Rheumatology
The Interdisciplinary Concept
Vol. 16

Series Editors
M. Schattenkirchner, Munich
F.-W. Hagena, Munich
Rheumatic Diseases and Sport

Editor

H.-W. Baenkler, Erlangen

27 figures and 46 tables, 1992
Rheumatology
The Interdisciplinary Concept

Drug Dosage
The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any change in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.

All rights reserved.
No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.

© Copyright 1992 by S. Karger AG, P.O. Box, CH–4009 Basel (Switzerland)
Printed in Switzerland on acid-free paper by Thür AG Offsetdruck, Pratteln
ISBN 3-8055-5425-7
Contents

Foreword VI
Preface VII

Budsayavith, Y. (Erlangen): Rheumatology and Sports Medicine. Relations and Points of Contact 1
Schuh, A.; Senn, E. (Munich): Climate and Rheumatic Diseases 22
Zimmermann, M. (Heidelberg): Physiology of Pain and Pain Therapy in the Musculo-Skeletal System 40
Seidl, O. (Munich): Psychosomatic Considerations in Physical Activity of Rheumatic Patients 59
Maisch, B. (Marburg): The Heart in Rheumatic Disease 81
Puhl, W. (Ulm); Maier, P. (Bad Waldsee); Günther, K.P. (Ulm): Effects of Physical Activity on Degenerative Joint Disease 129
Hirschfelder, H. (Erlangen): The Influence of Biomechanics on the Joints of Persons Participating in Sports Activities 142
Joisten, U.; Albrecht, H.J. (Oberammergau): Physical Activity and Spondylarthritis 153
Senn, E. (Munich): The Meaning of Sportive Elements for Physiotherapeutic Treatment of Rheumatic Diseases 160
von Wilmowsky, H. (Püttlingen): Treatment of the Physically Active Rheumatic Patient: A Pharmacotherapeutic Approach 170
Hagena, F.-W.; Zimmer, M. (Munich): The Rheumatic Patient with Joint Replacement and Sports 208
Krüger, K. (Munich): Rheumatoid Arthritis and Sports 219

Subject Index 228
Weather Sensitiveness of Rheumatics

In a group of average healthy persons, between 30 and 50% of the people claim to be sensitive to changes of the weather [Faust, 1973; Schaich, 1974]. However, the average course of health is about the same for people who claim to be sensitive and those who do not [Richner, 1976]; this supports the old statement [De Rudder, 1951] that all people react to the weather, but only weather-sensitive people relate it with the weather.

A person's statement to be 'sensitive to the weather' offers clear information about the structure of his/her personality. Already Curry [1951] and Lampert [1962] described weather caused types of human reaction. Recently the type of the weather sensitive was defined by the help of the 'Freiburger Persönlichkeitsinventar' [Geiger and Gensler, 1975; Faust, 1978]. Women call themselves more often 'weather-sensitive' than men, young people only to a small percentage; with increasing age, between 30 and 60, the rate rises up to 60% of the total population. These people name, referring to psychic symptoms, the following, by Faust [1976] in decreasing prevalence ordered, complaints: tiredness, ill-humor, unwillingness to work, lack of concentration, problems to fall asleep, nervosity, tendency to make mistakes, indisposition and fear.

During a study with 2,000 participants [Dirnagl, 1985], weather-sensitive and nonsensitive people were questioned about reasons and fre-
frequency of their visits to doctors. Symptoms or suspected diagnosis, being the cause of the visit to a doctor, showed that weather-sensitive people named 'rheumatic complaints', besides the symptoms of the so-called 'vegetative dystonia', most often.

Among rheumatics, weather sensitivity is far more spread than among the rest of the population; that is stated in many publications [e.g. Tromp, 1980]. Thompson questioned already in 1951 112 patients suffering from chronic polyarthritis and found out that 83% looked upon their symptoms as weather-related. Levis-Faning [1950] came to the same result: 61 of 369 patients blamed certain states of the weather for their pains. The numerous statistical surveys can be summarized to 75–90% of all rheumatics being weather-sensitive: weather and climate are supposed to play a central role in releasing or intensifying these states of pain.

Possible Meteorological Parameters and Climatic Conditions

People with average weather sensitivity, as well as people with rheumatic diseases come up with complaints about a falling off in health preferably in time and local connection with atmospheric disturbances, i.e. changes in weather or strong variation of particular, meteorological parameters from the seasonal weather course (cf. 'Weather, Climate and Rheumatism'). Also certain climatic conditions shall have effect on the frequency of complaints. The terms 'weather' and 'climate' differ in the following way: 'weather' is understood as a short-term state. As 'climate' is defined the mean state of atmosphere over a specific place, as well as the for this place characteristic average course of weather. Weather and climate are always composed of a certain combination of the meteorological parameters.

Change of Weather, Low-Pressure Area, High-Pressure Area

Variations from the average course of weather are quite common in the middle latitudes; the zone of western winds is quite often characterized by unstable weather. The drifts here are a consequence of moving low-pressure areas (cyclone) and high-pressure areas (anticyclone) combined with rushes of subtropical air far into the northern region, as well as cold air from the polar regions into the south. A low-pressure area is formed when warm masses of air meet air coming from the polar regions: Normally the temperature decreases from equator to pole parallel to the lati-
tude; the isotherms lie in parallel order. This balance is disturbed by the rush of warm and cold masses of air: in the atmosphere a flat temperature wave is generated. Therefore, when different air masses meet each other a deformation of the former even drift, which is called ‘front area’ (warm front) is formed. To do this the warm air moves over the cold air (slip up); the warm air is at the same time cooled down and condensates. The warm front is characterized by an area of rain in front, with stratus clouds and drizzle resp. rain. At the other side of the low-pressure area cold air slips at the same time under the warm air and lifts it rapidly; the cold front is created. Due to the fast lift of air it comes to fast cooling and strong condensation: Along the cold front cumulus clouds are formed with showers and hail. According to the earth’s rotation, a rotation of both fronts around the center of the wave disturbance is formed; the air pressure decreases towards the center. Thus, the general drift of the cyclones is formed. Within 24 h the cold front catches up with the warm front and the fronts close (occlusion). At this point of time the ‘aging process’ of the low-pressure area takes its course. The aged low-pressure area slows down its moving speed. The whirl grows weary, following air masses fill up the funnel, the air pressure increases and the cloud cover, and therefore the low-pressure area, breaks up.

