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Accurate generative statistical modeling of count data is of critical relevance for the
analysis of biological datasets from high-throughput sequencing technologies.
Important instances include the modeling of microbiome compositions from
amplicon sequencing surveys and the analysis of cell type compositions derived
from single-cell RNA sequencing. Microbial and cell type abundance data share
remarkably similar statistical features, including their inherent compositionality and a
natural hierarchical ordering of the individual components from taxonomic or cell lineage
tree information, respectively. To this end, we introduce a Bayesian model for tree-
aggregated amplicon and single-cell compositional data analysis (tascCODA) that
seamlessly integrates hierarchical information and experimental covariate data into
the generative modeling of compositional count data. By combining latent
parameters based on the tree structure with spike-and-slab Lasso penalization,
tascCODA can determine covariate effects across different levels of the population
hierarchy in a data-driven parsimonious way. In the context of differential abundance
testing, we validate tascCODA’s excellent performance on a comprehensive set of
synthetic benchmark scenarios. Our analyses on human single-cell RNA-seq data from
ulcerative colitis patients and amplicon data from patients with irritable bowel syndrome,
respectively, identified aggregated cell type and taxon compositional changes that were
more predictive and parsimonious than those proposed by other schemes. We posit that
tascCODA1 constitutes a valuable addition to the growing statistical toolbox for generative
modeling and analysis of compositional changes in microbial or cell population data.

Keywords: bayesian modeling, dirichlet multinomial, microbiome data, single-cell data, spike-and-slab lasso, tree
aggregation, differential abundance testing

1 INTRODUCTION

Next-generation sequencing (NGS) technologies have fundamentally transformed our ability to
quantitatively measure the molecular make-up of single cells (Shalek et al., 2013), tissues (Regev
et al., 2017; Karlsson et al., 2021), organs (He et al., 2020), as well as microbiome compositions
in and on the human body (Human Microbiome Project Consortium, 2012). Single-cell RNA
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sequencing (scRNA-seq) (Tang et al., 2009; Shalek et al., 2013;
Macosko et al., 2015) has become the key technology for
recording the transcriptional profiles of individual cells across
different tissue types (Regev et al., 2017) and developmental
stages (Griffiths et al., 2018), and for determining cell type
states and overall cell type compositions (Trapnell, 2015). Cell
type compositions provide informative and interpretable
representations of the noisy high-dimensional scRNA-seq
data and are typically derived from clustering characteristic
gene expression patterns in each cell (Duò et al., 2018; Traag
et al., 2019), followed by analysis of the expression levels of
marker genes (Luecken and Theis, 2019). As a by-product,
these workflows also yield a hierarchical grouping of the cell
types, either derived from the clustering procedure or
determined by known cell lineage hierarchies. Determining
changes in cell type populations across conditions can give
valuable insight into the effects of drug treatment (Tsoucas
et al., 2019) and disease status (Smillie et al., 2019), among
others.

Complementary to scRNA-seq data collection, amplicon or
marker-gene sequencing techniques provide abundance
information of microbes across human body sites (Human
Microbiome Project Consortium, 2012; Lloyd-Price et al.,
2017; McDonald et al., 2018). Current estimates suggest
that the human microbiome, i.e., the collection of microbes
in and on the human body, outnumber an individual’s somatic
and germ cells by a factor of 1.3–10 (Turnbaugh et al., 2007;
Sender et al., 2016). Starting from the raw read counts,
amplicon data are typically summarized in count abundance
tables of operational taxonomic units (OTUs) at a fixed
sequence similarity level or, alternatively, of denoised
amplicon sequence variants (ASVs). The marker genes also
allow taxonomic classification and phylogenetic tree
estimation, thus inducing a hierarchical grouping of the
taxa. To reduce the dimensionality of the data set and
guard against noisy and low count measurements, the
taxonomic grouping information is often used to aggregate
the data at a fixed taxonomic rank, e.g., the genus or family
rank. Shifts in the population structure of taxa have been
implicated in the host’s health and have been associated
with various diseases and symptoms, including immune-
mediated diseases (Round and Palm, 2018), Crohn’s disease
(Gevers et al., 2014), and Irritable Bowel Syndrome (IBS) (Ford
et al., 2017).

In the present work, we exploit the remarkable similarities
between scRNA-seq-derived cell type data and amplicon-
based microbial count data and propose a statistical
generative model that is applicable to both data modalities:
the Bayesian model for tree-aggregated amplicon and single-
cell COmpositional Data Analysis, in short, tascCODA. Our
model assumes that count data are available in the form of a
n × p-dimensional count matrix Y containing the counts of p
different cell types or microbial taxa in n samples, a covariate
matrix n × d-dimensional X carrying metadata or covariate
information for each sample, and a tree structure with p leaves
that imposes a hierarchical order on the count data Y. Since
both amplicon and scRNA-seq technologies are limited in the

amount of material that can be processed in one sample, the
total number of counts in rows of Y do not reflect total
abundance measurements of the features but rather relate to
the efficiency of the sequencing experiment itself (Gloor et al.,
2017). This implies that the counts only carry relative
abundance information, making them essentially
compositional data (Aitchison, 1982).

tascCODA is a fully Bayesian model for tree-aggregated
modeling of count data and is a natural extension of the
scCODA model, recently introduced for compositional
scRNA-seq data analysis (Büttner et al., 2020). At its core,
tascCODA models the count data Y via a Dirichlet
Multinomial distribution and associates count data and
covariate information via a log-link function. To encourage
sparsity in the underlying associations between the covariates
and the hierarchically grouped features, tascCODA exploits
recent ideas from tree-guided regularization and the spike-
and-slab LASSO (Ročková and George (2018)). This allows
tascCODA to perform tree-guided sparse regression on
compositional responses with any type or number of
covariates. In particular, in the presence of a single binary
covariate, e.g., a condition indicator, tascCODA allows to
perform Bayesian differential abundance testing. More
generally, however, tascCODA enables to determine how host
phenotype, such as disease status, host covariates such as age,
gender, or an individual’s demographics, or environmental
factors jointly influence the compositional counts. Finally,
incorporating tree information into the inference allows
tascCODA to not only identify associations between individual
features, but also entire groups of features that form a subset of
the tree.

