the data using two distance-based clustering algorithms:
K-means and spectral clustering, both of which yielded an
optimal solution supporting the absence of discrete biotypes in
the data. This was concluded after maximizing the robustness

of the obtained results, as measured by already presented
metrics, such as the Jaccard and silhouette indices, and the gap
statistic (59).

While the overall conclusion of this paper supports the idea of
ADHD being a single biological entity, we believe the presented
evidence is inconclusive, and that a few concerns should be
raised. For starters, while the sample size is said to be large
enough to deal with the applied clustering algorithms given their
number of features (34), this may not consider the complex
feature selection/extraction that was employed. It is possible that
even though it is technically possible to apply these algorithms
to a sample this small, not enough variation is captured in their
original dataset to represent with confidence potential categorical
biotypes that might exist in the population. Second, the first step
in their feature extraction pipeline involved the usage of only
those networks that were differentially activated between cases
and controls overall. While this can be useful, as mentioned,
to dissect modes of variation that are related to the problem at
hand, it also carries the risk of leaving behind brain connectivity
features that might differ significantly between controls and
particular subsets of patients (the biotypes). In other words,
filtering by overall variation might bias the data toward features
that correspond to a dimensional biotype.

Consequences of Early Trauma
The last study presented in this section, published by Sellnow
et al. in 2020 (80), delves into the functional consequences
of extreme stress in early childhood. Early stress events (such
as interpersonal violence -IPV- or severe trauma) are one
of the major causes of subsequent psychopathology, and no
systematic studies had attempted to disentangle their underlying
heterogeneity in neither the type nor the magnitude of their
consequences (147).

To tackle this problem, the authors used a sample of
114 adolescent girls (aged 11–17), from which they obtained
functional MRI data during an emotion processing task in a
blocked design. After filtering the voxels of interest using a meta-
analytic mask obtained from the aforementioned NeuroSynth
(related to emotion processing), the GLM-first order coefficients
were concatenated and clustered across individuals using the
K-means algorithm. After selecting the best model using the
already presented elbow method on the cluster validity index [a
statistic that, like many introduced before, compares intra-cluster
to inter-cluster density (34)], they reached a three-component
solution, shown robust via leave-one-out cross-validation.

At a functional level, the retrieved clusters were
distinguishable by engagement of the medial prefrontal
cortex, the anterior insula, and the hippocampus, all involved
in emotion processing (which is not surprising, given brain
features had been filtered using a meta-analytic mask using this
criterion). Interestingly, when analyzing the relationship between
each cluster and external measures of interpersonal violence
(IPV) and internalizing symptoms, the authors managed to
report a ‘healthier’ component, in which exposure to violence
had been lower, and two clusters with high symptom severity,
that seemed to differ on the presence or absence of sexual assault.
Furthermore, IPV exposed a negative correlation with symptom
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reduction over Trauma-Focused Cognitive Behavioral Therapy
(TFCBT), which led the authors to suggest the feasibility of
their methodology to predict treatment outcomes based on
functional information.

As many studies presented in this review, this last one
attempts to set the ground for further exploration of an incipient
field. One concern about their methods, though, is the high
dimensionality of the used data. Having retained 3,970 voxels
after filtering, and using a GLM with blocks of 4 different
tasks, each of the 114 individuals ended up represented by
15,880 values. Although one could argue that these features
are far from independent (after all, they represent the task-
importance of voxels that are contiguous in space), this extremely
high relationship between dimensions and samples can lead to
overfitting, severely decreasing the generalizability of the models
to external samples. This problem, often referred to as the
“curse of dimensionality”, is a very common drawback to many
machine learning models which usually justifies the need for
dimensionality reduction (148).

DISCUSSION

One Problem, Multiple Approaches:
Top-Down, Bottom-Up, and
Polytopic Learning
Throughout this article, we gave an overview of the most recent
attempts to subtype psychiatric disease in a data-driven manner.
Across 20 studies, we illustrated how functional MRI, arguably
the most relevant proxy of brain function to date, was applied to
both validation and interpretation of clusters retrieved with other
techniques, and as part of the clustering pipelines themselves.