The high-pressure areas (anticyclones) are described as ‘hill of cold, heavy air’ [Möller, 1973], on front- and backside the air moves down (slip down) and warms up. A high pressure area can reach the size of a continent (e.g. a Russian winter high) and remain stationary for weeks; normally small areas with high pressure follow the low-pressure areas of the general drift (intermediary high). The consequence is constantly changing weather.

Variation of Particular Meteorological Parameters

At each change of weather a large number of meteorological parameters change at the same time. To make a more uniform approach possible between this multifactorial process and its contingent effects on man, climatology summarizes the meteorological parameters into so-called ‘effect complexes’ (fig. 1).

The thermic effect complex is of special importance: It takes into consideration air temperature, air humidity, wind speed and infrared radiation. The generic term ‘air humidity’ has to be differentiated into relative air humidity and absolute air humidity, the so-called ‘steam pressure’: the relative air humidity (in percent) quotes the degree of the air’s satiation
with water steam. It shows, under the actual temperature, the still possible absorption of water steam by the air, whilst the steam pressure (in hPa) equals the water steam actually present in the air. The particular factors of the thermic effect complex – besides the weather change as a whole – take up a major place in medical-climatological causal research.

Weather, Climate and Rheumatism

Experimental Bases

Several authors have dealt with the effects of weather on rheumatics (table 1). As indicator for the influence in most cases the objective feeling of pain was referred to; acute states of pain under certain meteorological conditions, as well as increase of pain within the last 24 h before the occurrence of this meteorological situation, was examined.

In few studies besides subjective statements also ‘hard’ connections were considered; Hollander and Yeostros [1963] constructed a climate chamber which permitted to simulate certain weather situations for objective research. The symptoms were evaluated following the ‘clinical index’;
<table>
<thead>
<tr>
<th>Author</th>
<th>Rheumatic process</th>
<th>Connection between meteorological factors and weather situation</th>
<th>Methodics</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weitbracht and Simon, 1989</td>
<td>lumbal prolapse of disc, increase of pain</td>
<td>1) temperature decrease 2) humidity increase</td>
<td>114 patients, recording of clinical admission</td>
<td>accumulation of admission during the winter month, flow of cold air responsible for increase of pain, cause probably direct lumbal hypothermia</td>
</tr>
<tr>
<td>Harlfinger et al., 1986</td>
<td>arthritis, arthrosis, increase of pain (last 14 h)</td>
<td>1) passage of front 2) following advection of cold air (high pressure area with cold air) 3) weather situation with dynamic cold air advection</td>
<td>state of health during Smile test (24 h before), patients with rheumatic pain, > 1,600 interviews</td>
<td>assumed connection between weather and rheumatism; strongest sensations of pain during passage of front, they remain the day after, at cold air advection; patients can feel the upcoming weather (Smile test)</td>
</tr>
<tr>
<td>Wiebe et al., 1985</td>
<td>arthritis, increase of pain</td>
<td>increase of humidity</td>
<td>100 patients in the north of Holland</td>
<td>connection in summer stronger than in winter</td>
</tr>
<tr>
<td>Patberg et al., 1985</td>
<td>arthritis, intensification of pain</td>
<td>not only process of change, but also actual situation 1) decrease of temperature 2) cold 3) decrease of steam pressure 4) increase of humidity</td>
<td>100 patients with arthritis, pain, questioned over 1 year, lived in sea climate (Holland)</td>
<td>symptoms of arthritis are influenced by weather, but not the disease itself, pain in summer stronger than in winter (in winter, people stay more indoors; the steam pressure is inside higher than outside and the relative humidity is lower)</td>
</tr>
<tr>
<td>Latmann and Levi, 1980</td>
<td>arthritis, blood parameters for occurrence of inflammation – sedimentation – C-reactive protein</td>
<td>no connections</td>
<td>patients with arthritis, not pain, but objective blood parameters at the day when inflammation starts</td>
<td>weather influences symptoms of arthritis but not the inflammatory process, weather influences the personal well-being but not the disease itself</td>
</tr>
<tr>
<td>Author(s)</td>
<td>Disease</td>
<td>Symptoms</td>
<td>Environmental Factors</td>
<td>Method</td>
</tr>
<tr>
<td>----------</td>
<td>---------</td>
<td>----------</td>
<td>----------------------</td>
<td>--------</td>
</tr>
<tr>
<td>Sönnig et al., 1979</td>
<td>Arthritis, acute rheumatic attack, increase of pain</td>
<td>1) less warm air the day before, increase of cold air advection the following day, at the begin of cold air flow in, i.e. within the front 2) cold sea air 3) thunderstorms (strong vertical exchange movements), connection with change of ground near humidity milieu</td>
<td>123 patients, arthritis: first occurrence of inflammatory symptom after longer time</td>
<td></td>
</tr>
<tr>
<td>Hollander and Yeostros, 1963</td>
<td>Arthritis, symptoms according to clinical index</td>
<td>Falling air pressure with increasing humidity</td>
<td>Research in climate chamber</td>
<td>Hypothesis: normal tissue compensates falling pressure (intracellular fluid evacuates into the blood circulation, sick tissue retains liquid) → increased intracellular pressure → pain and swelling</td>
</tr>
<tr>
<td>Tromp, 1963</td>
<td>Pain release resp. intensification</td>
<td>Cold</td>
<td></td>
<td>Hypothesis: reason for pain increase is increase of viscosity of synovial liquid</td>
</tr>
<tr>
<td>Barcal et al., 1961</td>
<td>Arthritis, arthrosis, intensification of pain</td>
<td>1) front side of low pressure areas 2) change of weather 3) not: existing bad weather</td>
<td>>100 patients, subjective complaints, objective state</td>
<td>Announcing pains 15 h before change of weather</td>
</tr>
<tr>
<td>Pehl and Weskott, 1955</td>
<td>Rheumatics: intensification of pain</td>
<td>1) change of weather 2) decrease of temperature 3) increase of humidity 4) wetness and cold 5) increase and decrease of air pressure</td>
<td>100 patients</td>
<td>Significant weather sensitiveness</td>
</tr>
<tr>
<td>De Rudder, 1952</td>
<td>Rheumatic disposition</td>
<td>1) humid cold 2) lack of sun</td>
<td></td>
<td>Experience that patients come back from journeys to southern countries without rheumatic complaints</td>
</tr>
</tbody>
</table>
this index contains according to Hill [1966] the calculation of arthritis activity based on joint stiffness, the amount of ASA necessary to soothe the pain, firmness of the hand’s clasp, walking time for a standardized distance and other not relevant measurements of another collection of parameters, the so-called ‘articular index’.

