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Microglia are key in the homeostatic well-being of the brain and microglial dysfunction has
been implicated in neurodegenerative disorders such as Alzheimer’s disease (AD). Due to
the many limitations to study microglia in situ or isolated for large scale drug discovery
applications, there is a high need to develop robust and scalable human cellular models of
microglia with reliable translatability to the disease. Here, we describe the generation of
microglia-like cells from human induced pluripotent stem cells (iPSC) with distinct
phenotypes for mechanistic studies in AD. We started out from an established
differentiation protocol to generate primitive macrophage precursors mimicking the yolk
sac ontogeny of microglia. Subsequently, we tested 36 differentiation conditions for the
cells in monoculture where we exposed them to various combinations of media,
morphogens, and extracellular matrices. The optimized protocol generated robustly
ramified cells expressing key microglial markers. Bulk mRNA sequencing expression
profiles revealed that compared to cells obtained in co-culture with neurons, microglia-like
cells derived from a monoculture condition upregulate mRNA levels for Triggering
Receptor Expressed On Myeloid Cells 2 (TREM2), which is reminiscent to the
previously described disease-associated microglia. TREM2 is a risk gene for AD and an
important regulator of microglia. The regulatory function of TREM2 in these cells was
confirmed by comparing wild type with isogenic TREM2 knock-out iPSC microglia. The
TREM2-deficient cells presented with stronger increase in free cytosolic calcium upon
stimulation with ATP and ADP, as well as stronger migration towards complement C5a,
compared to TREM2 expressing cells. The functional differences were associated with
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gene expression modulation of key regulators of microglia. In conclusion, we have
established and validated a work stream to generate functional human iPSC-derived
microglia-like cells by applying a directed and neuronal co-culture independent
differentiation towards functional phenotypes in the context of AD. These cells can now
be applied to study AD-related disease settings and to perform compound screening and
testing for drug discovery.
Keywords: iPSC (induced pluripotent stem cell), microglia, cell culture protocols, drug development, TREM2
(triggering receptor expressed on myeloid cells), Alzheimer’s disease (AD)
INTRODUCTION

Microglia play a key role in the well-being of the brain by
fulfilling various functions in development, homeostasis and
the first-line immune defense (1–7). Alzheimer’s disease (AD)
is a devastating age-related neurodegenerative disorder where
microglia have been implicated for over a century in the
pathogenesis based on neuropathological findings and by
mimicking microglia dysfunction in preclinical models (8).
More recently, genome wide association studies substantiated
the long-time proposed active implication of microglia within
initiation and progression of AD and other neurodegenerative
diseases of the central nervous system (9, 10). Together, this
strongly supports the rationale for developing therapies that
pharmacologically modulate microglia.

In order to facilitate investigating the biology of microglia and
to make them available for drug screening assays, cellular models
had to be established. Until recently, in vitro studies with
microglia have been limited to either employing primary
rodent cells or cell lines (e.g. BV2) (11). Due to the stress
implicated during their isolation process and the loss of tissue
context, primary cells rapidly alter their previous in situ
microglial properties (12, 13), and batch-to-batch variations as
well as impurities are known hurdles of this approach. Moreover,
generation of primary cells requires either euthanizing large
numbers of animals or accessing difficult to obtain highly
characterized human brain samples with short postmortem
delay. Both approaches result in only a small number of cells,
which in turn limits the throughput for compound screening
campaigns or larger biological studies (14, 15). In contrast, due to
their proliferative nature, cell lines do not have limitations in cell
numbers, can be of human origin and are therefore often used in
screening setups (16). However, due to their immortalization or
neoplastic-origin, cell lines show strong discrepancies compared
to the desired in vivo characteristics (17, 18).

