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The endothelial glycocalyx (EG) as part of the endothelial surface layer (ESL) is
an important regulator of vascular function and homeostasis, including permeability,
vascular tone, leukocyte recruitment and coagulation. Located at the interface between
the endothelium and the blood stream, this highly fragile structure is prone to many
disruptive factors such as inflammation and oxidative stress. Shedding of the EG has
been described in various acute and chronic diseases characterized by endothelial
dysfunction and angiopathy, such as sepsis, trauma, diabetes and cardiovascular
disease. Circulating EG components including syndecan-1, hyaluronan and heparan
sulfate are being evaluated in animal and clinical studies as diagnostic and prognostic
markers in several pathologies, and advances in microscopic techniques have enabled
in vivo assessment of the EG. While research regarding the EG in adult physiology
and pathology has greatly advanced throughout the last decades, our knowledge of
the development of the glycocalyx and its involvement in pathological conditions in the
pediatric population is limited. Current evidence suggests that the EG is present early
during fetal development and plays a critical role in vessel formation and maturation.
Like in adults, EG shedding has been demonstrated in acute inflammatory conditions in
infants and children and chronic diseases with childhood-onset. However, the underlying
mechanisms and their contribution to disease manifestation and progression still need to
be established. In the future, the glycocalyx might serve as a marker to identify pediatric
patients at risk for vascular sequelae and as a potential target for early interventions.

Keywords: glycocalyx, neonate, children, development, perfused boundary region, shedding

INTRODUCTION

The endothelial glycocalyx (EG), a complex and highly versatile brush-like carbohydrate-rich layer,
lines the luminal endothelial surface of the whole vasculature including blood and lymphatic
vessels. The structure and composition of the glycocalyx have been described in several excellent
reviews and will not be covered in detail in this paper (Reitsma et al., 2007; Weinbaum et al., 2007;
Couchman and Pataki, 2012). Briefly, the EG is mainly composed of proteoglycans, consisting
of a core protein with attached long unbranched glycosaminoglycans (GAGs) and glycoproteins
characterized by short, branched carbohydrate side chains. Together with associated plasma
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proteins, it forms the endothelial surface layer (ESL) (Figure 1).
The core protein of proteoglycans is linked to the cell
membrane (syndecans and glypicans) or secreted (e.g., versican,
perlecan, agrin) (Couchman and Pataki, 2012). Among the
bound GAGs, heparan sulfate is the most abundant, followed
by chondroitin-/dermatansulfate, whereas hyaluronan, another
structurally important GAG, is not firmly attached (Sarrazin
et al., 2011). The composition and dimension of the EG varies
within different types of blood and lymphatic vessels and ranges
from approximately 0.3 to 0.5 µm in lymphatic collectors and
blood capillaries to several micrometers in large arteries (Vink
and Duling, 1996; Megens et al., 2007; Zolla et al., 2015).

Due to its central position within the vasculature, the EG
is an important regulator of vessel function and homeostasis,
including permeability, vascular tone, leukocyte recruitment
and coagulation (Reitsma et al., 2007; Weinbaum et al., 2007).
Similarly, in the lymphatic system the glycocalyx exerts an
important role in limiting permeability and thereby contributes
essentially to the drainage and transport of interstitial fluid and
macromolecules (Zolla et al., 2015; Arokiasamy et al., 2019).

Since its first visualization more than 50 years ago by
Luft (1966), the glycocalyx has gained increasing interest in
cardiovascular research, especially throughout the last two
decades. Numerous in vitro and in vivo studies have broadened
our understanding of the EG’s function and its contribution
to pathophysiological processes. For further information the
reader is referred to recent comprehensive reviews on the topic
(Pillinger and Kam, 2017; Cosgun et al., 2020). However, almost
all studies have been performed in adults, leaving a knowledge
gap concerning the composition and function of the EG in
the developing organism. This review aims to summarize our
current understanding of the EG in the fetus, neonate and
in children and its involvement in pathological processes in
the pediatric population, thereby identifying open questions for
future research.