Exceeding that, in the past years Latman and Levi [1980] measured the blood parameters BSG and CRP (blood sedimentation rate and C-reactive protein), to correlate the course of inflammation with the actual weather situation. Weitbrecht and Simon [1989] eventually correlated the clinical admission of people with lumbar prolapse of disk and the weather situation. Several authors also published bibliographies (table 2). Studies, based on subjective statements of pain, as well as studies based on measurable states of inflammation of arthritis were described.

Except for one study [Latman and Levi, 1980], each of the in table 1 listed experimentally based studies points out a correlation between a defi-

<table>
<thead>
<tr>
<th>Author</th>
<th>Rheumatic process</th>
<th>Connection between meteorological factors and weather situation</th>
<th>Methodics</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Latman, 1987</td>
<td>arthritis: first signs of inflammation</td>
<td>different parameters</td>
<td>literature references</td>
<td>data material is not evident enough to draw serious conclusions, methodologies are often questionable</td>
</tr>
<tr>
<td>Dirnagl, 1978</td>
<td>rheumatics: pain frequency and intensity</td>
<td>1) rapid change of weather combined with</td>
<td>literature references</td>
<td>weather sensitiveness of rheumatics cannot be traced back to standardized weather situation. individually different ways of reaction are assumed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2) decrease of temperature</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pilger, 1970</td>
<td>arthritis: intensification of pain</td>
<td>contradictory statements 1) humid cold</td>
<td>literature references</td>
<td>many studies uncontrollable</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2) lack of sun</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3) change of weather</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4) falling pressure with increasing humidity at the same time</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
nite meteorological situation or a certain course of weather: The frequency of pain is increased when the course of weather changes: The sudden change of weather proceeds from high-pressure area to low-pressure area; in the beginning of cold air influx, i.e. within the cold front range, the most complaints about pain are found [Sönning et al., 1979]. During the passage of the front more cold air is brought up into the low-pressure area; in the middle latitudes it is normally humid cold sea air. The major reason is seen either in the cold air advection [Harlfinger et al., 1986; Sönning et al., 1979], or in increase of humidity [Pehl and Weskott, 1955; Wiehe et al., 1985]. This temperature decrease at the front side of a low-pressure area [Barcal et al., 1961], with increase of humidity at the same time, is mainly held responsible for the increasing frequency of pain. During the sudden change of weather with the increase in humidity, the air pressure drops. The connection of these two parameters shall also cause a deterioration of the symptoms – measured at clinical index [Hollander and Yeostros, 1963]: At changes in the climate chamber the clinical index only increased on the combination of falling barometric pressure and increasing air humidity. Sönning et al. [1979] found in addition to that an increased pain frequency at days with thunderstorms; they too see the connection in the change of temperature-humidity milieu.

Some studies do not take the complex process of changing weather – meaning the simultaneous change of several parameters – into consideration, but hold responsible single meteorological parameters. Tromp [1963] takes cold in general to be a pain-releasing or intensifying parameter. In the same way already De Rudder [1952], as well as Pilger [1970], believed humid cold and lack of sun to be the main release.

The above listed studies substantiate unanimously the increase of pain frequency at changes of weather, i.e. approaching low-pressure areas in connection with decrease in temperature and increase of relative humidity. Contradictory statements can however be found: Fuss [1981] gives a tendency to pain increase at rising temperature, based on her study; Pilger [1970] points out, following his literature investigation, that many authors particularly claim they did not find any influence of air humidity at all. On the other hand, other authors [Dirnagl, 1985] assume the content of absolute air humidity (steam pressure) to be the really relevant figure; Flach [1938] described singular examples that attacks of pain occurred particularly when the steam pressure in comparison to its normal level decreases. To refer to the steam pressure as indicator for pain stimulating processes has its justification: as rheumatic pain occurs outside buildings as well as
inside, one has to look for meteorological parameters which change inside parallel to outside. Entering a room, e.g. the air temperature, air movement and relative humidity change, not the absolute humidity. Unfortunately the influence of steam pressure on rheumatic processes was in none of the controlled studies pursued.

Interpreting the literature, utmost caution is indicated, not only in terms of meteorological process, but also looking at the development of disease: it cannot always be clarified upon which specific form of disease the research was done in the described study. The majority of studies deals with 'rheumatoid arthritis', some authors however only talk about 'rheumatism'; a differentiation between inflammatory and degenerative clinical picture is not made.

The question, whether not only the weather, but also the average state of atmosphere, i.e. the climate, can be correlated with the occurrence and deterioration of rheumatic diseases, has yet not been finally clarified: Lawrence [1963] describes – based on epidemiological surveys – that arthritis can be found most often between 50° and 60° northern latitude, and that it decreases outside this zone in higher or lower latitudes. That corresponds with the figures in table 3, according to which the numbers for England and Scandinavia are the highest (4–7%), decreasing to the north (Alaska 1%) and near the equator, Puerto Rico (0.92%). In the Federal Republic of Germany about 1 million people (1.6%) suffer from chronic polyarthritis; 0.7% of the total population, i.e. 419,016 people in 1985, claimed medical or professional rehabilitation measures because of rheumatic diseases [Mikrozensus, 1987]. The results of surveys by Mendez-Bryan et al. [1963] in Puerto Rico showed a significantly smaller incidence of arthritis compared with studies in temperate climate zones; there the lowest rate anyway was found. In two later studies, Lawrence [1966] and Lawrence et al. [1966] could not find differences between the population of Middle America (18° n. lat.) and Europe (54° n. lat.) and between the inhabitants of Jamaica and Southern England (table 4).