With the arrival of human induced pluripotent stem cell (iPSC)
technology (19, 20), and with the evolving understanding of
microglial origin (21–23), several methods were reported for the
generation of iPSC-derived microglia-like cells (24–26), hereafter
called iPSC microglia. These protocols commonly aim to resemble
the yolk sac ontogeny for the generation of primitive macrophage
progenitors. Current reports indicate that iPSCmicroglia seem to be
superior to primary cells or cell lines with regard to expressing key
microglial marker genes (25). Importantly, unlike primary cells,
iPSC microglia or their macrophage precursors can be generated
org 2
robustly and in a controlled manner in scalable amounts (25, 27).
This makes iPSC microglia ideal for drug screening and for
extensively studying biological mechanisms under conditions
resembling better the physiological state of microglia.
Additionally, iPSC based models provide the opportunity to study
the effect of disease associated genes with isogenic mutations or
knockout pairs.

Despite the advances in developing cell culture models, in vitro
microglia often lack important properties such as modulating the
expression of a fully functional repertoire of various surface
receptors, which microglia require to interact with their
environment (28). For instance, microglia are the major cell type
in the brain to express Triggering Receptor Expressed On Myeloid
Cells 2 (TREM2). Signaling through this receptor modulates crucial
microglia functions such as phagocytosis, proliferation, survival, and
l ipid metabol ism in homeostat ic , inflammatory or
neurodegenerative conditions [extensively reviewed in (29, 30)].
Mutations in TREM2 are associated with an increased risk to
develop various neurodegenerative disorders including AD (9, 10,
31–36). In the context of amyloid plaques, a neuropathological
hallmark of AD, TREM2 was found in preclinical experiments to be
essential for the metabolic fitness and transition of homeostatic to
disease-associated microglia (DAM) (37, 38). Although the function
and role of TREM2 in AD pathogenesis remains unclear, it became
a key target for potential therapeutic intervention (39–41).

Some TREM2 loss-of-function-related phenotypes in the
context of AD were recently described by others in iPSC-
derived microglia (42–45). While the literature about iPSC
microglia is growing, more descriptions are needed to compare
different approaches that generate robust and scalable human
cellular models of microglia. Such cellular models of microglia
will hopefully become soon more translatable to microglia in the
brain thereby establishing themselves as valuable tools to study
disease mechanisms and to perform compound screens for drug
development in vitro.

Here, we present the optimization of a protocol to generate iPSC
microglia in a monoculture condition and explored whether these
cells can serve as a model to study microglia function and gene
expression in the context of TREM2 modulation. Building on our
previously published large scale differentiation protocol of myeloid
progenitors from iPSC (27), we have extended the differentiation of
these myeloid progenitors for additional 14 days to microglia-like-
cells. As a major distinction from previously published co-culture
methods, we observed in iPSC microglia from monoculture an
increased TREM2 mRNA expression. The regulatory function of
February 2021 | Volume 11 | Article 617860
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TREM2 in these cells was confirmed by comparing wild type with
isogenic TREM2 knock-out iPSC microglia. The overall approach
resulted in a work stream to generate human iPSC microglia by a
directed and neuronal co-culture independent differentiation
resulting in distinct phenotypes for mechanistic studies in AD.
Our iPSC microglia protocol can now be applied to scale up the
production of these cells, study certain AD-related disease settings,
and perform compound screening and mechanistic experiments in
drug development.
MATERIALS AND METHOD

iPSC Culture
All work with human iPSC and the derived cell types was
performed under the respective Swiss legislation, ethical
guidelines, and approval. All media compositions are
summarized in Table S1. We recently reported an improved
and highly scalable variant of the method published by van
Wilgenburg et al. (27, 46) for the differentiation of iPSC to
primitive macrophages. In brief, for iPSC maintenance culture
dishes (Corning) were coated with 12.5 µg/ml rhLaminin-521
(BioLamina). Human iPSC were seeded and cultured in mTesR1
media (StemCell Technologies) at 37°C with 5% CO2 and media
was changed daily. Cells were passaged at 90% confluency, media
was removed, cells were washed 1x with PBS and detached with
Accutase™ (Innovative Cell Technologies) for 2 to 5 min at 37°
C. After removal of Accutase™ by centrifugation cells were
either used for maintenance or start of differentiation. The cell
lines used in this study, Bioneer WT (BIONi010-C) and Bioneer
C17 (BIONi010-C17/TREM2 KO) were obtained from Bioneer.
Cells were quality controlled by STR profiling, SNP phenotyping
and karyotyping after banking. To avoid genetic drift and
variations sub-culturing was limited to an absolute minimum.