tascCODA complements several recent statistical
approaches, in particular, from the field of microbiome data
analysis, some of which also use the concept of tree-guided
models. Chen and Li (2013) were among the first to use the
sparse Dirichlet-Multinomial model to connect compositional
count data with covariate information in a penalized
maximum-likelihood setting. Wadsworth et al. (2017) were
the first to use a similar model in a Bayesian setting. Both
adaANCOM (Zhou C. et al. (2021)) and the Logstic-tree
normal model (Wang et al. (2021)) use the Dirichlet-tree
(multinomial) model (Wang and Zhao (2017)) to determine
differential abundance of microbial taxa via a product of
Dirichlet distributions at each split. The PhILR model
(Silverman et al., 2017) uses the phylogenetic tree of a
microbial community to compute an isometric logratio
transform with interpretable balances. Furthermore, there
are recent advances in constructing optimal hierarchical
partitions of HTS data and to predict variables of interest
from them (Quinn and Erb, 2019; Gordon-Rodriguez et al.,
2021), that do not rely on pre-defined trees, but rather
structure the data in the best way to be predictive of the
outcome. These methods restrict themselves, however, to
fully binary trees. On the other hand, the trac method (Bien
et al., 2021) uses tree-guided regularization (Yan and Bien,
2021) in a maximum-likelihood-type framework to predict
continuous outcomes from compositional microbiome data.
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In its present form, the Bayesian model behind tascCODA is
ideally suited for data sets of moderate dimensionality, typically
p < 100, yet can handle extremely small sample sizes n. Since
amplicon datasets are usually high-dimensional in the number of
taxa and exhibit high overdispersion and excess number of zeros,
we focus on the analysis of genus-level microbiome data. In the
context of cell type compositional data, on the other hand, often
only very few replicate samples are available (Büttner et al., 2020).

Here, tascCODA can leverage well-calibrated prior information
to operate in low-sample regimes where frequentist methods
likely fail.

The remainder of the paper is structured as follows. In the next
section, we introduce the tascCODA model and describe the
computational implementation. In Section 3, we describe and
discuss synthetic data benchmarks and provide two real-world
applications, on human single-cell RNA-seq data from ulcerative

FIGURE 1 | Intuition behind tascCODA. (A) A multifurcating tree structure T with internal nodes N1, N2, N3, and tips T1 . . .T6. tascCODA decides whether
modeling the change of abundance of a subtree (e.g. nodes T5, T6 - gold). as a common effect at their common ancestor (e.g., N3 - red) is preferable. The blue nodes T1,
N1, and N2 are reference nodes in this example. (B) Ancestor matrix of the tree in (A). (C) Example dataset where the abundances of T5 and T6 increase in the same way
between conditions (relative to the reference T1). Here, a group-level effect on N3 would be the preferred option. (D) Plate representation of the tascCODAmodel.
Grey squares indicate fixed parameters and input variables that are either part of or directly calculated from the data. The grey circle represents the output count matrix,
white circles show latent variables.
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colitis patients and amplicon data from patients with irritable
bowel syndrome. Finally, we summarize the key points in Section
4 and present considerations about future extensions of the
method. A flexible and user-friendly implementation of
tascCODA is available in the Python package tascCODA2. All
results in this paper are fully reproducible and available on
Zenodo3.

2 MATERIALS AND METHODS

2.1 Model Description
We start with formally describing the problem at hand. Let
Y ∈ Rn×p be a count matrix describing n samples from p
features (e.g., cell types, microbial taxa, etc.), and X ∈ Rn×d be
a matrix that contains the values of d covariates of interest for
each sample. Due to the technical limitations of the sampling
procedure, the sum of counts in each sample, �Yi � ∑p

j�1Yi,j must
be seen as a scaling factor, making the data compositional (Gloor
et al. (2017)). Additionally, the features described by Y are
hierarchically ordered by a tree T with p leaves and t internal
nodes, resulting in a total number of v � p + t nodes in T
(Figure 1A). Such tree structures are usually motivated by
taxonomy (McDonald et al., 2012; Quast et al., 2013),
determined by phylogenetic similarities (Schliep, 2010), or
obtained via serial binary partitions (Quinn and Erb, 2019).
The tree can further be bifurcating or multifurcating, thus
internal nodes may have two or more descendants.

T can be fully characterized by a binary ancestor matrix A ∈
{0,1}p×v. Hereby, each row of A stands for a feature or leaf node of
T , the first p columns also denote the leaves of the tree, and the
last t columns represent the internal nodes. The entries Aj,k are 1,
if column k corresponds either to feature j (j � k) or to one of its
parents, otherwise it is 0 (Figure 1B):

Aj,k � 1 if j � k or k is ancestor of j
0 else.

{
Our goal is to determine how changes in abundance of features

(leaves of T ) are associated with the covariates in X, and select a
sparse set of the most important covariate-feature effects. To
achieve an even more parsimonious result, we further determine
whether groups of features that form subtrees of T are affected by
the conditions in the same manner (Figure 1A), and model them
with a common effect if possible. This group-wise modeling step
not only gives an accurate, yet easy to interpret description of the
changes in the feature composition, but can also reveal shared
traits among structural subgroups of features that might be
missed in analyses that do not take the tree structure into account.

2.1.1 Core Model With Tree Aggregation
tascCODA posits a Dirichlet-Multinomial model for Yi,· for each
sample i ∈ 1. . ., n, thus accounting for the compositional nature of

the count data. The covariates are associated with the features
through a log-linear relationship. We put uninformative Normal
priors on the base composition α, which describes the data in the
case Xi,· � 0:

Yi ∼ DirMult �Yi, a X( )i( ) (1)

log a X( )( )i � α +Xi,·β (2)

αj ∼ N 0, 10( ) ∀j ∈ p[ ]. (3)

The total count �Yi is directly inferred from the data for each
sample. The effect of the lth covariate on the jth feature is
therefore given by βl,j.

We now use a variant of the tree-based penalty formulation of
Yan and Bien (2021) to model common effects at each internal
node of T in addition to the effects on the leaves. We define a
node effect matrix β̂ ∈ Rd×v and associate aggregations on
internal nodes with the correct tips by multiplying with the
ancestor matrix A:

β � β̂AT (4)

To illustrate the intuition behind this step, we consider an
example based on the tree in Figure 1A. In a binary covariate
setting, the features T1-T6 are uniformly distributed in the
control population, while in the case population, the
abundance of features T5 and T6 (with respect to feature T1)
is greatly increased by the same relative amount (Figure 1C).
Instead of having two equally-sized effects on the components of
β̂ corresponding to T5 and T6, the same can be achieved in
tascCODA with only one parameter by placing an effect on the
internal node N3. Through Eq. 4, this effect is propagated to the
leaves T5 and T6 in β in order to model the population.