ASSESSMENT OF THE ENDOTHELIAL
GLYCOCALYX IN PEDIATRIC CLINICAL
STUDIES

While the scientific interest in the EG has significantly increased
throughout the last decades, the assessment of the EG in vivo
remains challenging. Using conventional intravital microscopy,
Vink and Duling were the first to indirectly visualize the EG
in vessels of the mouse cremaster muscle by demonstrating
an exclusion zone near the vessel wall for flowing erythrocytes
or a fluorescent plasma marker unable to penetrate the EG
(Vink and Duling, 1996). Advanced imaging techniques such as
multiphoton laser scanning microscopy may offer the potential
to directly image the glycocalyx in vivo in animal models using
fluorescent dyes or antibodies targeting EG components (Wu
et al., 2017). However, none of these approaches is currently
practicable for in vivo assessment of the EG in humans.
Nieuwdorp et al. (2006b) applied a tracer dilution method
to gain estimates of systemic glycocalyx volume in adult test
persons, but the validity of this technique has been questioned

(Michel and Curry, 2009) and ethical concerns hamper its
application in the pediatric population. Currently, evaluation of
the EG in clinical studies is mainly based on two principles:
(i) measurement of circulating glycocalyx components such as
syndecan-1, hyaluronan, heparan sulfate and chondroitin sulfate
in the plasma/serum and urine as an indicator for glycocalyx
shedding and (ii) videomicroscopic assessment of the EG in
vessels of the microcirculation (Cerny et al., 2017). Both methods
only provide indirect information on the EG, and in the pediatric
population, specific challenges need to be overcome.

While measurements of circulating EG biomarkers are
relatively easy to realize in adults, obtaining the necessary blood
samples in children for research purposes alone is disputable.
Furthermore, especially in preterm newborns, drawing the
sample volumes required for accurate analyses is critical due to
the low total blood volume. Newer videomicroscopy techniques,
including Orthogonal Polarization Spectral (OPS), Sidestream
Dark Field (SDF), and Incident Dark Field (IDF) imaging, have
enabled in vivo visualization of the human microcirculation,
including neonates and children (Genzel-Boroviczeny et al., 2002;
Erdem et al., 2019). These video sequences can be used to
measure the local microvascular EG based on changes in vessel
diameter. One of the best established and validated parameters
is the so-called perfused boundary region (PBR), resembling the
luminal part of the EG partially accessible to flowing erythrocytes
(Lee et al., 2014; Eickhoff et al., 2020). Changes in glycocalyx
composition or shedding of the EG, allowing erythrocytes to
further penetrate into the EG, are reflected by an increase in PBR.
The PBR has been evaluated in various clinical studies in adults
and correlated to patient outcome (Vlahu et al., 2012; Dekker
et al., 2019; Rovas et al., 2019; Beurskens et al., 2020). Performing
videomicroscopic studies in children and especially in infants and
neonates is challenging due to the need for minimal movement
during image acquisition.

PHYSIOLOGICAL PROPERTIES OF THE
EG IN THE FETUS AND NEONATE

Role of the EG in Blood Vessel Formation
In the developing embryo, blood vessel formation and growth
are necessary at an early stage to guarantee cellular supply with
oxygen and nutrients. In general, two distinct processes can be
distinguished in the development of vasculature. Vasculogenesis
describes the de novo formation of vessels by differentiation,
proliferation and migration of endothelial progenitor cells.
In contrast, angiogenesis characterizes the generation of new
vessels from existing ones by sprouting and intussusception (i.e.,
splitting of an existing vessel) (Conway et al., 2001; Naito et al.,
2020). Components of the glycocalyx have been shown to be
critically involved in both processes (Iozzo and San Antonio,
2001; Piecewicz and Sengupta, 2011). It is long known that
pro-angiogenic factors critical for vasculo- and angiogenesis,
including vascular endothelial growth factor (VEGF) and
fibroblast growth fact-2 (FGF-2), bind to heparan sulfate
proteoglycans (HSPG), the most abundant component of the EG
(Yayon et al., 1991; Gitay-Goren et al., 1992; Lundin et al., 2000).
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FIGURE 1 | Schematic representation of the glycocalyx covering the endothelial cells of a blood vessel. The main membrane bound components of the EG include
proteoglycans (e.g., syndecans and glypicans) with long glycosaminoglycan side-chains (GAGs) and glycoproteins (e.g., selectins and integrins). Hyaluronan, plasma
proteins and soluble proteoglycans are integrated into the glycocalyx forming the so called endothelial surface layer. The EG is an important regulator of vascular
function and homeostasis, and shedding of the EG has been suggested in different conditions and disease states in the pediatric population including cardiac
surgery, trauma, infectious diseases and diabetes mellitus. Note: dimensions in the figure are not drawn to scale. The figure was created with Bio.Render.com.