Differentiation of iPSC to Primitive
Macrophages
Embryoid Body (EB) Generation
This step was performed as previously described (27). Briefly, to
obtain uniform EBs, iPSCs were seeded into AggreWell 800
(StemCell Technologies) plates. Two ml mTesR1, supplemented
with 10 mM ROCK inhibitor (Y27632, StemCell Technologies) and
containing a single cell suspension of 4*106 iPSCs were added to
each AggreWell and centrifuged for 3 min at 100xg to assure an
even and fast distribution of the iPSC into the AggreWells. The next
day, mesoderm and subsequent hemogenic endothelium induction
was started by exchange of 75% of the mTeSR1media with mTeSR1
media supplemented with 50 ng/ml rhBMP4 (biotechne), 50 ng/ml
rhVEGF (biotechne), and 20 ng/ml rhSCF (biotechne), and
repeated the following 2 days.

Plating of EBs and Continued Maturation Along the
Myeloid Lineage
On day 4 of differentiation, EBs were harvested and transferred to
factory media, consisting of X-VIVO 15 media (Lonza)
supplemented with 2 mM GlutaMAX (Thermo Fisher Scientific),
Frontiers in Immunology | www.frontiersin.org 3
10 U/ml Penicillin/Streptomycin (Thermo Fisher Scientific), 50 µg/
ml Mercaptoethanol (Thermo Fisher Scientific), 100 ng/ml rhM-
CSF (Miltenyi Biotech), and 25 ng/ml rhIL3 (Miltenyi Biotech). EBs
were plated at a density of 1 EB/cm2 in growth factor reduced
matrigel (Corning) precoated cell culture vessels and myeloid
factories were matured as described previously (25).

Macrophage Progenitor Harvesting
Macrophage progenitors were collected from the supernatant by
centrifugation (4 min, 300xg) and were either matured into co-
culture or monoculture microglia-like cells (Figure 1A).

Differentiation of iPSC Into Microglia-Like
Cells in Co-Culture
Induced pluripotent stem cells were differentiated to neurons using a
protocol that was previously published (47). Neurons were quickly
thawed at 37°C and seeded at a density of 200,000 cells/cm2 in
neuronal differentiation media [consisting of 1:1 Advanced DMEM/
F12 media (with GlutaMAX I) (Thermo Fisher Scientific) and
Neurobasal media (Thermo Fisher Scientific) + 1% B27
supplement without vitamin A (Thermo Fisher Scientific), 1% N2
supplement (Thermo Fisher Scientific), 50 µg/ml Beta-
Mercaptoethanol (Thermo Fisher Scientific), 10 U/ml Penicillin-
Streptomycin (Thermo Fisher Scientific), 20 ng/ml rhBDNF
(PeproTech), 10 ng/ml rhGDNF (PeproTech), 100 µM Aa2-P
(Sigma Aldrich), 500 µM cAMP (BIOLOG Life Science), and 1 µg/
ml murine laminin (Roche), supplemented with 10 µM ROCKi
(Y27632, StemCell Technologies) for seeding]. After a 100% media
change one day after seeding, 50% of the media was changed twice a
week. After 14 days, macrophage precursor cells were added at a
density of 160,000 cells/cm2. Therefore, themedia was replaced with a
macrophage precursor cell suspension in N2 media [Advanced
DMEM/F12 + 1% N2 supplement, 10 U/ml Penicillin-
Streptomycin, 2 mM Glutamax, 50 µg/ml b-ME, 100 ng/ml rhIL34
(Miltenyi Biotech), and 10 ng/ml rhGM-CSF (biotechne)]. Half of the
media was changed twice a week for two additional weeks.