While this aggregation step can significantly reduce the
number of parameters needed to describe the changes in the
data, the solution is not unique. An effect on an internal node
is equivalent to effects of the same size on all its descendant
leaves. Therefore, the number of nonzero entries in β̂ must be
controlled, raising the need for a sparse selection of the most
important effects. While in the example above, the reduction of
nonzero effects by using a group aggregation on node N3
clearly outweighs the loss in accuracy by assuming that
features T5 and T6 behave in the same manner, this trade-
off might not be as clear in real datasets. We thus also need a
way to adjust the model towards selecting either more sparse
and generalizing, or more detailed and less parsimonious
solutions.

2.1.2 Spike-And-Slab Lasso Prior
To ease model interpretability, many statistical models provide a
mechanism for obtaining sparse model solutions. In high-
dimensional linear regression, this can be achieved via the
lasso (Tibshirani, 1996), which adds an L1-penalty on the
regression coefficients. In Bayesian modeling, spike-and-slab
priors are a popular choice to perform automatic model
selection. Recently, Ročková and George (2018), developed a
connection between the two approaches in the form of the
spike-and-slab lasso prior, which provides a Bayesian
equivalent to penalized likelihood estimation. The spike-and-

2https://github.com/bio-datascience/tascCODA.
3https://zenodo.org/record/5302136.
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slab lasso prior describes each component of β̂l,k as a mixture of
two double-exponential priors with different rates λ0,l,k, λ1,l,k and
a shared mixture coefficient θ:

β̂l,k � θ~β1,l,k + 1 − θ( )~β0,l,k ∀k ∈ v[ ], l ∈ d[ ] (5)

~βm,l,k � σm,l,kpbm,l,k ∀k ∈ v[ ], m ∈ 0, 1{ }, l ∈ d[ ] (6)

σm,l,k ∼ Exp λ2m,l,k/2( ) ∀k ∈ v[ ], m ∈ 0, 1{ }, l ∈ d[ ] (7)

bm,l,k ∼ N 0, 1( ) ∀k ∈ v[ ], m ∈ 0, 1{ }, l ∈ d[ ] (8)

θ ∼ Beta 1, 1/v( ) (9)

This prior can be reformulated as a likelihood penalty function
that represents a combination of weak penalization of larger
effects by λ1,l,k and strong penalization of effects close to zero by
λ0,l,k, respectively (See Supplementary Material Section 1.2). As
recommended by Ročková and George (2018), we use the non-
separable version of the spike-and-slab lasso prior, which
provides self-adaptivity of the sparsity level and an automatic
control for multiplicity via a Beta prior on θ (Bai et al. (2020a);
Scott and Berger (2010)). We further set λ0,l,k � 50 ∀l, k to achieve
a strong penalization in the “spike” part of the prior, leaving λ1,l,k
as our only parameter that controls the total amount of penalty
applied at larger effect values.

2.1.3 Node-Adaptive Penalization
We use a variant of the strategy proposed by Bien et al. (2021) to
make the strength of the regularization penalty dependent on the
corresponding node’s position in the tree. We introduce the
following sigmoidal scaling:

λ1,l,k � 2λ1
1

1 + e−ϕ Lk/p−0.5( ) ∀l, (10)

where λ1 � 5 is the default value for the penalty strength, Lk is
the number of leaves that are contained in the subtree of node k,
and ϕ acts as a scaling factor based on the tree structure. If ϕ � 0,
the default in tascCODA, all nodes are penalized equally with λ1,
while for ϕ < 0, effects on nodes with larger subtrees, located
closer to the root of the tree, are penalized less and are therefore
more likely to be included in the model. If ϕ > 0, a solution that
comprises more diverse effects on leaf nodes will be preferred.
Thus, the parameter ϕ provides a way to trade off model accuracy
with the level of aggregation. We discuss the behavior of the
spike-and-slab LASSO penalty and the choice of λ0,1 in more
detail in the Supplementary Material.

2.1.4 Reference Feature
Since the data at hand is compositional, model uniqueness and
interpretability are only guaranteed with respect to a reference.
Popular choices include picking one of the p features or the
(geometric) mean over multiple or all groups (Fernandes et al.,
2014). Following the scCODA model, we pick a single reference
feature prior to analysis (Büttner et al., 2020). Technically, this is
achieved by choosing one feature p̂ that is set to be unchanged by
all covariates. Let v̂ be the set of ancestors of p̂. By forcing
β̂l,k � 0 ∀k ∈ v̂, l ∈ [d], we ensure that the reference is not
influenced by the covariates through any of its ancestor nodes.
If no suitable reference feature is known a priori, tascCODA

provides an automatic way of selecting the feature with minimal
dispersion across all samples among the features that are present
in at least a share of samples t (default t � 0.95; this value can be
lowered if no suitable feature exists).

p̂ � arg min
j�1,...,p

Disp Y·,j′( ) s.t. |i: Yi,j > 0|/n≥ t

The restriction to large presence avoids choosing a rare feature
as the reference where small changes in terms of counts lead to
large relative deviations. The least-dispersion approach is aimed
at reducing the bias introduced by the choice of reference. Eqs.
1–9 together with the reference feature yields the tascCODA
model (Figure 1D):

Yi ∼ DirMult �Yi, a X( )i( )
log a X( )( )i � α +Xi,·β

αj ∼ N 0, 10( ) ∀j ∈ p[ ]
β � β̂AT

β̂l,k � 0 ∀k ∈ v̂, l ∈ d[ ]
β̂l,k � θ~β1,l,k + 1 − θ( )~β0,l,k ∀k ∈ v[ ]\v̂{ }, l ∈ d[ ]

~βm,l,k � σm,l,kpbm,l,k ∀k ∈ v[ ]\v̂{ }, m ∈ 0, 1{ }, l ∈ d[ ]
σm,l,k ∼ Exp λ2m,l,k/2( ) ∀k ∈ v[ ]\v̂{ }, l ∈ 0, 1{ }, l ∈ d[ ]
bm,l,k ∼ N 0, 1( ) ∀k ∈ v[ ]\v̂{ }, l ∈ 0, 1{ }, l ∈ d[ ]

θ ∼ Beta 1,
1

| v[ ]\v̂{ }|( )

with the default choices of λ0,l,k � 50 and λ1,l,k set according to
(10) with hyperparameters ϕ and λ1 � 5 (Supplementary
Material Section 1.2).

2.2 Computational Aspects
Before performing Bayesian inference with the tascCODAmodel,
several data preprocessing steps are applied. Singular nodes,
i.e., internal nodes that have only one child node, are removed
from the tree, since their effect only propagates to one node and is
therefore redundant. We also add a small pseudo-count of 0.5 to
all zero entries of Y to minimize the frequency of numerical
instabilities in our tests. Finally, we recommend normalizing all
covariates to a common scale before applying tascCODA to avoid
biasing the model selection process toward the covariate with the
largest range of values.