Studies dealing explicitly with climatic influences in degenerative changes more or less do not exist. One exception is described by Lawrence [1977] in his review, though without reference: According to that, among the population in Jamaica's warm climate (18° n. lat.) only 21% degenerative changes could be found, whilst the percentage of North England's inhabitants (52° n. lat.) is around 50%.

Already in 1966, Hill pointed out that the evidence of the so far existing studies is reduced by the fact that there were no standardized diagnosis
criteria and no standardized selection of the population examined; these studies therefore did not allow definite conclusions. The deficit in controlled, worldwide coordinated studies of connections between rheumatic diseases and climatic conditions could not be solved until the present day.

Lawrence [1969] and Fleming et al. [1976] report in their studies that the pain frequency with chronic polyarthritis is also influenced by the season, pointing out the summer and warmth as positive, coolness and winter as negative; Patberg et al. [1985] note in their study with 100 arthritis patients a stronger pain increase in summer than in winter (table 1). The authors explain this assuming that meteorological factors affect the body mainly in summer and less in winter, as in winter one is less outside and more often inside buildings, where the climate, compared to that outside, differs in almost all meteorological parameters: mainly there is less relative humidity inside.

Table 3. Arthritis frequency in different climates and different parallels of latitude

<table>
<thead>
<tr>
<th>Population, latitude</th>
<th>Arthritis incidence rate</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>50–60° n.L.</td>
<td>‘most frequently’</td>
<td>Lawrence, 1963</td>
</tr>
<tr>
<td>Federal Republic of Germany</td>
<td>1.6%</td>
<td>Microcensus, 1987</td>
</tr>
<tr>
<td>Puerto Rico</td>
<td>0.92%</td>
<td>Mendez-Bryan et al., 1963</td>
</tr>
<tr>
<td>England, Scandinavia</td>
<td>4–7%</td>
<td>Mikkelsen, 1966</td>
</tr>
<tr>
<td>Africa, near equator</td>
<td>‘minor incidence’</td>
<td>McKinley, 1967</td>
</tr>
<tr>
<td>North America</td>
<td>3.2%</td>
<td>Engel and Burch, 1967</td>
</tr>
<tr>
<td>Alaska</td>
<td>1.0%</td>
<td>Blumberg et al., 1961</td>
</tr>
</tbody>
</table>

Table 4. Comparisons of arthritis frequency between different populations

<table>
<thead>
<tr>
<th>Population, latitude</th>
<th>Arthritis incidence rate</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>America and Europe</td>
<td>no differences</td>
<td>Lawrence et al., 1966</td>
</tr>
<tr>
<td>between 18 and 54° n.L.</td>
<td>no differences</td>
<td>Lawrence et al., 1966</td>
</tr>
<tr>
<td>Jamaica and Southern England</td>
<td>no differences</td>
<td>Lawrence et al., 1966</td>
</tr>
<tr>
<td>Red Indians in</td>
<td>pain incidence higher in</td>
<td>Burch, 1966, quot.</td>
</tr>
<tr>
<td>Montana (48° n.L.) and</td>
<td>the north (Montana)</td>
<td>acc. to Pilger, 1970</td>
</tr>
<tr>
<td>Arizona (33° n.L.)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Despite these different statements, patients with rheumatic diseases are sent in regions with dry-warm climate only based on 'practical knowledge'. Hill [1966] supposed that the little changes in weather in these regions have a positive influence on the 'weather sensitivity' of rheumatics; convincing physiological reasons for the improvement of the complaints do not yet exist.

Hypotheses about Influencing the Rheumatic Process

Considering the connection weather-rheumatic process, analyzing the effectors, i.e. the meteorological parameters and their interrelationship, effect priorities result for the temperature-humidity milieu. Receptors for changes in temperature-humidity milieu are at first the body’s periphery and the respiratory system: skin and upper respiratory tract react directly on changes in the environment’s temperature and humidity.

Most convincing are those hypotheses about influence of weather and climate on rheumatic diseases, which establish the reference to the patient’s sensitiveness to cold (fig. 2): Latman [1987] and Rothschild and Masi [1982] proceed on the assumption that a short stay in strong cold or a
longer stay in a cool environment causes a temperature decrease in the joint. As the joints are not covered by protective muscle or fatty tissue, the temperature of synovial liquid falls faster than rectal or muscle temperature. The synovial liquid becomes the more viscous the lower the temperature is [Hertel and Ingenpass, 1974]. This temperature decrease of synovial liquid causes a greater stiffness of the joints [Hunter et al., 1952]. Tromp [1963] also figures the increase in viscosity of synovial liquid to be a reason for the pain increase. It is known [Tromp, 1963] that cold environment condition lowers the hexosamine output of healthy people. In empiric studies, Tromp and Bonna [1966] found that the hexosamine content in rheumatic's urine was significantly lower than in healthy person's. The authors concluded that rheumatic pains are the consequence of low environment temperatures which lead to a concentration of hexosamine in the synovial liquid and therefore to an increase in viscosity. By that the joint is additionally limited in its movability: pain is the consequence.

Hollander and Yeostros [1963] point out in their hypothesis that pain is increased when the air pressure falls, and at the same time the relative humidity grows, as follows: Normal tissue is able to compensate falling air pressure by evacuating intracellular liquid into the blood circulation. Afflicted tissue, however, is not as permeable and retains the liquid. Therefore, increased pressure exists in afflicted tissue, compared with healthy tissue. This pressure gradient leads to increased pain and to the swelling of the afflicted tissue. All authors though leave open which meaning the increasing air humidity has in combination with falling temperature or falling air pressure.

Conclusion

Certain weather conditions lead with high probability to increase of frequency and intensity of pain, the weather influencing the symptoms of rheumatic diseases (pain, well-being), though not the disease itself: no connections were found with objective parameters (e.g. inflammatory factors). The weather sensitiveness of rheumatics cannot be drawn back to a homogeneous meteorological process; the reactions are individually different. Most often, increase in pain frequency and intensity correlates with a change of weather in the form of an approaching low-pressure area combined with temperature decrease and increasing relative humidity (fig. 3). Additionally, the releasing, resp. intensifying effect of coldness, particularly humid cold and lack of sun, on pain can be proven.
Climate Therapy with Rheumatic Diseases

The climate therapy of rheumatic diseases has to express as major goal the prophylaxis against weather sensitiveness. By goal-oriented endurance training, with cold adaptation at the same time – within the scope of a terrain cure under cool conditions – weather sensitiveness can be significantly reduced [Schuh, 1989]. Base has to be a cautious acclimatization to temperature influences and variations, which is achieved by exposition to outdoor conditions, and slight hardening against cold stimuli.