As demonstrated by Harfouche et al. (2009), differentiation of
embryonic stem cells into endothelial cells is paralleled by an
increase in the synthesis of di- and trisulfated heparan sulfate
glycosaminoglycans (HSGAG). Vice versa, inhibition of HSGAG
sulfation by treatment with sodium chloride or digestion of
HSGAGs by heparinase led to a significantly lower expression
of endothelial markers such as von Willebrand factor and
angiopoetin-2 (Harfouche et al., 2009). These in vitro findings
were validated in zebrafish embryos showing that knock-down of
the enzyme N-deacetylase/N-sulfotransferase 1 (NDST1), which
is critical for posttranslational sulfation of glycosaminoglycans,
led to impaired vessel formation (Harfouche et al., 2009).

Syndecan-2, a plasma membrane-bound HSPG expressed
on human microvascular endothelial cells (EC), is upregulated
under stimulation with FGF or VEGF. Inhibition of Syndecan-
2 gene transcription using antisense oligonucleotides led to
impaired EC adhesion (i.e., attachment of EC to fibronectin
coated culture dishes), spreading (i.e., number of attached ECs
showing extended cytoplasm) and capillary tube formation
in vitro (Noguer et al., 2009). In vivo, knock-down of
Syndecan-2 by injection of morpholino designed against the
5′ UTR region of Syndecan-2 mRNA, led to impaired VEGF-
dependent angiogenic sprouting in the zebrafish (Chen et al.,
2004). These studies point at the importance of the EG, and
HSPGs in particular, during vasculogenesis and angiogenesis.
As reviewed by Iozzo and San Antonio, HSPGs act in concert
with pro-angiogenic factors to control vascular development by
providing a depot for these factors, limiting their diffusion and

promoting receptor-ligand interaction and intracellular signaling
(Iozzo and San Antonio, 2001).

More recent studies by the group of D’amore investigated the
function of endomucin (EMCN), an integral sialoglycoprotein
present in the EG of capillaries and veins, during angiogenesis
(Park-Windhol et al., 2017; LeBlanc et al., 2019). Using a
model of mouse retinal vascularization, it was demonstrated
that silencing of EMCN resulted in a significant reduction of
retinal vessel density and branching (Park-Windhol et al., 2017).
Further analyses with human retinal endothelial cells lacking or
overexpressing EMCN corroborated the role of EMCN in VEGF-
induced signaling pathways by modulating internalization of the
VEGF receptor 2 (VEGFR2), thereby regulating EC proliferation
and migration (LeBlanc et al., 2019). It was recently shown that
this effect of EMCN was dependent on N-glycosylation of its
extracellular domain (Hu et al., 2020). Taken together, these
studies highlight the essential involvement and contribution of
the EG in vessel formation.

Characterization of the EG in the Fetus
and Neonate
One of the challenges in interpreting the results of studies
on the EG in pediatric diseases is the lack of reference
values. Recent investigations in animals and humans have
provided evidence that aging is accompanied by a reduction
in the EG size possibly due to increased EG shedding in
combination with decreased synthesis of glycocalyx components
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(Machin et al., 2018; Majerczak et al., 2019). The glycocalyx
thickness in sublingual capillaries of old study participants (mean
age 60 ± 2 years) compared to young (mean age 29 ± 1 years)
decreased by around 30%. Interestingly, a significant reduction
in glycocalyx thickness was also demonstrated in the aging
lymphatic vasculature of the rat mesentery with a decrease by
more than 50% in 24-month old animals versus 9 month old
animals (note: 1 month of life in a rat equals about 3 years
in a human) (Zolla et al., 2015). Considering the profound
physiological changes occurring in the growing fetus, neonate
and child, it seems very likely that the EG is also subject to age-
dependent variations. At present, very limited data is available
on the ontogeny of the EG. As reported by Henderson-Toth
et al. (2012), the EG can be detected in the dorsal aorta of quail
embryos at an early developmental stage (14 somites) as soon
as blood flow commences. Immunohistochemistry confirmed the
presence of functionally important EG components, including
hyaluronic acid, heparan sulfate and chondroitin sulfate. Selective
enzymatic digestion of these components demonstrated a role of
hyaluronan (and chondroitin-/dermatan-sulfate) in maintaining
blood flow as well as vascular barrier function, thereby
emphasizing the functional importance of the EG at this early
developmental stage. Using SDF-imaging for PBR measurements
in the cutaneous microcirculation, we have recently shown
that the endothelial glycocalyx in preterm and term neonates
depends on gestational age at birth (Puchwein-Schwepcke et al.,
2021). Intriguingly, we observed an inverse correlation of the
EG dimension with gestational age, i.e., the most immature
neonates exhibited the thickest EG (represented by low PBR
values). Whether this finding reflects the functionally importance
of the EG in vascular development remains speculative due to
the observational nature of the study. Longitudinal follow-up in
the group of preterm infants further demonstrated an effect of
postnatal age on the EG with a gradual decrease of EG thickness
(increase in PBR). This effect was most pronounced in the group
of extremely preterm neonates resulting in significantly higher
PBR values (smaller EG) when reaching term age compared
to term born neonates. This acceleration of PBR changes over
time might be due to the frequent presence of multiple EG
stressors (e.g., hyperglycemia, sepsis, reactive oxygen species) and
could possibly contribute to a higher vascular vulnerability in
this patient group.