Because tascCODA is a hierarchical Bayesian model, we use
Hamiltonian Monte Carlo sampling (Betancourt and Girolami,
2015) for posterior inference, implemented through the
tensorflow (Abadi et al., 2016) and tensorflow-probability
(Dillon et al., 2017) libraries for Python, solving the gradient
in each step via automatic differentiation. By default, tascCODA
uses a leapfrog integrator with Dual-averaging step size
adaptation (Nesterov, 2009) and 10 leapfrog steps per
iteration, sampling a chain of 20,000 posterior realizations and
discarding the first 5,000 iterations as burn-in, which was also the
setting for all applications in this article, unless explicitly stated
otherwise. As an alternative, No-U-turn sampling (Homan and
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Gelman, 2014) is available for use with tascCODA. The initial
states for all αj and bm,l,k are randomly sampled from a standard
normal distribution. All σm,l,k and θ values are initialized at 1 and
0.5, respectively.

To determine the credible effects of covariates on nodes from
the chain of posterior samples, we calculate the threshold of
practical significance δk, introduced by Ročková and George
(2018), for each node:

δk � 1

λ0 − λ1,k log
1

pp
θ,k 0( ) − 1( ) (11)

pp
θ,k β( ) � θp

λ1,k
2
e−λ1,k |β|

θp
λ1,k
2
e−λ1,k |β| + 1 − θp( ) λ0

2
e−λ0 |β|

(12)

Here, θ* is the posterior median of θ. More details on δ are
available in the Supplementary Material. We compare the

posterior median effects β̂
p

l,k to the corresponding δk and select
all effects where |β̂pl,k|> δk as credible, otherwise they will be set to
0, resulting in β̂

(C)
, the matrix with only credible effects,

β̂
C( )
l,k � β̂

p

l,k if |β̂pl,k|> δk
0 else.

{ (13)

Inmost applications, the nonzero entries of β̂
(C)

are of primary
interest, which directly show how the covariates influence sets of
features defined by the tree structure. Their sign indicates

whether the effect corresponds to an increase (β̂
(C)
l,k > 0) or a

decrease (β̂
(C)
l,k < 0). Due to the compositional data properties

introduced by the Dirichlet-Multinomial, its expectation

E Yi ∼ DirMult �Yi, a x( )i( )[ ] � �Yi
a x( )i)∑p
j�1a x( )i)j (14)

can not be separated by the individual features. Because the
shifts in E[Yi] caused by effects β̂ are dependent on the total sum

∑p
j�1eαj+X(β̂AT)j through Eqs. 2, 4, 14, a credible effect on any

feature or aggregation has an impact on the posterior mean
counts of all features, i.e. a relative increase in one feature will
also induce a decrease of all other features (Gloor et al., 2017).
Therefore, a quantitative interpretation of effect sizes is only
possible in a limited sense.Within the samemodel, larger changes
will correspond to larger absolute values |β̂l,k|, but they are not
comparable across multiple runs of tascCODA.

In the context of differential abundance testing, we can
additionally obtain the set of differentially abundant features D
by multiplying β̂

(C)
with AT, and get

D � l, j( ) ∈ d[ ] × p[ ]: β̂
C( )
l,k A

T( )
j
≠ 0{ } (15)

as the set of features that are part of at least one credible effect.
A Python package for tascCODA is available at https://github.

com/bio-datascience/tascCODA. Building upon the scCODA
package, the software provides methods to seamlessly integrate
scRNA-seq data from scanpy (Wolf et al., 2018) or microbial

population data via pandas (McKinney, 2010). The package also
allows to perform differential abundance testing with tascCODA
and visualize tascCODA’s results through tree plots from the
toytree package. All results were obtained using Python 3.8 with
tensorflow � 2.5.0 (Abadi et al. (2016)), tensorflow-probability �
0.13 (Dillon et al. (2017)), arviz � 0.11 (Kumar et al. (2019)),
numpy � 1.19.5, scanpy � 1.8.1 (Wolf et al. (2018)), toytree � 2.0.
1, and sccoda � 0.1.4 (Büttner et al. (2020)).

3 RESULTS

3.1 Simulation Studies
3.1.1 Model Comparison
To test the performance of tascCODA in a differential abundance
testing scenario, we generated compositional datasets with an
underlying tree structure and compared how well several models
could detect the changes introduced by a binary covariate. For
compositional models that do not account for the tree structure,
we used the state-of-the art methods ANCOM-BC (Lin and
Peddada (2020)), ANCOM (Mandal et al. (2015)), and
ALDEx2 (Fernandes et al. (2014)) from the field of
microbiome data analysis, as well as scCODA (Büttner et al.,
2020) from scRNA-seq analysis. Based on the recommendations
by Aitchison (1982), we also analyzed the data with the additive
log-ratio (ALR) transformation in combination with t- or
Wilcoxon rank-sum tests. We also included the recent
adaANCOM (Zhou C. et al., 2021), a differential abundance
testing method that accounts for the tree structure. Furthermore,
we applied tascCODA with different values for the aggregation
parameter, ϕ � (−10, −5, −1, 0, 1, 5, 10), setting λ1 � 5.

We first defined four different data sizes p � (10, 30, 50, 100)
and randomly generated a multifurcating tree with depth five for
each value of p. We then chose three nodes (one internal on the
level directly above the leaves, two leaves) from each tree, whose
child leaves, denoted by p′, are set to be differentially abundant
under a binary (control-treatment) condition (Supplementary
Figures S2–S5). Similar toWadsworth et al. (2017), we generated
n � n0 + n1 compositional data samples from two groups of equal
size n0 � n1 � (5, 20, 30, 50). Each sample Yi is a realization of a
Dirichlet-Multinomial distribution with a total sum of �Yi �
10, 000 and a parameter vector c*. For extra dispersion in the
data, we set c*i � ci∑j

cj

1−ψ
ψ with ψ � 0.002. The parameters for the

first (control) group were generated via c0,i � exp(αi); αi
∼Unif(−2, 2). In the second (treatment) group, we added an
effect β � (0.3, 0.5, 0.7, 0.9) to the components in p′:
c1,i � exp(αi + βI(i∈p′)). For each parameter combination (p,
n0, β), we randomly generated 20 replicates, resulting in a
total of 1280 datasets.