Differentiation of iPSC to Microglia-
Like Cells in Monoculture
Initially, different variations of coating and media were tested
(indicated in figure legends). For the final protocol flasks and
plates were coated with fibronectin. Fibronectin (Corning, 10 µg/
ml in PBS-/-) was added and incubated for 3 h at RT, before washing
three times with water. Macrophage precursors were seeded in
RPMImedia [RPMI 1640 media (Thermo Fisher Scientific) + 10 U/
ml P/S supplemented with 100 ng/ml rhIL34, 25 ng/ml rhM-CSF,
and 50 ng/ml rhTGF-b1 (PeproTech) at a density of 160,000 cells/
cm2]. Half the media was changed twice a week for 14 days. On day
14, cells were replated by collecting cells from the supernatant and
detaching adherent cells with Accutase™. These cells were replated
into fibronectin pre-coated assay plates and cultured for at least two
additional days prior to the assays.

Magnetic-Activated Cell Sorting (MACS)
For the separation of co-cultured iPSC-derived microglia-like
cells from neurons and astrocytes, immunomagnetic separation
February 2021 | Volume 11 | Article 617860
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was applied. Cells were detached after 14 days in co-culture by
incubation with accutase at 37°C for 45 min. After centrifugation
at 300xg for 5 min, the cells were resuspended in N2 media
containing 100 U/ml DNaseI (Roche) and incubated at RT for
10 min to minimize the amount of free-floating DNA and cell
aggregates. Then, the cell suspension was filtered through a 70
µm cell strainer (Greiner). Magnetic labeling and magnetic
separation using the autoMACSpro (Miltenyi Biotec) was
performed using anti-CD45 MicroBeads (Miltenyi Biotech),
following the CD45 MicroBeads separation manual, provided
by Miltenyi Biotech. Higher specificity of antigen-binding was
achieved by the addition of 12.5 µg/ml Fc Block (BD Biosciences)
during incubation with the MicroBeads. Microglia-like cells were
obtained in the positive selection.
Frontiers in Immunology | www.frontiersin.org 4
Quantitative Real-Time PCR
Cells were lysed and the RNA purified using the High Pure RNA
Isolation Kit from Roche following the provided protocol.
Macrophage precursor cell aggregates were lysed directly after
the harvest, microglia-like cells, derived using the monoculture
protocol were lysed directly in the cell culture plate. Co-cultured
microglia-like cells were lysed directly after MACS.

For a one-step reverse transcription and PCR, the AgPath-ID
One-Step RT-PCR kit (Thermo Fisher) was used. It contains an
enzyme mix of reverse transcriptase and DNA polymerase. The
reaction mixture was prepared according to the manufacturers
descriptions and reverse transcription as well as PCR performed
in LightCycler 480 384-well plates in a LightCycler 480 II
(Roche) (reverse transcription for 10 min at 45°C, reverse
A

B

C

FIGURE 1 | Approaches employed to differentiate human iPSC towards microglia-like cells. (A) Schematic diagram of the protocols to generate different microglia-
like cells from human iPSC. Relevant growth factors and durations (blue) of differentiation steps are indicated. The upper part depicts the differentiation of iPSCs into
“myeloid factories” that produce macrophage precursor cells (pre-Macs) (27). For the generation of monocultured iPSC-derived microglia, pre-Macs were
differentiated in the presence of IL-34, M-CSF, and TGF-b1. The lower part depicts the differentiation steps from iPSCs to neural stem cells and further to neurons.
For the generation of neural co-culture-derived microglia, pre-Macs were seeded on top of the neuron/astrocyte cultures. (B) Representative images of
immunostaining of iPSC microglia after 24 days differentiation in monoculture. Monoculture-derived microglia-like cells stain positive for Iba1 (cyan), P2Y12 (yellow),
and TREM2 (red). Cellular nuclei were labeled with Hoechst 33342 (blue). (C) Immunostaining of microglia-like cells, neurons and astrocytes after 14 days
differentiation in co-culture. Representative images are shown from three biological replicates. Microglia-like cells are detected by Iba1 (orange), astrocytes by GFAP
(green), and neurons by TuJ1 (red), respectively. Cellular nuclei were labeled with Hoechst 33342 (blue).
February 2021 | Volume 11 | Article 617860
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transcriptase inactivation and initial denaturation for 10 min at
95°C, 50 cycles of 15 s denaturation at 95°C and 60 s annealing at
60°C). PPIA was used as a housekeeping gene and was detected
simultaneously with the gene of interest using two different dyes
(VIC for PPIA, FAM for the gene of interest). Specificity of the
readout was ensured using no-enzyme and no-primer controls.
A detailed list of the primers used can be found in Table S2.