Interestingly, PBR values reported for neonates and infants are
consistently higher than in adults. In healthy mature newborns
(mean age 3 days) the PBR was 2.14 ± 0.25 µm (Puchwein-
Schwepcke et al., 2021) versus a PBR of 1.88 ± 0.2 µm
measured in healthy adults (mean age 20.7 years) (Astapenko
et al., 2019). Likewise, infants with cardiac defects (mean age
8.9 month) had a higher baseline PBR than adult cardiac
patients (median age 64–69 years) before undergoing surgery
on cardiopulmonary bypass (2.5 µm [2.44–2.7 IQR] vs.
2.0± 0.2 µm, respectively) (Nussbaum et al., 2015; Dekker et al.,
2019; Dekker et al., 2020). At present it remains unclear whether
these differences in PBR magnitude are due to methodological
differences (e.g., measurements obtained sublingually versus the
fossa auricularis of the ear conch) or truly reflect an age-
dependence in PBR values.

Further studies in various age groups and in larger cohorts
are needed to better understand the natural course of EG
development and establish normal values necessary for the
implementation of EG measurements in the clinical routine.

PATHOLOGY OF THE EG IN ACUTE
CHILDHOOD DISEASES AND CHRONIC
CONDITIONS WITH CHILDHOOD-ONSET

Shedding of the glycocalyx has been observed in many acute
and chronic diseases in adults characterized by inflammation,
endothelial dysfunction and microangiopathy, indicating its
crucial role in the homeostasis of the microvasculature. In
addition, acute events such as surgery or trauma have been
shown to affect the glycocalyx, and patient outcome seems to be
directly related to the extent of glycocalyx damage (Ostrowski
and Johansson, 2012; Qi et al., 2021). In the pediatric population,
information on disease-related EG alterations is still limited.
Most data stems from studies evaluating the glycocalyx after
pediatric heart surgery or pediatric trauma. Table 1 lists the
clinical trials investigating the EG with respect to different
pathologies in neonates, infants and children.

EG in Pediatric Heart Surgery
Surgery on cardiopulmonary bypass has been shown to acutely
and severely affect the integrity of the EG in adults (Rehm
et al., 2007). In children undergoing cardiac surgery on
cardiopulmonary bypass (CPB), an increase of circulating
hyaluronan and syndecan-1 was witnessed in dependence of the
ischemic impact indicating acute shedding of the EG (Bruegger
et al., 2015). This was further confirmed in a longitudinal
cohort study investigating 40 children that underwent cardiac
surgery (36 with and four without CPB) using SDF-imaging
to visualize the microcirculation at the ear conch (Nussbaum
et al., 2015). A significant reduction in glycocalyx thickness
(indicated by an increased PBR) was observed after cardiac
surgery with cardiopulmonary bypass compared to preoperative
values. In contrast, no significant change in PBR was observed
in control patients subjected to a different procedure requiring
general anesthesia (cleft palate surgery, cardiac catheterization),
indicating a direct effect of the cardiopulmonary bypass in
perturbation of the microvascular glycocalyx in pediatric heart
surgery (Nussbaum et al., 2015). Similar results have been
obtained in adult patients undergoing coronary bypass operation
on CPB, demonstrating a significant increase in PBR during
surgery. However, the time course of PBR changes described in
adults differs from that in infants. While PBR values were shown
to further increase during the first three postoperative days in
adults following surgery on cardiopulmonary bypass (Dekker
et al., 2019, 2020), in infants PBR values were already decreasing
24 h after surgery (Nussbaum et al., 2015). As the studies vary
largely with respect to the underlying cardiac disease (congenital
heart defect vs. coronary artery disease), surgical procedures
applied and presence of cardiac risk factors, it is impossible to
draw a conclusion from these studies regarding possible age-
dependent differences in shedding and recovery of the glycocalyx.
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TABLE 1 | Clinical studies investigating the EG in the pediatric population.