Since the adaANCOM method assumes a bifurcating tree
structure, we transformed each tree node to a series of
bifurcating splits via the multi2di and collapse.singles methods
from the ape package for R (Paradis et al. (2004)) before applying
the method. For the methods that require a reference category
(ALR, scCODA, tascCODA, ALDEx2), we used the last
component, which was always designed to be unaffected by
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the condition, as the reference. After applying each method to a
dataset, we corrected the resulting p-values by the Benjamini-
Hochberg procedure, where applicable, except for ANCOM-BC,
where we used the recommended Holm correction of p-values,
and determined the significant results at an expected FDR level of
0.05. The Bayesian methods scCODA and tascCODA do not
produce p-values and identify credible effects as previously
described.

For an overall indicator of how well the different methods
could determine differentially abundant features, we
considered Matthews correlation coefficient (Figure 2A).
Here, adaANCOM showed poor performance especially on
small datasets, while ALDEx2 struggled when p was larger.
Only scCODA and ANCOM-BC performed well in
comparison for all data and effect sizes. For tascCODA,
varying the aggregation level ϕ had a strong influence on
the performance. With larger values of ϕ, tascCODA prefers
less generalizing effects, resulting in a more detailed solution
and larger MCC. At a high resolution level (ϕ � 5), tascCODA
was on par with or even better than scCODA and ANCOM-
BC, showing almost no sensitivity to the size of the dataset.
Because the trees in our simulation contained only effects on
leaf nodes or the level directly above, preferring generalizing
effects (ϕ � − 5) resulted in worse performance, while the

unbiased case of ϕ � 0 gave slightly worse results than
scCODA and ANCOM-BC. All methods shown in
Figure 2B except adaANCOM controlled the FDR
reasonably well, although ANCOM-BC and scCODA could
not always hold the nominal level of 0.05. Only ALDEx2,
which is known to be very conservative (Hawinkel et al., 2019;
Büttner et al., 2020), produced almost no false positives, at the
cost of larger type 2 error. tascCODA had a slightly inflated
FDR ( < 0.25) for smaller values of ϕ in some cases, which
became more apparent when analyzing the ability of each
method to exactly recover the true effects (Figure 2C).
Increasing the effect size resulted in a reduced Hamming
distance between the ground truth and tascCODA with ϕ �
5, which consistently outperformed all other models.
tascCODA in the misspecified setting ϕ � − 5 showed an
inflated Hamming distance, especially for p � 30. This is,
however, expected since tascCODA is forced to infer small-
sized effects at the top level, resulting in many falsely detected
features and thus a large deviation from the true sparse
solution. In practice, this highlights the need to perform
cross-validation over different levels of ϕ to reduce false
discoveries due to misspecification. We further found that
ANCOM detected many false positives in all of our
simulations, while the ALR-based methods were similarly

FIGURE 2 | Performance comparison of tascCODA and other methods on simulated data with one binary covariate (differential abundance testing). Plots are
grouped by the number of simulated components p and the effect size β. For tascCODA, different values of ϕwere tested (dashed blue lines). The areas around each line
represent the standard deviation. Performance measured by (A)Matthews correlation coefficient (MCC). (B) False discovery rate (FDR) (C) Hamming distance between
ground truth and determined effects.

Frontiers in Genetics | www.frontiersin.org December 2021 | Volume 12 | Article 7664057

Ostner et al. tascCODA: Tree-Aggregated Analysis of Compositional Data

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


conservative as ALDEx2 (Supplementary Figures S8–S10).
Increasing the sample size generally improved the recovery
performance of all methods except for tascCODA with
misspecified ϕ (Supplementary Figure S10).

3.1.2 Effect Detection at High Tree Levels
In the next benchmark scenario, we evaluated the effect of the
tuning parameter ϕ in tascCODA to detect effects on larger
groups of features through aggregation at higher levels of the
tree. To this end, we considered the p � 30 setting with the tree
structure from Supplementary Figure S5, and defined an effect
on a node near the root, influencing almost all features
(Supplementary Figure S6). We simulated datasets in the
same manner as for the previous benchmark, with n � 10, β �
(0.3, 0.5, 0.7, 0.9), and 20 replicates per effect size. We then
compared tascCODA with different levels of ϕ using the same
performance metrics as before.

With a correctly specified parametrization ϕ < 0, favoring
effects near the root, tascCODA recovered almost all relevant
effects, as indicated by a small Hamming distance and highMCC,
without producing false positive results (Figure 3). With
increasing ϕ, however, tascCODA favors effects on the leaves,
thus entering the misspecified regime. As predicted, tascCODA
was able to only recover a small portion of the true effects, while
producingmore false positive results. This highlights tascCODA’s
ability to consistently uncover effects on larger groups of features
which would be missed when not taking into account tree
information.

3.1.3 Simulation With Multiple Covariates
In our third benchmark scenario, we simulated data with two
covariates to showcase how tascCODA is able to distinguish
effects from two different sources. Taking the tree from the
method comparison study with p � 30 (Supplementary
Figure S3), we first defined a binary covariate x0 with
effect sizes β0 � (0.3, 0.5, 0.7, 0.9) as before, and n � 10
samples per group. We also included a second covariate x1 ∼
Unif(0, 1) with effect size β1 � 3 that affects node 39 and
therefore features 13–23 in all samples. For each effect size, we
simulated 10 datasets and applied tascCODA with ϕ � (−5, 0,
5) and two different design matrices X. For the first design
matrix, we used only x0, while the second design matrix
contained both x0 and x1 as covariates. We compared how

well both configurations could recover the effects introduced
by x0 in terms of MCC, FDR, and Hamming distance to the
ground truth.

Ignoring x1 in the model design resulted in an overall worse
performance of tascCODA for all metrics, all effect sizes for x0,
and all values of ϕ (Figure 4). In every case it proved beneficial to
include the second covariate in the model, resulting in almost no
false positive detections of changes caused by the first covariate.
Further, the two-covariate model achieved an MCC and
Hamming distance that were similar to our simulations where
only one covariate acted on the data (Figure 2). This proves that
tascCODA is able to reliably identify the influence of multiple
covariates on the count data.

3.2 Experimental Data Applications
3.2.1 Single-cell Sequencing Analysis of Ulcerative
Colitis in Humans
Ulcerative colitis is one of the most common manifestations of
inflammatory bowel disease. The disease alternates between
periods of symptomatic flares and remissions. The flares are
due to the surge of an inflammatory reaction in the colon,
causing superficial to profound ulcerations, which manifests
with bloody stool, diarrhea and abdominal pain. The patients
will thus have part of their colon referred to as “inflamed”,
while colonic tissue still seemingly intact will be called “non-
inflamed”. To show how tascCODA can be applied to cell
population data from scRNA-seq experiments, we used data
collected by Smillie et al. (2019) from a study of the colonic
epithelium on ulcerative colitis (UC). In the study, a total of
133 samples from 12 healthy donors, as well as inflamed and
non-inflamed tissue from 18 patients with UC, were obtained
via single-cell RNA-sequencing, divided into epithelial
samples and samples from the Lamina Propria
(Supplementary Data 1.3.1).