The reduction of weather sensitiveness by acclimatization to climatic stimuli is also an aspect of the thalassotherapy. In his literature review, Jordan [1978] describes the contemporary state of knowledge concerning thalassotherapy of chronic polyarthritis and concludes that climate therapy on cool ocean coasts can be considered as prophylactic and therapeutic ‘hardening measure’ in the sense of a ‘cold desensitization’, although there are not enough secured facts.
In climate therapy in middle and high mountain regions, besides the treatment of skin diseases, the treatment of rheumatic diseases is in the foreground: to treat diseases of the inflammatory-rheumatic form even in 1934 a clinic for rheumatics in Davos existed [Neergard, 1934]. Some of the earlier authors [Amelung and Evers, 1962; Böni, 1959] write about positive results treating PCP; experimental studies do until today hardly exist. An exception is Fellmann's study [1972], in which, in a study with 30 patients suffering from PCP and morbus Bechterew, he could prove a subjective success of the climate cure: the cure's success was rated higher by the patients than what could be objectively found. The comparison of the objectively measurable results with other, with these diseases not so usual forms of climate therapy, leads to the conclusion that the climate cure can positively influence the course of disease of chronic-inflammatory rheumatic diseases and of the progressive-chronic polyarthritis, but still does not reach the success of the other therapeutical measures. Unfortunately, in the study it is not pointed out which elements the described climate cure consisted of.

The climate-therapeutical exposition method which seems, according to the nowadays state of knowledge and besides the hardening, to be the actual agent of climate therapy, is the heliotherapy. The body is exposed to the sun. With heliotherapy, adaptations in a variety of levels are to be achieved; one of the most known goals is an increase in vitamin D production. In his review paper, Peter [1990] summarizes the actual state of knowledge on therapeutic effects of ultraviolet, resp. heliotherapy treating locomotor and support system. According to Peter [1986, 1989], inflammatory activity and pain intensity of chronic polyarthritis is improved by whole-body ultraviolet radiation in the same way as by moor-baths; also Grigoriewa et al. [1987, quot. acc. to Peter, 1990] report a reduction of inflammatory process and improvement of joint function after increasingly dosed whole-body radiation. Peter lists in his paper also a number of recently published studies [e.g. Bühring, 1988 and Lemke et al., 1988, both quot. acc. to Peter, 1990], which confirm that heliotherapy for a variety of diseases of bone, like osteomalacia and osteoporosis, still has its justification. The mode of action of ultraviolet radiation on rheumatic diseases is still relatively unknown. According to Peter [1989], an unspecific stimulation of the immune regulation can be supposed: amongst others the fall of increased immune complex values and of immunoglobulin G to normal values and the increase of the at first decreased number of T lymphocytes is described. Although herewith first results are presented, there is still research and the securing of results to be done, concerning therapeutical
success of heliotherapy and the physiological details it is based on, particularly in terms of arthritis.

In contrast to the variety of climate-therapeutical elements within a climate cure, in a therapeutical sense the long-term change into a different climate, according to today's state of knowledge, cannot be recommended: the knowledge so far still has to be worked upon.

Outlook

The influence of weather and climate on rheumatic diseases can, at least in terms of intensifying pain, be looked upon as secured; the deterioration of health state cannot be definitely correlated with certain meteorological elements.
logical parameters or weather conditions. It is obvious that weather-caused pain additionally stresses the course of disease of rheumatics. However, the relevance of weather influences on rheumatic diseases together with other possible reasons have to be integrated into a common system of references (fig. 4). In the complete course of rheumatic diseases weather-caused influences only form a small part besides many other influences.

References

Fuss J: Der Einfluss des Wetters auf das Schmerzempfinden der Rheumakranken; Diss Düsseldorf 1981.

Schuh A: Das Krankheitsbild des Trainingsmangels und seine Behandlung durch Klimatherapie in Form einer Terrainkur unter kühlen Bedingungen; Habschr München 1989.

Angela Schuh, MD, PhD (Biol.), MSc (Met.), Institute of Medical Balneology and Climatology, Ludwig-Maximilians-Universität München, Marchioninistrasse 17, D-W–8000 München 70 (FRG)
Subject Index