Study type EG parameters n Mean age Major findings

Pediatric heart
surgery

Nussbaum et al. (2015) Longitudinal cohort
study

PBR (SDF imaging) 40 patients (36 with
CPB, 4 without CPB)

CPB group: 8.9 months
[0.2–29] w/o CPB:
9 months [0.2–31]

Increase in PBR after
surgery on CPB

Bruegger et al. (2015) Prospective cohort
study

Serum syndecan-1, HA 42 7 months (2.9–23) Increase of circulating
HA and syndecan-1
associated with the
ischemic impact

Pesonen et al. (2016) 2 double blinded
placebo-controlled
trials

Plasma syndecan-1 40 (1st trial), 45 (2nd
trial)

1st trial: 7 days (1–27),
2nd trial: 0.37 years
(0.15–1.36)

Lower syndecan-1
plasma levels after
high-dose steroid
treatment in complex
heart surgery

de Melo Bezerra
Cavalcante et al. (2016)

Prospective cohort
study

Plasma syndecan-1 289 3.0 years (SD: ± 4.4) Association of higher
syndecan-1 levels with
poorer outcomes and
postoperative acute
kidney disease

Ferrer et al. (2018) Prospective cohort
study

urinary syndecan-1 86 < 2.0 years: 61.2% Higher postoperative
urine syndecan-1 levels
in patients with acute
kidney injury

Bangalore et al. (2021) Prospective cohort
study

Plasma HS 27 4.9 months
(1–22 months)

Association of
circulating HS with
metabolic acidosis,
renal dysfunction and
capillary leak after CPB

Pediatric trauma

Richter et al. (2019) Prospective cohort
study

Plasma syndecan-1,
angiopoetin-1 and
angiopoetin-2

64 (52 trauma, 12
controls)

Trauma: 9.7 years
(6.2–13.6), controls:
5 years (1.8–15)

Higher angiopoetin-2
levels associated with
worse clinical outcome,
pos. correlation of
syndecan-1 and
angiopoetin-2

Russell et al. (2018) Prospective cohort
study

Plasma syndecan-1
and hcDNA

211 (149 trauma, 62
controls)

Trauma: 8.3 years
(4.6–12.3), controls
6.24 ±6.2 years

Highest syndecan 1
levels correspond to
highest hcDNA levels
and poor outcome

Pediatric inflammatory and infectious diseases

Kawasaki disease (KD)

Ohnishi et al. (2019) Prospective cohort
study

Plasma syndecan-1,
HA

103 (70 complete KD,
18 febrile controls, 15
afebrile controls)

CAL (coronary artery
lesions): 27 months
(3–121), CAL negative:
18.5 (1–88)

Higher syndecan-1 and
HA levels in KD
compared to febrile and
afebrile controls

Luo et al. (2019) Prospective cohort
study

Plasma syndecan-1 203 (119 KD, 43
healthy children, 40
children with febrile
disease)

26 months
(16.0–43.75)

Higher syndecan-1
levels in KD compared
to matched febrile and
afebrile controls

COVID-19/PIMS

Fraser et al. (2021) Case report Plasma HA 1 pt., 20 controls 15 years [IQR 8] Increased HA in a
patient suffering from
PIMS compared to
controls

Malaria

Yeo et al. (2019a) Retrospective analysis
of frozen samples of a
prospective cohort
study

Urinary GAGs 85 Uncomplicated Malaria:
3.1 years (0.5–7.8),
complicated malaria:
3.6 years (0.6–7.2)

Higher urine excretion
of GAGs in malaria
groups compared to
healthy children

(Continued)
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TABLE 1 | Continued

Study type EG parameters n Mean age Major findings

Lyimo et al. (2020) Cross-sectional study PBR (IDF imaging),
plasma sulfated GAGs

119 (healthy: 31,
non-malaria fever NMF:
7, uncomplicated
malaria UM: 12, severe
malaria SM: 69)

Healthy: 2.5 years
(0.8–4.3), NMF:
2.28 years (1.0–4.),
UM: 5.5 years
(1.1–10.1), SM:
4.1 years (0.6–10.0)

Increased PBR in
patients with SM;
sulfated GAGs higher in
patients with
complicated malaria
compared to UM;
positive association
between HA and PBR

Diabetes mellitus

Nussbaum et al. (2014) Observational study Glycocalyx thickness
(SDF imaging)