We applied tascCODA to six different subsets of the data,
comparing two of the three health conditions in one type of
tissue at a time, and then compared our findings with the
results of scCODA and the Dirichlet regression model used by
Smillie et al. (2019), implemented in the DirichletReg package
for R (Maier (2014)). For tascCODA and scCODA, we used
the automatically determined reference cell types, which are
identical for both models in all cases, and applied scCODA

FIGURE 3 | Performance comparison of different bias settings for tascCODA on simulated data with the effect being located near the root of the tree, depending on
effect size. Performance measured by (A) Matthews correlation coefficient (MCC). (B) False discovery rate (FDR) (C) Hamming distance between ground truth and
determined effects.

Frontiers in Genetics | www.frontiersin.org December 2021 | Volume 12 | Article 7664058

Ostner et al. tascCODA: Tree-Aggregated Analysis of Compositional Data

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


with an FDR level of 0.05. In the Dirichlet regression model,
we adjusted the p-values by the Benjamini-Hochberg
procedure, and selected differentially abundant cell types at
a level of 0.05.

The cell lineage tree inferred from Smillie et al. (2019) is divided
into epithelial, stromal and immune cells at the top level (Figure 5).
While the biopsies from the Epithelium contain mostly epithelial
cells, and samples from the Lamina Propria consist of cells mostly
from the other two lineages, both groups also include considerable
amounts of cells from the other major lineages. We first compared
scCODA and Dirichlet regression, which both do not take the tree
structure into account, to tascCODA with ϕ � 5 (Figure 6), thus
preferring a detailed solution with effects mainly located on leaf
nodes, which approaches the leaf-only solutions of the other two
methods. In this setting, tascCODA, scCODA and Dirichlet
regression all determined mostly epithelial cells to shift in
abundance between pairwise comparisons of healthy, non-
inflamed, and inflamed tissue samples from the intestinal
Epithelium (Figure 6A), and most changes in the Lamina
Propria to be among stromal and immune cells (Figure 6B).
When propagating the node effects of tascCODA with ϕ � 5 to
the leafs via Eq. 15, the differentially abundant cell types determined
by tascCODA, scCODA, and Dirichlet regression were largely
identical (Figure 6).

To further investigate the predictive and sparsity-inducing
powers of tascCODA, we performed out-of-sample prediction
with the results obtained from tascCODA and scCODA on 5-
fold cross validation splits of each of the six data subsets. For
both models, we determined cell type-specific effect vectors β*

(tascCODA: βp � Aβ̂
(C)
j , as in Eq. 15; scCODA: Model output)

as well as the posterior mean of the base composition α* on the
training splits, and used them to predict cell counts for each
health status label Xl in the corresponding test split as

ŷj,l � e
α*
j
Xlβ

*
j

∑p

j�1e
α*
j
Xlβ

*
j

1
ntrain

∑ntrain
i�1 �Yi. We measured the predictive

power of tascCODA and scCODA as the mean squared
logarithmic error (MSLE) between the actual and predicted
cell counts, and sparsity as the average number of nonzero
effects over all five splits (Table 1). For small ϕ, tascCODA
determined very few or no credible effects, while the MSLE was
usually slightly higher than the MSLE from scCODA. In

unbiased setting ϕ � 0, tascCODA found credible effects in
three scenarios, which considerably reduced the MSLE. With a
small bias towards the leaves (ϕ � 1), tascCODA even
outperformed scCODA in terms of MSLE in one case, while
for ϕ � 5, tascCODA achieved a lower MSLE and similar
number of credible effects in three scenarios, and a lower
number of credible effects and similar MSLE in the other
three scenarios. We observed a curious result when
comparing non-inflamed and inflamed epithelial samples.
Here, the MSLE increased with rising ϕ, indicating that the
mean model over all samples described the data better than
trying to determine variation between the two groups. This
confirms the intuition that the aggregation bias ϕ in tascCODA
acts as a trade-off between generalization level and prediction
accuracy. For smaller ϕ, tascCODA will select fewer, more
general effects, which might miss subtle changes at a lower
level of the lineage tree, while with increasing ϕ, tascCODA’s
results will approach the ones discovered without taking tree
aggregation into account.

For a more detailed comparison between tascCODA and
scCODA, we compared healthy to non-inflamed biopsies of
control and UC patients. When choosing ϕ � 5, thus biasing
tascCODA towards the leaf nodes, tascCODA detected the
differences in cell composition in the Epithelium as changes
in abundance of the same 3 cell types as scCODA
(Figure 5A). In the Lamina Propria, tascCODA detected
credible changes on six different groups of cell types,
including T and B cells, which were previously linked to
UC (Holmén et al. (2006); Smillie et al. (2019)), as well as
eight single cell types (Figure 5B). Notably, tascCODA
amplified the decrease of Plasma B-cells induced by the
group effect on B-cells by an additional negative effect on
the cell type level. A strong decrease of Plasma cells was also
confirmed by Smillie et al. (2019) through FACS stainings.
Importantly, tascCODA described the data with only 14
nonzero effects, whereas with scCODA, 21 credible effects
were produced.

As a contrast, we also examined the unbiased setting with ϕ �
0, treating all nodes equally. Here, the cell type-specific changes in
the Epithelium were not picked up anymore by tascCODA
(Figure 5C). In the Lamina Propria, only seven effects, almost
all on groups of cell types, were detected by tascCODA