Absolute air humidity 24
ACE inhibitors 89
Acetabulum 146
Acetaminophen, anti-inflammatory treatment 181, 182, 185
Acetylsalicylic acid 43, 44
ACTH stimulation, adrenal cortex 176, 177
Acute fibrinoid exudation 95, 96
Acute heart failure 83
Adrenal cortex suppression 176
Adrenal hormones 15
Adrenaline 15
Adrenoceptors 90, 91
Aerobics 67, 70, 71, 162, 165, 220
Age and juvenile chronic arthritis 118, 119
Aggression and psychosomatics 61–71
Analgesics, treatment of inflammatory-rheumatic diseases 181, 182, 185, 186
Ankle joint, clinical examination 150
Antibiotics 202–205
Antibodies 6, 7, 13, 91–93, 97–99, 101, 103–105, 109
monoclonal 195, 196
Antibody therapy 193–196
Antidromic vasodilatation 46
Antigen-presenting cells 189, 190
Antigens 8, 9, 98, 189–191
Anti-HLA class II antibodies, immunomodulation 195
Anti-idiotypic antibodies 194, 195
Anti-idiotypic network 9
Anti-M7 proteins 91
Antimalarials 179, 185
Anxiety 68, 70
Aortic regurgitation 107
Arachidonic acid 45
Arrhythmias 93
Arthritis 200, 204
Arthritis, see Rheumatoid arthritis
Arthroplasty 209
hip 135–138
Articular index 28
Aschoff nodules 95, 96
Athlete therapy 153–158
Atrial natriuretic peptide 89, 90
Autonomic nervous system 89, 90
Autoreactivity hypothesis 87
Azathioprine 179, 180
B cells, immunoglobulins 191–195
Back pain 167, 168
Bacteria, rheumatic diseases 200
Badminton 133
Bang nodule 95, 96
Bechterew’s disease, see Spondylitis ankylosans
Benzathine penicillin G 203, 204
Benzodiazepines 184
Beta adrenoceptors 90
Bicycle riding 123, 124, 135, 164
Biomechanics, joints 142–152
Bowling 133
Bradykinin 43, 48
Brain 50
’Brain-endorphin hypothesis’ 67
Build-up, sports training 161
C fibers 45
Calcitonin gene related peptide 45
Calcium homeostasis 86, 87
Cardiac amyloidosis 101
<table>
<thead>
<tr>
<th>Subject Index</th>
<th>229</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cartilage</td>
<td>142, 143</td>
</tr>
<tr>
<td>CD2 cells</td>
<td>190</td>
</tr>
<tr>
<td>CD3 cells</td>
<td>190</td>
</tr>
<tr>
<td>CD4 antigens, rheumatic arthritis</td>
<td>196</td>
</tr>
<tr>
<td>CD4 cells</td>
<td>12, 13, 15</td>
</tr>
<tr>
<td>CD8 cells</td>
<td>12, 13, 15, 191</td>
</tr>
<tr>
<td>Ceftriaxone, Lyme borreliosis</td>
<td>204</td>
</tr>
<tr>
<td>Cellular immunity</td>
<td>98</td>
</tr>
<tr>
<td>Central nervous system</td>
<td>7, 11, 51-54</td>
</tr>
<tr>
<td>Chlamydia bacteria</td>
<td>200</td>
</tr>
<tr>
<td>Chloroquine</td>
<td>180, 185</td>
</tr>
<tr>
<td>Chronic arthritides, inflammatory bowel diseases</td>
<td>121</td>
</tr>
<tr>
<td>Chronic heart failure</td>
<td>83</td>
</tr>
<tr>
<td>Chronic polyarthritids</td>
<td>35, 36 99-101</td>
</tr>
<tr>
<td>Ciclosporin A</td>
<td>178, 179</td>
</tr>
<tr>
<td>Circulatory failure</td>
<td>83</td>
</tr>
<tr>
<td>Climate, effect on rheumatic diseases</td>
<td>22-37</td>
</tr>
<tr>
<td>Climate therapy</td>
<td>34-36</td>
</tr>
<tr>
<td>Clinical index</td>
<td>25, 29</td>
</tr>
<tr>
<td>Clone</td>
<td>9, 10</td>
</tr>
<tr>
<td>Cold</td>
<td>29</td>
</tr>
<tr>
<td>Cold desensitization</td>
<td>34-36</td>
</tr>
<tr>
<td>Cold front</td>
<td>24</td>
</tr>
<tr>
<td>Collagen</td>
<td>87</td>
</tr>
<tr>
<td>Collagen damage hypothesis</td>
<td>87</td>
</tr>
<tr>
<td>Collagen diseases</td>
<td>101-106</td>
</tr>
<tr>
<td>Colony-stimulating factor</td>
<td>100</td>
</tr>
<tr>
<td>Compensatory lordoses, clinical examination</td>
<td>149</td>
</tr>
<tr>
<td>Competence signal</td>
<td>88</td>
</tr>
<tr>
<td>Compression neuropathia</td>
<td>47</td>
</tr>
<tr>
<td>Congestive heart failure, see Heart failure</td>
<td></td>
</tr>
<tr>
<td>Coordination and sports activity</td>
<td>156</td>
</tr>
<tr>
<td>Coronaritis</td>
<td>102</td>
</tr>
<tr>
<td>Coronary arteries</td>
<td>105, 106</td>
</tr>
<tr>
<td>Coronary heart disease</td>
<td>110</td>
</tr>
<tr>
<td>Corticosteroids</td>
<td>106</td>
</tr>
<tr>
<td>Cortisol</td>
<td>10, 14</td>
</tr>
<tr>
<td>Cortisone administration</td>
<td>176</td>
</tr>
<tr>
<td>CREST syndrome</td>
<td>108-110</td>
</tr>
<tr>
<td>Crohn's disease</td>
<td>193, 194</td>
</tr>
<tr>
<td>Cross-country skiing</td>
<td>124, 125, 133, 136, 157, 158, 164, 216</td>
</tr>
<tr>
<td>'Cushing level'</td>
<td>176, 177</td>
</tr>
<tr>
<td>Cyclic adenosine monophosphate</td>
<td>90</td>
</tr>
<tr>
<td>Cyclo-oxygenase</td>
<td>43, 44</td>
</tr>
<tr>
<td>Cyclophosphamide, alkalizing substance</td>
<td>178, 179</td>
</tr>
<tr>
<td>Cytokines, immunomodulation</td>
<td>191, 196-199</td>
</tr>
<tr>
<td>Cytoskeleton</td>
<td>88, 89</td>
</tr>
<tr>
<td>Dancing</td>
<td>124</td>
</tr>
<tr>
<td>Deafferentation pain</td>
<td>40</td>
</tr>
<tr>
<td>Defense mechanisms</td>
<td>6-9, 14-17</td>
</tr>
<tr>
<td>Degenerative joint disease, effect of physical activity</td>
<td>129-138</td>
</tr>
<tr>
<td>Delayed-type hypersensitivity</td>
<td>98</td>
</tr>
<tr>
<td>Depression</td>
<td>67, 68, 70</td>
</tr>
<tr>
<td>Diastolic dysfunction</td>
<td>86, 87</td>
</tr>
<tr>
<td>Disease course hypothesis</td>
<td>64, 66</td>
</tr>
<tr>
<td>Disease-modifying agents</td>
<td>178</td>
</tr>
<tr>
<td>Disease onset hypothesis</td>
<td>64, 65</td>
</tr>
<tr>
<td>Dorsal horn</td>
<td>52-54</td>
</tr>
<tr>
<td>Downhill skiing</td>
<td>134</td>
</tr>
<tr>
<td>Doxycycline, Lyme borreliosis</td>
<td>204</td>
</tr>
<tr>
<td>Drug therapy, rheumatic disease</td>
<td>170-186</td>
</tr>
<tr>
<td>Dysregulation pain</td>
<td>40</td>
</tr>
<tr>
<td>Early-onset pauciartristis</td>
<td>120, 121</td>
</tr>
<tr>
<td>Ejection fraction</td>
<td>84</td>
</tr>
<tr>
<td>Elbow joint, clinical examination</td>
<td>149</td>
</tr>
<tr>
<td>EMG levels</td>
<td>48</td>
</tr>
<tr>
<td>Endoprostheses, sports activities</td>
<td>209, 217</td>
</tr>
<tr>
<td>Endorphins</td>
<td>67</td>
</tr>
<tr>
<td>Endothelial cells</td>
<td>100</td>
</tr>
<tr>
<td>Endurance training</td>
<td>221</td>
</tr>
<tr>
<td>Energy production</td>
<td>84-86</td>
</tr>
<tr>
<td>Enthesopathies</td>
<td>175, 177</td>
</tr>
<tr>
<td>drug therapy</td>
<td>172</td>
</tr>
<tr>
<td>Examination, clinical, sports activities</td>
<td>148, 150</td>
</tr>
<tr>
<td>Exercise</td>
<td></td>
</tr>
<tr>
<td>immune diseases</td>
<td>16, 17</td>
</tr>
<tr>
<td>immune system</td>
<td>11-18</td>
</tr>
<tr>
<td>osteoarthritis</td>
<td>130-132</td>
</tr>
<tr>
<td>psychosomatics</td>
<td>66-71</td>
</tr>
<tr>
<td>Exhaustion</td>
<td>83</td>
</tr>
<tr>
<td>Expiratory position</td>
<td>155</td>
</tr>
<tr>
<td>Extracellular matrix</td>
<td>91</td>
</tr>
<tr>
<td>Factor VIII</td>
<td>195</td>
</tr>
<tr>
<td>Fibrin</td>
<td>99</td>
</tr>
<tr>
<td>Fibroblasts</td>
<td>87, 88</td>
</tr>
<tr>
<td>Fibromyalgia</td>
<td>167, 183</td>
</tr>
<tr>
<td>Fibrosis</td>
<td>87, 88, 110</td>
</tr>
<tr>
<td>Fitness center visit</td>
<td>165</td>
</tr>
<tr>
<td>Foot, clinical examination</td>
<td>150</td>
</tr>
<tr>
<td>Gait pattern, examination</td>
<td>148</td>
</tr>
<tr>
<td>Gamma interferon</td>
<td>179</td>
</tr>
<tr>
<td>Gi protein</td>
<td>90</td>
</tr>
<tr>
<td>Gold</td>
<td>179-181</td>
</tr>
<tr>
<td>Gold sodium thiomalate</td>
<td>46</td>
</tr>
<tr>
<td>Golfing</td>
<td>136</td>
</tr>
<tr>
<td>Gonarthritis</td>
<td>133</td>
</tr>
</tbody>
</table>
Subject Index