14 patients, 14 controls patients: 13.6
[9.9–14.4], controls:
11.6 [9.7–14]

Reduced EG thickness
in diabetic children
compared to controls;
inverse correlation of
EG with blood glucose
levels

In two double-blinded, randomized, placebo-controlled trials,
syndecan-1 plasma levels were evaluated in neonates subjected
to open heart surgery (neonatal trial) and in infants undergoing
correction of a ventricular septal defect (VSD trial) to determine
whether high-dose steroid treatment might have a protective
effect on the glycocalyx. The authors could prove that in
complex heart surgery in neonates, high-dose steroid treatment
resulted in lower syndecan-1 levels compared to a placebo group.
However, there were no differences in syndecan-1 levels between
treatment and placebo groups in older children after VSD repair
(Pesonen et al., 2016).

In a prospective cohort study on 289 children undergoing
cardiac surgery, higher syndecan-1 levels were associated with
poor outcomes and postoperative acute kidney disease (de Melo
Bezerra Cavalcante et al., 2016). Similar results were found in a
prospective cohort study on 86 pediatric patients recovering from
heart surgery. Postoperative urinary syndecan-1 was collected
within 2 h after surgery and was higher in patients suffering from
acute kidney injury in the follow-up. In addition, the prediction
of acute kidney injury in a risk-stratified statistical model of
clinical outcome was improved after adding urinary syndecan-
1 (Ferrer et al., 2018). These data were recently confirmed
and expanded by Bangalore et al. (2021), demonstrating an
association of the amount of circulating heparan sulfate with
metabolic acidosis, renal dysfunction and capillary leak in 27
neonates and infants following cardiopulmonary bypass surgery.

Collectively, these studies provide univocal evidence for EG
alterations in pediatric cardiac surgery contributing to adverse
outcomes. Thus, assessment of the EG might offer the potential
to identify patients at risk for postoperative complications and
serve as a monitoring parameter to evaluate treatment strategies
aiming at EG restoration.

EG in Pediatric Trauma
Multiorgan failure after pediatric trauma has been discussed to be
associated with an imbalanced inflammatory reaction that may
lead to endothelial disruption and impairment of the glycocalyx.
An increase of endothelial-derived angiopoietins (angiopoietin-
1 and angiopoietin-2) indicates a developing endotheliopathy,

whereas circulating syndecan-1 can be interpreted as a sign of
glycocalyx injury. In a prospective cohort study, 52 pediatric
trauma patients were compared to 12 pediatric controls with
respect to angiopoietin levels, syndecan-1 levels and clinical
outcome. The authors could show that higher angiopoietin-2
levels were associated with worse clinical outcomes and were
positively correlated to syndecan-1 levels. This may indicate that
glycocalyx injury results in adverse outcome (Richter et al., 2019).

Similar findings were observed in another prospective cohort
study on 149 pediatric trauma patients and 62 pediatric controls
studying the role of histonic DNA (hcDNA) as a marker of
damage-associated molecular patterns (DAMPs) and circulating
syndecan-1 levels as a marker of EG shedding (Russell et al.,
2018). Syndecan-1 levels were evaluated in relation to hcDNA
levels at admission and after 24 h. Control patients had low
levels of both syndecan-1 and hcDNA, whereas these parameters
were significantly higher in the pediatric trauma group, with
the highest hcDNA levels corresponding to the highest levels
of syndecan-1 and poor outcome. This indicates a link between
trauma-induced extracellular hcDNA release and endothelial
glycocalyx degradation. However, the causality of the association
and the underlying mechanisms still need to be established.

EG in Pediatric Inflammatory and
Infectious Disease
Similarly, infectious diseases may result in acute effects on the
microvasculature and the glycocalyx. During sepsis, shedding of
the endothelial glycocalyx has been well established in the adult
population and linked to mortality (Puskarich et al., 2016; Rovas
et al., 2019; Beurskens et al., 2020; Saoraya et al., 2021). In the
pediatric population, primarily Kawasaki disease and Malaria
were studied for their association with glycocalyx damage.

Kawasaki Disease (KD)
Serum syndecan-1 and hyaluronic levels were analyzed in a
prospective cohort study of 70 children with KD, 18 febrile
controls and 15 afebrile controls. Patients suffering from KD had
higher serum levels of syndecan-1 and hyaluronan, indicating
EG damage. Moreover, patients that developed coronary artery
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lesions in the follow-up had higher levels of these parameters
in the blood than those who didn’t, with serum hyaluronan
being a highly contributive predictor of coronary involvement
(Ohnishi et al., 2019).