FIGURE 4 | Performance comparison for tascCODA on simulated data with two covariates. The setups including both or only one covariate in the model are shown
as x0 + x1 and x0, respectively. Simulations were evaluated for different effect sizes and aggregation levels ϕ. Performance measured by (A) Matthews correlation
coefficient (MCC). (B) False discovery rate (FDR) (C) Hamming distance between ground truth and determined effects.
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FIGURE 5 |Behavior of tascCODAonscRNA-seqdata for different valuesofϕ. All plots show the comparisonof healthy control samples to non-inflamed tissue samples ofUC
patients in thedata fromSmillie et al. (2019).White andblack circles on the cell lineage tree show the effects foundby tascCODA,which are also shownasbluebarson the right side of
eachplot. Thebarsbelow the treedepict effects on internal nodes,with lowerpositions in thediagramcorresponding tonodes closer to the root. For comparison, the redbars indicate
effects found by scCODA, which only operates on the tips of the tree. The green-shaded area shows the reference cell type that was used for both models. (A)When ϕ � 5,
tascCODA prefers placing effects near the tips of the tree and finds the exact same solution as scCODA for the Epithelium data. (B) In the Lamina Propria, tascCODA places some
effects on internal nodes, resulting in a sparser solution than the one obtained by scCODA (14 vs. 21 credible effects). (C)When ϕ � 0, tascCODA finds no credible effects in samples
from the Epithelium, and (D) only seven effects are necessary to summarize the large number of effects found by scCODA when looking at samples from the Lamina Propria.
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FIGURE 6 | Comparison of differentially abundant cell types found by tascCODA (blue, ϕ � 5), scCODA (red, FDR � 0.05), and Dirichlet regression (green, adjusted
padj < 0.05) between biopsies of healthy, non-inflamed and inflamed tissue. Colored bars for eachmethod indicate that a credible changewas found. (A) Among samples
from the intestinal epithelium, tascCODA and Dirichlet regression detect effects on lowly abundant epithelial cell types (Tuft, Goblet, Enteroendocrine) that were not
detected by scCODA. (B) In the Lamina Propria, only tascCODA detects a number of effects on some of the T and B cell types.
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(Figure 5D). Again, B and T cells were found as the cell lineages
that undergo the largest change between healthy and non-
inflamed UC biopsies. When testing healthy versus inflamed,
and non-inflamed versus inflamed biopsies, tascCODA also
detected more detailed results when ϕ � 5, and found fewer,
more generalizing effects with ϕ � 0 (Supplementary Figures
S11, S12; Supplementary Tables S1–S3).

3.2.2 Analysis of the HumanGutMicrobiome
Under Irritable Bowel Syndrome
We next considered a microbiome data example and focused on
another chronic disorder of the human gut, the Irritable Bowel
Syndrome (IBS). IBS is a functional bowel disorder characterized
by frequent abdominal pain, alteration of stool morphology and/
or frequency, with the absence of other gastrointestinal diseases
(i.e. colorectal cancer, inflammatory bowel disease). It is
estimated that about 10% of the general population experience
symptoms that can be classified as a subtype of Irritable Bowel
Syndrome, which include IBS-C (constipation), IBS-D (diarrhea),
IBS-M (mixed), or unspecified IBS (Ford et al. (2017)). While the
exact sources of the disease can be manifold, it has been
hypothesized that the gastroenterological symptoms may be
caused by a disturbed composition of the gut microbiome
(Duan et al. (2019); Ford et al. (2017)).

In particular, we analyzed 16S rRNA sequencing data of stool
samples collected from IBS patients and healthy controls, which
were obtained by Labus et al. (2017). The dataset consists of n �
52 samples, with 23 healthy controls, and 29 IBS patients
separated into 11 subjects with constipation (IBS-C), 10
subjects with diarrhea (IBS-D), 6 subjects with mixed
symptoms (IBS-M), and 2 subjects with unspecified symptoms.
Further, metadata information about age, sex and BMI of most
subjects is available. We re-processed the raw 16S rRNA
sequences with DADA2, version 1.21.0 (Callahan et al. (2016))
and did taxonomic assignment via the Silva database, version
138.1 (Quast et al. (2013); Yilmaz et al. (2014)), yielding a final
count table with 709 ASVs along with a taxonomic tree
(Supplementary Data 1.3.2). This data was then aggregated at
the genus level, resulting in a total of p � 91 known genera.

We applied tascCODA to the genus-level data, comparing
healthy and IBS subjects. To showcase the flexibility of
tascCODA, we analyzed the data with different covariate
setups, by including the other available metadata variables. As
a reference genus for scCODA and tascCODA, we chose Alistipes,
since it is a genus with relatively high presence and rather low
dispersion. For all analyses on this dataset, we decreased the mean
shrinkage in tascCODA to λ1 � 1, allowing us to find more subtle
effects.

We first used tascCODA to analyze the differences in the
gut microbial composition between healthy controls and IBS
patients (Figure 7, Supplementary Table S4). Favoring
generalization with ϕ � − 5, we found only a small decrease
of the phylum Firmicutes (Figure 7A). In the unbiased setting
(ϕ � 0), the previous effect on the phylum level was
substantiated to the Oscillospirales order. Additionally,
decreases of the Parabacteroides and Bacteroides genera are
found (Figure 7B). Setting ϕ � 5, thus favoring detailed
results, we discovered a decrease of the Ruminococcaceae
family, a subgroup of Oscillospirales, and multiple
decreasing genera with the strongest effects on
Parabacteroides and Bacteroides (Figure 7C). For
comparison, we also applied scCODA (FDR � 0.1) to the
same dataset, which also discovered a decrease of
Parabacteroides and Bacteroides, as well as three genera in
the Ruminococcaceae family. A decrease of Parabacteroides in
a subset of IBS patients was also found by Labus et al. (2017).
Also, a relative decrease of the order Bacteroidales, which
includes Parabacteroides and Bacteroides, was reported by
Nagel et al. (2016) and Jeffery et al. (2012). Decreasing shares
of Ruminococcaceae were also connected to IBS in multiple
studies (Durbán et al., 2012; Pozuelo et al., 2015).

To highlight the flexibilty of tascCODA, we next tried to
discover changes in the gut microbiome related to age, BMI,
gender, and IBS subtype. Before applying tascCODA, we
min-max normalized the two former covariates to obtain a
common scale for all covariates. We excluded three samples
with missing information on BMI. We conducted every
analysis three times with ϕ � − 5, 0, 5. When testing for
changes related to one of age, gender, or BMI alone, tascCODA

TABLE 1 | Mean squared logarithmic error (MSLE) and number of selected effects over five cross-validation splits for tascCODA with different parametrizations ϕ and
scCODA. Abbreviations for scenarios: Healthy (H), Non-inflamed (N), and Inflamed (I). With increasing ϕ, tascCODA selects more effects and on average improves its
predictive power. At ϕ � 5, tascCODA has equal or lower MSLE than scCODA and a similar number of selected effects.