RNAseq and Data Analysis
Characterization by Bulk RNA Sequencing
Induced pluripotent stem cell derived macrophage progenitors,
co- and monoculture microglia were generated as described
above. Co-cultured microglia were purified as described above.
All cultures were started at five different days to obtain five
independent replicates for the RNAseq experiment. Cells were
lysed and the RNA purified as described above. RNA purity was
assessed using the Agilent 2100 Bioanalyzer. Strand-specific
mRNA-seq libraries were generated from 1 µg total RNA using
the TruSeq Stranded mRNA library prep kit (Illumina)
according to manufacturer’s instructions. Briefly, mRNA was
purified from total RNA by polyA capture, fragmented and
subjected to first-strand cDNA synthesis. The second-strand
synthesis was performed incorporating dUTP instead of dTTP
to ensure strand-specificity. Barcoded DNA adapters were
ligated to both ends of the double-stranded cDNA and
subjected to PCR amplification. The resulting libraries were
checked on an AATI Fragment Analyzer, quantified with
Qubit and pooled. The resulting library pool was diluted for
cluster generation on the cBot2 and finally sequenced on the
Illumina HiSeq 4000 platform.

RNAseq Analysis
Base calling was performed with BCL to FASTQ file converter
bcl2fastq v2.17.1.14 from Illumina (https://support.illumina.
com/downloads.html). In order to estimate gene expression
levels, paired-end RNASeq reads were mapped to the human
genome (build hg38) with STAR aligner version 2.5.2a using
default mapping parameters (48). Aligned reads were quality
checked with FastQC and MultiQC version 1.7 (49, 50).
Numbers of mapped reads for all RefSeq transcript variants of
a gene (counts) were combined into a single value by using
SAMTOOLS software (51) and normalized as rpkms (number of
mapped reads per kilobase transcript per million sequenced
reads (52),. RNA-seq data have been deposited in Gene
Expression Omnibus (GEO accession number GSE159108).

Principal Component Analysis and Heatmaps
Principal component analysis (PCA) of the gene expression
profiles was generated using ClustVis (53). Each dot in the
PCA plot is a biological replicate. Heatmaps were generated
using ClustVis and default settings (53).