Similar results were obtained in a prospective cohort of 120
pediatric patients with acute KD that were compared to a group
of 43 matched healthy and 40 matched febrile controls. Patients
suffering from KD had significantly higher levels of syndecan-1 in
the plasma compared to febrile and healthy controls. Moreover,
syndecan-1 levels were higher in patients suffering from coronary
artery involvement than in uncomplicated Kawasaki disease
(Luo et al., 2019).

COVID-19
During the COVID-19 pandemic, a novel syndrome termed
PIMS (pediatric inflammatory, multisystem syndrome) or MIS-
C (multisystem inflammatory syndrome in children) has
emerged in the pediatric population following infection with
SARS-CoV-2 (Feldstein et al., 2020; Whittaker et al., 2020).
This severe hyperinflammatory condition shares similarities
with Kawasaki disease and as with KD, increased levels of
glycocalyx degrading enzymes (MMP-7) and hyaluronan have
been reported, suggesting shedding of the endothelial glycocalyx
(Fraser et al., 2021). Interestingly, in an experimental cell
model (human H1299 cells, derived from type 2 alveolar cells)
it was shown that SARS-CoV-2 requires cell surface heparan
sulfate to promote binding and infection of host cells via
angiotensin-converting enzyme (Clausen et al., 2020). Data
from post-mortem studies in adults with severe courses of
COVID-19 revealed direct involvement of the endothelial cells
with widespread endothelitis (Varga et al., 2020). Furthermore,
shedding of syndecan-1 and heparan sulfate and an increase
in the PBR (i.e., decreased glycocalyx thickness) have been
demonstrated during acute COVID-19 disease in adult patients
(Stahl et al., 2020; Fernández et al., 2021; Rovas et al., 2021).
While PIMS is also characterized by multiorgan involvement, it
typically occurs weeks after the initial infection with SARS-CoV-
2, which itself may have presented only with mild symptoms or
even asymptomatic. Therefore, it is currently unclear whether
the supposed disturbance of the glycocalyx in PIMS results from
a direct effect of the virus on the endothelium or is rather a
consequence of systemic inflammation. As PIMS is a relatively
rare condition with reported incidence rates of 2 in 100,000
(Dufort et al., 2020), systematic research on its pathogenesis and
the role of the glycocalyx remains a challenge.

Malaria
Urinary GAGs can be used as a marker of glycocalyx damage.
Frozen urine samples of a prospective cohort study from
1994–1995 were thawed and analyzed for glycocalyx damage
in three groups- healthy controls (10 children), children with
uncomplicated malaria (20 children) and children suffering
from cerebral malaria (55 children). Total urine excretion of
GAGs was higher in pediatric malaria patients (mean age ∼
4 years) compared to healthy children and inversely related
to plasma nitrate and nitrite levels; however, no difference
was seen between infants with cerebral malaria compared to

those with uncomplicated disease. The authors concluded that
this was a sign of glycocalyx breakdown leading to impaired
endothelial nitric oxide (NO) production (Yeo et al., 2019a).
By contrast, a study in adult malaria patients from the same
group demonstrated significant differences in urinary GAGs
between severely affected malaria patients (mean age 25 years)
versus patients with a moderate course of disease (mean age
27 years) (Yeo et al., 2019b). The authors hypothesized that
these differences might be due to more generalized vascular
activation and dysfunction in adult malaria patients compared to
children, where vascular dysfunction may possibly be limited to
the cerebral microcirculation. In addition, it is conceivable that
age dependent differences in glycocalyx breakdown and urinary
elimination of GAGs might contribute to the observed differences
(Sabir et al., 2020).

In a cross-sectional study on glycocalyx loss in pediatric
malaria patients, authors assessed glycocalyx thickness in vivo
by incident dark Field-imaging and glycocalyx degradation
parameters in the plasma. As such, the PBR was increased in
severe malaria patients indicating a loss of glycocalyx. Similarly,
sulfated GAGs in the plasma were significantly higher in patients
with severe malaria compared to those with uncomplicated
malaria. There was a positive association between hyaluronic
acid and PBR, suggesting that the loss of glycocalyx is related to
disease severity (Lyimo et al., 2020).