Gonococcal arthritis 202
Granulocytes 14
Growth factors 87, 88
Gymnastics 135, 151, 165, 215
 effect on endoprosthesis 215

Heart failure 82–92
Heliotherapy 35, 36
Heritability coefficients 63
Hexosamine 33
High-pressure weather area 23, 24
Hiking 135
Hip arthroplasty, physical activity 135–138
Hips, clinical examination 149, 150
HLA-B27-associated chronic arthritis 121
HLA class II antigens 199
HLA-DR2 99
HLA-DR4+ 99
Hormones, immune system 10, 15
Horseracing 133
Hostility, psychosomatics 61–64
Humoral immunity 98, 99
Humpback formation 154
Hypertension 107, 108

Ice skating 134
Idiopathic thrombocytopenic purpura 194
IgA 7
IgE 8
IgG 8, 105
IgM 8
IgM-rheumatoid factor positive – seropositive – adult polyarthritis 120
Immune complexes 8, 9, 103, 104
Immune response, regulation 9–11
Immune system
 exercise 5–18
 immunomodulation 188–205
Immunodeficiency 16, 17
Immunoglobulins 8, 13, 191–195
Immunopathy 8
Immunosuppressive drugs 178, 185
Impulse loading 150–152
Infections 4
 arthritis 200–205
Inflammatory rheumatism 1, 2
Insulin-derived growth factor 88
Insulin receptors 14, 15
Interferons 199
Interleukin 1, inflammatory rheumatic processes 197, 198
Interleukin 2 190, 191, 193
Interleukin 6, inflammatory rheumatic processes 198
Isometric strengthening 221
Isotonic strengthening 221

Jogging 134, 136, 164
Joint affection 167
Joint cooling 166
Joints 41, 42, 119–126, 129–138
 biomechanics 142–152
Jones criteria 94
Juvenile chronic arthritis 118–126
Juvenile psoriatic arthritis 121
Juvenile spondarthritis 121

Knee joint region, clinical examination 150
Kyphoses 154
 clinical examination 149

Latitudes 30
Leukocytes 15, 16
Leukocytosis 15
Ligament-stabilized joints 122
Light, immune system 11
Locomotor system 118, 119
 diseases 170, 171
Locus of control theory 69
Low-pressure weather area 23, 24
Lumbalgias, clinical examination 149
Lumbar scoliosis, result of false postures 146, 147
Lyne borrelia 201, 202
 treatment 204, 205
Lymphocytes, exercise 12

Major conflict group 63
Major histocompatibility molecules 188, 189
Mechanical overload hypothesis 87
Mediator and growth factor hypothesis 87
Memory 9
Metabolism 16
Metamizole, anti-inflammatory treatment 181
Methotrexate 178–180
Mitrail stenosis 94, 95
Mobility, physical therapy 155, 156
Monoclonal antibodies, see Antibodies, monoclonal
Morphine 53, 54, 182
Motor control dysfunction 48–51
Motoric apparatus 61
Motoric basic features 155
Motoric strength, improvement 155
Mountain hiking, therapeutic sport 163, 164
Mountain tours 134
Subject Index