Furthermore, these categories are encapsulated within two
broad ways of dealing with subtyping in data-driven medicine,
which we would like to call top-down and bottom-up approaches.
The former corresponds to what was presented in the first
section of this review: the use of data comprehending the
clinical and behavioral manifestation of disease, and the attempt
to validate the retrieved components relying on the elemental
biology. The latter is the opposite (second and third sections):
clusters are defined based on the biology and validated at a
clinical/behavioral level.

In this context, the first section of the results illustrated
how unsupervised learning could be used to detect subgroups
in psychiatric symptom data (Table 2). As briefly discussed
in the introduction, this approach is likely to yield disease
symptomatic states rather than biological entities, given that
different sets of symptoms do not necessarily reflect distinct
etiologies. Symptomatic profiles, moreover, are sensitive to
treatment and environmental perturbations, among others. This
may reflect in patients changing cluster assignments during the
course of their disease, making the usage of this type of solution
hard for diagnostic and prognostic models. Along the same lines,
however, this type of approach can be very helpful to better
evaluate the state of a patient at a given time, which constitutes
an arguably different but equally relevant problem than the one
we are presenting here.

The second and third sets of articles (Tables 3, 4) focused
on a bottom-up approach. When clustering biomarkers, the
assumption is that the data capture the manifestation of the
disorder at a lower level (hence bottom), yielding results that
are potentially closer to uncovering pathological origins. This
is particularly relevant when considering that distinct biological
entities (which can have distinct optimal treatments) can
converge to an equivalent symptomatic profile. For example,
studies have shown how different genetic alterations that
produced different structural consequences led to the same set
of autistic-like behavioral traits in mice (49).

Among the methodologies overviewed in the second section,
structural MRI clustering (encompassing 2/20 studies) and
its projection into functional data deserve special mention,
as several studies have shown that psychiatric disorders
have structural implications (149). While diseases such
as Autism or Schizophrenia are generally recognized as
neurodevelopmental disorders with brain structure being
affected, there are inconsistencies regarding the regional
specificity of the neuroanatomical findings (149), making the
importance of structural subtyping apparent. Furthermore,
the search for functional correlates of these subtype-specific
functional alterations relies on assuming that an altered structure
may lead to an altered function. By combining the two data
types, it is possible to test this hypothesis, retrieving multiple
domains affected by the disorder that may be coupled with a
non-trivial causal relationship.

Delving into the third and last set of articles (Table 4),
we want to highlight that fMRI is the most direct measure
of brain function we have to date. Although not ideal, it
constitutes arguably the best available proxy for the biological
manifestation of brain disease. This carries the potential
to shed light on mechanistic biotypes reflecting distinct
pathological entities that overlap at higher levels. Both task
and resting-state approaches have been explored, although the
vast majority (10/11) of studies opted for the latter given its
more straightforward implementation and potentially broader
conclusions and generalizability (39).

It shouldn’t go unnoticed that many studies (4/20, all in the
third section) integrate both symptom and biological data in
several clever ways. This set of approaches, which lies arguably
in the interface of the top-down and bottom-up presented above,
belong to what has been called polytopic learning (39). By either
combining both kinds of data for clustering directly (77) or
relying on multimodal transformations such as CCA (73, 76,
78), researchers seek to bridge the gap between origin and
manifestation of disease, in search of what have been described as
endophenotypes (150). We think this has an incredible potential
a priori, as illustrated by the many proofs of principle in
this review. However, it implies extending the dimensionality
of the datasets and, up to now, limiting sample sizes for
reaching strong conclusions. However, the future, in this regard,
looks promising.

Deep Validation of Retrieved Biotypes
As previously mentioned throughout this review, the interest
in disease classification (and sub-classification) is far from
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new. Aside from expanding basic knowledge, taxonomy as
a whole serves the purpose of recognizing distinct, stable
entities that may be treated differently, which can directly
lead to improving people’s lives. In this sense, unsupervised
learning has the potential to help researchers discover these
entities given the right data, models, and experimental designs.
Whereas, in other medical subfields clinical application is
more tangible (151, 152), psychiatry carries the weight of a
perfect storm: on top of currently relying on fuzzy symptom-
defined labels, relevant functional data collection is expensive,
making sample sizes to date (as seen throughout this review)
limitingly low.