Model tascCODA scCODA

Scenario ϕ −5 −1 0 1 5 -

Epithelium - H vs. N MSLE 142.22 142.16 142.18 138.56 134.36 134.96
Effects 0.0 0.0 0.0 1.2 3.2 2.4

Epithelium - H vs. I MSLE 167.46 163.60 160.68 158.06 154.64 154.44
Effects 0.0 1.6 2.6 3.2 8.2 10.8

Epithelium - N vs. I MSLE 173.94 174.10 174.10 175.86 177.26 174.78
Effects 0.0 0.0 0.0 0.2 3.6 5.2

LP - H vs. N MSLE 162.76 157.62 155.16 152.80 149.58 154.02
Effects 0.4 1.8 3.0 6.2 16.0 14.4

LP - H vs. I MSLE 188.58 182.96 178.88 176.02 173.32 173.40
Effects 0.0 1.8 4.8 7.8 17.8 17.4

LP - N vs. I MSLE 219.72 219.70 219.66 219.68 216.76 218.62
Effects 0.0 0.0 0.0 0.0 1.4 0.4
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FIGURE 7 | Credible changes found by tascCODA (λ1 � 1), comparing healthy controls and IBS patients in the genus-aggregated data of Labus et al. (2017). The
circles on nodes of the tree represent credible effects. (A) High-level aggregation with ϕ � − 5. (B) Unbiased aggregation (ϕ � 0). (C) Aggregation with bias towards the
leaves (ϕ � 5). Red genera show the credible effects found by scCODA (FDR � 0.1) on the genus level. The grey genus Alistipeswas used as the reference for tascCODA
and scCODA.
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was not able to discover any credible differences for any
aggregation bias. When testing on all four covariates
together, excluding interactions, tascCODA only reported
credible changes in the microbiome with respect to the IBS

subtype. Finally, including all possible variables, interactions
revealed that while a general negative effect was found
independent of gender, male IBS-D patients had a larger
depletion of Bacteroides than female patients.

FIGURE 8 | Credible changes found by tascCODA (λ1 � 1, ϕ � 5), simultaneously comparing healthy controls to all IBS subtypes in the genus-aggregated data of
Labus et al. (2017). The circles on nodes of the tree represent credible effects. The grey genus Alistipeswas used as the reference for tascCODA. (A) IBS-C (n � 11). (B)
IBS-D (n � 10). (C) IBS-M (n � 6). (D) IBS-unspecified (n � 2).
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Next, we restricted our analysis to testing for changes between
the four IBS subtypes and all other samples. The results shown in
Figure 8 and Supplementary Table S5 were obtained with ϕ � 5.
For patients experiencing constipation (IBS-C, Figure 8A),
decreases of Agathobacter, Bacteroides, Ruminococcus, and
Faecalibacterium, as well as an increase of Anaerostipes were
found by tascCODA. Conversely, diarrhea (IBS-D, Figure 8B)
was associated with a decrease in Parabacteroides, as well as a
large decrease in Bacteroides. Patients with mixed symptoms
(IBS-M, Figure 8C) were found to have increased numbers of
Blautia, in addition to a decrease of Parabacteroides and
Faecalibacterium, which each match with the observations
related to one of the two previous conditions. Finally, only a
small increase of Romboutsia was associated to IBS with
unspecified symptoms (IBS-unspecified, Figure 8D).

4 DISCUSSION

Associating changes in the structure of microbial communities or cell
type compositions with host or environmental covariates are
commonly investigated with amplicon or single-cell RNA
sequencing. With tascCODA, we have presented a fully Bayesian
method to determine such compositional changes that acknowledges
the hierarchical structure of the underlying microbial or cell type
abundances and simultaneously accounts for the compositional
nature of the data. By introducing tree-based penalization that
adapts to the structure of the tree, the tascCODA model is able to
accurately identify group-level changes with fewer parameters than
traditional individual feature-based approaches. Thanks to a scaled
variant of the spike-and-slab lasso prior (Ročková and George
(2018)), we were able to obtain sparse solutions that can favor
high-level aggregations or more detailed effects on a dynamic
range characterized by a single scaling parameter ϕ. The
tascCODA Python package seamlessly integrates into the scanpy
environment for scRNA-seq (Wolf et al. (2018)) and allows Bayesian
regression-like analyses with flexible covariate structures.

Through its ability to favor general trends or more detailed
solutions, tascCODA is able to provide a trade-off between model
sparsity and accuracy, which can be adjusted to reveal credible
associations on different levels of the hierarchy. We recapitulated
this behavior in synthetic benchmark scenarios, where focusing on
low aggregation levels allowed tascCODA to outperform state-of-
the-art methods in a differential abundance testing setup, while
effects that influenced the majority of features were recovered with
greater accuracy when we favored generalizing solutions. The
aggregation property further allows for more interpretable
models, detecting group-specific changes in the cell lineage or
microbial taxonomy. For instance, tascCODA determined B and
T cells as the main factors in cell composition changes of the
Lamina Propria of Ulcerative Colitis patients, while inflamed
epithelial tissue biopsies showed a depletion of Enterocytes.

Second, tascCODA can accommodate any linear combination
of normalized covariates, allowing for multi-faceted analysis of
complex relationships, while still producing highly sparse and
interpretable solutions. On synthetic data, we showed that
tascCODA was able to accurately distinguish the influence of

two covariates that perturbed the data in different ways. While we
did not detect credible relationships with the covariates age, sex
and BMI, tascCODA was also able to simultaneously identify
characteristic shifts in the gut microbiome for each subtype of
Irritable Bowel Syndrome.

The application range of tascCODA extends beyond the
taxonomic or expert-derived cell lineage tree structures used in
our real data applications. Genetically driven orderings such as
phylogenetic trees or cell type hierarchies obtained from clustering
algorithms, or approaches aimed at optimizing the predictiveness
of the hierarchical grouping (Quinn and Erb, 2019) may provide
more accurate results in differential abundance testing (see, e.g.,
Bichat et al. (2020) for further information).

While tascCODA provides a hierarchically adaptive extension
of a classical compositional modeling framework based on a fixed
aggregation level, extensions of the method could increase the
application range of tascCODA. First, tascCODA does not
account for the zero-inflation and overdispersion that is
common in microbial abundance data on the OTU/ASV level.
We avoided this challenge here by aggregating the amplicon data
to the genus level. Accounting for these properties within the
model, for example by using a zero-inflated Dirichlet-
Multinomial model (Tang and Chen (2019)), the Tweedie
family of distributions (Mallick et al. (2021)), or hard
thresholding on latent weights (Ren et al. (2020)), would allow
for even more fine-grained analyses. Second, the tascCODA
model currently places a sparsity-inducing spike-and-slab lasso
prior on all included covariates. A natural next step would be to
consider some covariates as confounding variables similar to
Zhou H. et al. (2021), reducing the number of latent
parameters, while restricting results to a few core influence
factors. Third, extending known efficient computational
methods for inference of spike-and-slab lasso priors (Bai et al.
(2020b); Ročková and George (2018)) to be used with our
compositional modeling framework could greatly reduce the
computational resources required for running tascCODA.

We believe that tascCODA, together with its implementation
in Python, represents a valuable addition to the growing toolbox
of compositional data modeling tools by providing a unifying
statistical way to model and analyze microbial and cell population
data in the presence of hierarchical side information.
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