Mucosa-associated lymphatic tissue 7
Muscle-aggressive granuloma 95, 96
Muscle hypertonus 48-50
Muscle massage 166
Muscle stretching 166
Muscle tonus hypothesis 61
Muscular force 146
Musculoskeletal system pain 40-54
Myocarditis 91-95, 101-103
Myocardium, diseased 87, 88
Myolemma 91
Myositis 180
Myotendoperiostosis 167
Myotonolytics 182, 183, 185
Neighboring joints, effect of mechanical impairment 146-148
Nerve axons 47
Nerve sprouting 47, 48
Nerve transection 47, 48
‘Neuro-endocrino-psycho-immunology’ 11
Neurogenic immobilization 50
Neurogenic inflammation 45
Neurohumoral factors 89, 90
Neuroma 47, 48
Neuropathic pain 40, 47, 48
Neuropeptides 53
Neurotransmitters 51-54
‘Neutril-nil method’ of examination 148
Neutrophils 15
Nociceptor pain 40, 41-43, 51-54
Nociceptors 41-43
Nonconflict group 63
Nongonococcal arthritis 202, 203
Nonspecific defense mechanisms, immune system 187, 188
Nonsteroidal anti-inflammatory drugs 171-174, 185
Noradrenaline 90
Nutrition, immune system 10, 11
Opioids 46
Oral gold 179-181
Osteoarthritis 70, 129-132, 167
Osteoporosis 175, 181
Pain 51-54, 67, 68
musculoskeletal system 40-54
weather 25, 29, 31-33
Parenteral gold 179, 180
Passive physiotherapy 166
Pauciartritis 120, 121, 125, 126
D-Penicillamine 179, 180
Pericarditis 93, 102, 103, 107
Perseverance training 155
Photosensitization inducement 180
Physical activity 3, 17, 82
degenerative joint disease 129-138
rheumatoid arthritis 59-71
spondylarthritids 153-158
Physical education 124, 125
Physiotherapy 121
integration of sportive elements 160-168
Platelet-derived growth factor 88
Platelets 15
Polyarthritis 34, 35, 46, 120, 121, 125, 126
Polyclonal human immunoglobulins 193-195
Progressive systemic sclerosis 107-110
Prostaglandins 43
inhibition of synthesis 171, 172
Prothesis 135-137, 209-217
Psoriasis arthritis 62
Psychic well-being, effect of physical activity 156, 157
Psychoimmunological hypothesis 65
Psychopharmacological agents 183-185
Psychosomatic pain 40
Psychosomatics, inflammatory rheumatic diseases 60-70
Reactive arthritis 200
treatment 203
Reactive pain 51
Regulator cells 9
Reiter syndrome 106, 107, 201, 203
Relative air humidity 24, 29
Renin-angiotensin-aldosterone system 89
Renin-angiotensin system 108
Respiration, restriction 155
Retropatellar arthritis 147
Rheumatic carditis 95, 96
Rheumatic diseases 1-4
drug therapy 170-186
effect of climate 22-37
heart 81-110
Rheumatic fever 94-99, 201
treatment 203, 204
Rheumatic heart disease 81-87
Rheumatic inflammatory diseases 177
Rheumatic spondylitis, physiotherapy 167
Rheumatoid arthritis 60-71, 219-227
frequency 31, 32
joint replacement 208-217
kinetotherapy 221
physical activity 59-71
psychosomatics 60-70
range of motion 221
sports activities 222
Rheumatoid factor 102
Rheumatoid heart disease 81–87
Rheumatology, sports medicine 1–4
Rowing 133, 135
Run-in 162
Running and osteoarthritis 130, 131
Run-out 162
Sacroiliitis 124
Sailing 133, 134
Sarcolemma 91
Scleroderma heart disease 109, 110
Scoliotic pelvis 146
clinical examination 148
Season 31, 32
Semper-et-omnia syndrome 176
Septic arthritis 200
treatment 202, 203
Seronegative polyarthritis 120
Seronegative rheumatism 63
Seropositive rheumatism 63
Serotonin 43
Sexual hormones, immune system 10
Shoulder, clinical examination 149
Single-sided overstrain 161
Skiing, effect on endoprosthesis 216
Soccer 134
Specific hypothesis 64, 66
Spinal column 148
clinical examination 148, 149
Spinal cord 51
Spondylarthritides 106
physical activity 153–158
Spondylitis ankylosans 106, 107, 154–158
sports participation 158
Spondylolisthesis, result of false postures 147
Sports
effect on endoprosthesis 213–217
joint replacement 208–217
juvenile chronic arthritis 118–126
rheumatics 69
rheumatology 1–4
risks 3, 4
Sports medicine consultation 150–152
Squash 134
Staphylococcus aureus 200
Steam pressure 24, 25, 29, 30
Steroid myopathy 176
Steroids 14
Still’s disease 102
Strain on endoprosthesis 211–217
Streptococci 97
Stress
arthritis 68, 69
immune system 11, 65
Structural scolioses, clinical examination 149
Substance P 44–47, 52, 53
Sulfasalazine 149, 150
Swimming 123, 132, 133, 135, 151, 157, 158, 164, 167, 215
Sympathetic dysfunction 51
Synaptic terminals 52
Synovial fluid, viscosity 33
Synoviocytes 46
Systemic juvenile chronic arthritis 119, 120
Systemic lupus erythematosus 102–106
Systolic wall stress 84
T cell receptors 189, 190
T cells 6–10, 88
antigen recognition 188–191
Table tennis 124, 125, 133
Talipes equinus, result of false postures 147
Temperature 32, 33
Tendon, effect of corticosteroid therapy 175, 177
Tennis 133, 136, 165
Thalassotherapy 34
Therapeutic sport 153, 163–168
Thermic effect complex 24, 25
Thoracic vertebral column, immobility 154, 155
Total hip arthroplasty 135–138
Training, sport-type-specific state 161, 162
Trendelenburg’s test 150
Tumor necrosis factor, inflammatory
rheumatic processes 197, 198
Ultraviolet radiation 35
Valvular lesions 93
Vascular tone 89, 90
Vasculitis 99
Vasoconstriction 89
Vasodilatation 89
Ventricular inflow 86
Volleyball 157, 158
Walking 133, 136
Wall tension 83, 84
Warm front 24
Warmth 166
Weather sensitivity 22–33