This is far from discouraging though, as the field is still
at an early stage where methodological exploration seems
to be the rule. It does highlight, however, the importance
of thoroughly validating the retrieved results on several
equally relevant dimensions, in what some authors have called
deep validation (153) of biotypes. This concept encompasses
three main axes: (1) replication of clustering solutions in
independent data, to assess methodological generalizability
(2) application of a retrieved clustering solution to new
independent data (without reclustering), to gauge whether the
new assignments correspond to clinically meaningful outcomes,
and (3) extension of clustering solutions defined in a cross-
sectional manner to a longitudinal setting, to determine if
baseline components yield, for example, differential trajectories
of disease progression.

When exploring how these three concepts were touched
upon across the systematically retrieved literature, we found
that the first deep validation component, which goes in line
with the notion of generalizability discussed above, was the
most explored throughout the available corpus. Even in mostly
proof-of-principle settings, 15 out of 20 studies engaged in
robustness and generalizability analyses (Tables 2–4). Most of
them, however, yielded intra-sample reports (by partitioning
one available dataset instead of using truly external data) which
can lead to inflated generalizability estimates (37). While nearly
all studies (17/20, Tables 2–4) undertook an interpretation of
their solution using clinically relevant measures, only four of
them (56, 58, 60, 73) attempted to report generalizability across
multiple data collection sites, using truly external data. Moreover,
only two (60, 73) attempted the application of the retrieved
biotypes to an independent sample (second deep validation
component). Among these, interestingly, Drysdale et al. (73)
reported significant differences in outcome after the patients
were treated with transcranial magnetic stimulation (TCMS),
which constitutes a perfect illustration of the potential utility
of biotyping as mentioned above. Furthermore, only one of the
retrieved studies to date has engaged in longitudinal validation
(56). This one, unsurprisingly, used symptom data to cluster
given its easier collection across time.

While the landscape we found is far from ideal, the lack
of thorough, standard deep validation pipelines reflects, in our
opinion, the scarcity of relevant available data in such an early
stage of the field rather than deep methodological flaws.

Methodological Heterogeneity: Should We
Strive for Standardization?
Whereas most of the papers followed overall similar formulas
(data preprocessing, select relevant features or reduce the
dimensionality of the dataset, and cluster the available samples),
we observed vast methodological variability in every step along
the way.

As differences in dimensionality reduction approaches were
discussed throughout the corpus of the article, in this section
we will focus on the coarse classification of clustering algorithms
provided in Table 1. Here, we observed that the majority (12/20)
of the studies employed distance-based methods. An equal
number of papers applied algorithms that work at the graph
level andmodel-based approaches (4/20 each). Whereas we think
that, given the fuzzy nature of the available labels and how
important the measure of uncertainty in the medical setting is
(154), model-based approaches may be the most intuitive way to
go, we found the preference for simpler, computationally cheaper
models understandable given the incipient state of the field. It is
refreshing to see, however, that even at this incipient stage several
customized algorithms, designed specifically with the problem of
biotyping in mind, have been presented (77, 120).

A topic that deserves special attention is the inclusion of
healthy controls. Of the 20 retrieved studies, 6 decided to treat
healthy controls as any other sample, one utilized them indirectly
by clustering differences between matched subjects (61), and
one treated them as a normative reference for semi-supervised
learning (63) (Tables 2–4). As made evident by the variability in
the literature [the strongest retrieved example being the three
retrieved papers on ADHD (67, 71, 76)], this is not a closed
topic and valid arguments on both sides exist. On the one hand,
their inclusion may lead to an obvious first mode of variation
in the data. This can lead to clustering algorithms finding the
division between cases and controls as the dominant solution,
which would yield no new insights on disease functioning.
On the other hand, however, if sufficient data modalities are
available and subtypes are prominent enough, the inclusion of
healthy controls makes sense as a way to represent the true
nature of the population. Finding clusters enriched in healthy
controls can thus be interpreted as a mild form of validation.
Moreover, individuals in disease-enriched clusters who were not
diagnosed might correspond to early stages of disease, or be a
consequence of the presence of protective factors that may lead
to further investigation.

Finally, the available variability opens an important question:
Should we strive for methodological standardization to remove
potential dependencies of the results on the employed metrics?
For now, we do not think so. First, because at such an
early stage it is important to develop proofs of principle that
work on the intended data, and no single algorithm has yet
shown sufficient advantage. Second, because we think that
the biggest source of inconsistency across the literature today
comes from the data itself, not the algorithms employed. If
the retrieved clusters are strong enough, researchers should be
able to retrieve overlapping solutions regardless of the clustering
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methodology. A word of caution here is, though, that as different
algorithms make different assumptions, we should make sure
they are met in the datasets we use. We strongly believe that
the future of the field lies in concerted efforts to acquire
more data.