EG in Children and Adolescents With Diabetes
Mellitus
Many chronic diseases with long-term vascular sequelae are
well known to affect the glycocalyx and the microvasculature.
Diabetes mellitus type 1 and 2 belong to best-studied conditions
with respect to the impact of experimental hyperglycemia on
the endothelial glycocalyx (Zuurbier et al., 2005; Nieuwdorp
et al., 2006b) as well as changes of the microcirculation and
the EG in adult diabetic patients (Nieuwdorp et al., 2006a;
Broekhuizen et al., 2010; Dogné et al., 2018; Wadowski et al.,
2020). By contrast, only limited data is available on the effect of
diabetes mellitus on the EG in the pediatric population. Indirect
evidence for a possible impairment of the EG in children with
diabetes mellitus stems from studies investigating the hyperemic
response to a heat stimulus (Shore et al., 1991; Shah et al.,
2015) or following arterial occlusion (Järvisalo et al., 2004;
Pillay et al., 2018; Cao et al., 2021), consistently demonstrating
endothelial dysfunction with impaired flow-mediated dilation. As
the EG was shown to function as a mechanosensor regulating
vascular tone in response to increased shear stress (Florian
et al., 2003; Curry and Adamson, 2012; Dragovich et al., 2016),
the finding of endothelial dysfunction in diabetic children is
suggestive of EG alterations in these patients. This notion was
supported by an observational study of 14 children between 9
and 14 years of age with diabetes type 1, demonstrating reduced
glycocalyx thickness in video recordings of the sublingual
microcirculation compared to a control group of 14 children.
Furthermore, a significant inverse correlation between serum
glucose levels and glycocalyx thickness was observed, suggesting
a direct harmful effect of blood sugar levels on the glycocalyx
(Nussbaum et al., 2014).
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OUTLOOK AND FUTURE AREAS OF
RESEARCH

In view of the importance of the EG for vascular integrity and
the possible deleterious effects of EG destruction in acute and
chronic diseases, methods to quickly assess the EG’s condition in
patients would be of high relevance for the clinician. Especially in
intensive care medicine, bedside approaches yielding fast results
could help to identify patients at risk for adverse outcome and
guide clinical decision making. As shown in the GlycoNurse
study, after theoretical and practical training, nurses were able
to perform high quality PBR measurements in patients of
the emergency department and the intensive care unit in less
than 10 min duration using a handheld videomicroscope and
automated analysis software (Rovas et al., 2018). PBR values
showed a high level of inter- and intraobserver reliability and
an association with clinical markers of disease severity including
mean arterial blood pressure, C-reactive protein levels as a
marker of inflammation and SOFA score as an assessment
tool for organ failure. Despite these promising results, before
EG measurements can be implemented into clinical routine,
further studies on larger patient numbers are needed to establish
normal values in different age groups, define cut-off values for
certain disease entities and evaluate the diagnostic and prognostic
usefulness in predicting patient outcome.

In the last decade, the EG has evolved as a possible
target for novel treatment strategies aiming at protection or
reconstitution of the EG (Becker et al., 2010). Therapeutic
approaches evaluated in vitro and in vivo include reduction
of glycocalyx degradation by attenuating inflammation, e.g., by
administration of corticosteroids (Chappell et al., 2009a; Pesonen
et al., 2016; Brettner et al., 2019) and inhibition of EG degrading

enzymes such as heparinase and metallo-matrix proteinases
(Chappell et al., 2009b; Mulivor and Lipowsky, 2009; Zeng
et al., 2014; Mensah et al., 2017). Furthermore, administration of
glycocalyx and plasma components (e.g., sulodexid and albumin)
and colloids (e.g., 6% Hydroxyethyl starch) have shown potential
benefit in restoring the EG (Broekhuizen et al., 2010; Margraf
et al., 2018; Aldecoa et al., 2020). Several of these strategies
have lately gained scientific attention during the COVID-19
pandemic due to the increasing evidence for an involvement
of the EG in severely affected patients (Buijsers et al., 2020;
Okada et al., 2021; Potje et al., 2021). As with most of the
studies investigating the EG, almost all of trials were performed in
adults. Furthermore, the treatment effect was mostly monitored
by evaluating the EG directly and indirectly, whereas patient
outcome was usually not considered.

In summary, the EG is recognized as a critical regulator
of vascular integrity and health, and its involvement in acute
and chronic diseases affecting the vasculature in adult patients
has been well established. In the pediatric population, research
concerning the EG is still sparse. Future studies are needed
to characterize the normal evolution of the EG during infant
and child development, define the contribution of the EG to
childhood pathology, evaluate its potential as therapeutic target
and prove the benefit of EG preservation/reconstitution on
patient outcome.
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