Overview of the Field and Where to Go Next
Psychiatric disease subtyping is at the moment at an incipient,
exploratory stage. While much remains to be answered and
no irrefutable evidence of functionally relevant subtypes was
presented, all the cited proofs of principle introduced valid,
potential ways to move the field forward once the current
limitations are overcome.

Aside from the algorithmic heterogeneity mentioned above,
the number of different data modalities to choose from should
not go unnoticed. Although we focused mainly on the functional
aspect of disease and functional MRI as the most promising
way of measuring it, psychiatric diseases can manifest at many
levels, which can be captured across several different axes
that can be included in any clustering effort. Other imaging
techniques, such as the already discussed structural MRI or
diffusion tensor imaging (DTI, useful for measuring white matter
consistency across the brain) have also been used to detect
relevant subtypes (38). Furthermore, the genetic components
of many of these subtypes should not be ignored. As the
dimensionality of this data is extremely high (millions of
genetic variants per subject) and individual polymorphism
contributions are generally small, however, genetic data is
rarely useful for unsupervised learning. Supervised approaches,
however, which aim to classify individuals among already defined
labels, have shown more success (37). Lastly, in addition to
questionnaires and more traditional clinical datasets, a data
modality that gained momentum over the last few years is
digitomics (electronic health records, mobile sensor data) (37,
155, 156). We think that, given sufficient sample sizes, the
future lies in multimodal integration and, as stated previously,
polytopic learning.

Furthermore, fMRI results may depend on external
unmeasured factors, which often results in low signal-to-
noise ratios and poor test-retest reproducibility (157). A relevant
consequence of these limitations is that the sample sizes needed
to capture the modes of variation in line with psychiatric
subtypes are, to date, limitingly high. This demands concerted
efforts to increase data collection, which are fortunately being
accounted for, with new multi-site data collection consortia
starting to collect functional data for psychiatric disease machine
learning (158–160).

Although its details are out of the scope of this review,
something that should not go unnoticed is that any effort
in acquiring knowledge that aims to be transferable to the
clinic needs to comply with standards of fairness (161). In
this case, this reflects the need for models to be thoroughly
tested across samples representative of the entire population to
which they ought to be applied. As functional MRI hardware
is expensive, bias in data collection toward richer societies
is a significant risk (161). Fortunately, new technological

advancements, such as portable MRI (162), also make the
future look brighter in this regard: by reducing costs and
the required infrastructure, solutions like this one can
help bridge this gap and facilitate data collection across
the world.

Moreover, the aforementioned limitations of fMRI, even
if robust subtypes are available, make it a relatively poor
clinical tool (163). This means that, even if robust subtypes
at the functional level are detected, their application in
clinical workflows might need to rely on technologies other
than functional MRI. This could be achieved for example
by training supervised classifier models to recognize these
functionally defined subtypes based on data from other
modalities, such as combinations of genetics, digitomics, and
imaging (37).

Finally, all the retrieved studies aimed to find subtypes
within already defined broad categories. Although several
transdiagnostic efforts using other, readily available data
modalities exist (38, 164), none to date have, to the best
of our knowledge, applied functional MRI as part of their
pipelines. As new, larger datasets are made available, the goal
of shedding light on the functional aspects of trans diagnosis
becomes reachable.

CONCLUSIONS

As mentioned throughout this article, further data-driven
stratification of psychiatric diseases can help dissect the vast
heterogeneity present in the field today. An improved diagnosis,
presumably based on biological mechanisms that precede
symptom manifestation, is not only a goal in itself but also
key for improving disease prognosis and direct personalized
treatment. Functional MRI, and brain connectivity, in particular,
is positioned as the best tool to date to acquire insights into
brain function, and the interest in using it for uncovering sub-
entities of brain disease remains high. The presented results
are however mixed, and much remains to be done in terms
of increasing sample sizes, standardizing data collection, and
providing models with strong assessments of generalizability and
fairness, crucial for a future translation of any model to the
clinic (13).
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