Generation of MA Plots
To visualize changes in gene expression between different
conditions MA plots were generated. The MA plots are based
Frontiers in Immunology | www.frontiersin.org 5
on gene expression levels measured in log2(RPKM), the
logarithm to the base of two of the reads per kilobase of
transcript per million reads sequenced. The x axis shows, for
every gene, the average expression value between the two
conditions that were compared. On the y axis, the difference
between the two expression levels for every gene is depicted. Each
gene is represented by a single dot. Some strongly affected genes
were highlighted in yellow, with gene names specified.
Microglia Expression Modules
Microglia expression modules were derived from the publication
of Friedman et al. (54) and complemented by two modules
(DAM signatures TREM2 dependent and TREM2 independent)
derived from the publication of Keeren shaul et al. (38). Gene list
for expression modules can be found in Table S3. Differences
between two groups in these expression modules were visualized
in a Radar plot using python.
Gene Ontology Analysis
A gene ontology analysis was performed that used the
differentially expressed genes that showed at least four RPKM
difference between WT and TREM2 KO. The GO terms were
condensed using the GO slim immune response tool from dice
tools (55).
Immunofluorescence Staining
Cells were fixed by replacing the medium with 4% PFA (Thermo
Fisher Scientific, in PBS) followed by incubation at RT for 15 min.
After washing three times using PBS, the cells were permeabilized
by incubation in 0.1% PBS-T [0.1% Triton-X-100 (Sigma Aldrich)
in PBS] for 15 min at RT. Following another washing step, non-
specific binding sites were blocked by incubation in SuperBlock
(Thermo Fisher Scientific) for 60 min at RT. The primary antibody
was added in SuperBlock and incubated overnight at 4°C. Iba1,
TREM2 and P2Y12 were added together, as well as Iba1, TuJ1, and
GFAP. For the no-primary antibody controls, only SuperBlock was
added. Following three washing steps, the cells were incubated with
the three respective secondary antibodies (donkey anti-goat AF555,
donkey anti-mouse AF647 and donkey anti-rabbit AF488, in
SuperBlock) for 90 min at RT in the dark and unbound
antibodies removed in two washing steps. Nuclei were
counterstained with Hoechst33342 (Invitrogen, in SuperBlock) in
the dark at RT, followed by twowashing steps. The cells were kept in
PBS and images acquired using the 63x objective of an OperaPhenix
(Perkin Elmer). Images were processed and analyzed using the
built-in Harmony software. The no-primary antibody control was
used for background correction. A complete list of the antibodies
used can be found in Table S4.
Mitochondrial Respiration Assay
The assay was performed using the Seahorse XF Cell Mito Stress
Test kit (Agilent). Cells were differentiated as described above
(14 days monoculture microglia like) and, in a Seahorse XF96
February 2021 | Volume 11 | Article 617860
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cell culture microplate, 50,000 cells (480,000 cells/cm2) were
seeded two days prior to the experiment. On the day of the
experiment, the medium was replaced with 180 µl media for the
mitochondrial respiration stress test (base medium + 2 mM L-
glutamine (Thermo Fisher Scientific), 1 mM sodium pyruvate
(Thermo Fisher Scientific), and 0.45% glucose (Sigma Aldrich),
pH 7.4). Prior to the experiment, the cell culture microplate was
incubated for 1 h at 37 ˚C in a non-CO2 incubator. The assay was
performed using a Seahorse XFe 96 Analyzer and compounds
(prepared according to the assay manual) were injected
sequentially (1 µM oligomycin, 2 µM FCCP, and 500 mM
rotenone/antimycin A) and the oxygen consumption rate
(OCR) measured three times before treatment and after every
injection. Data was processed and analyzed using the Seahorse
Wave software. For normalization, cells were fixed with 4% PFA
at 37°C for 15 min and nuclei stained with Hoechst 33342 for
15 min, before washing twice with PBS. The Operetta CLS high-
content screening system (Perkin Elmer) was used for imaging
nuclei counted and the ratio between cell types calculated.

Transwell Migration Assay
Cells were differentiated as described above (14 days
monoculture microglia like), detached from the dishes with
accutase and plated at a density of 8,000 cells per well in a 96-
well IncuCyte ClearView cell migration plate (Essen BioScience).
In the lower compartment, either recombinant human
complement C5a (biotechne, 1 ng/ml) or solvent control were
added as chemoattractant, which generates by natural diffusion a
gradient of the chemoattractant. Plates were incubated in an
IncuCyte S3 (Essen BioScience) and images acquired using the
10x objective every 4 h for upper and lower well. Migration was
assessed for 72 h and quantified using the Incucyte software
Migration Analysis tool.

Determination of Free Intracellular Ca2+
Cells were differentiated as described above (14 days monoculture
microglia like) and 8,000 cells were plated per well of a 384 well
plate. For calcium measurements, cells were incubated with the
FLIPR calcium 6 imaging dye (Molecular Devices) following the
manufacturer’s instructions. Briefly, dye was dissolved in 10 ml of
assay buffer 1 and 20 µl per well were added to the cells. Cells were
incubated for 2 h with the dye. Increase in cytosolic calcium in
response to ATP (Thermo Fisher Scientific), ADP (Sigma Aldrich),
as well as C5a was assessed using the Hamamatsu FDSS7000
detection system. Background signal (average of 10 pictures prior
to addition of stimuli) was subtracted from the measured maximum
following stimulation. RFU values were assessed per well.

Phagocytosis Assay
Cells were differentiated as described above (14 days
monoculture microglia like) and 40,000 cells were plated per
well of a 96 well plate (Falcon 353219). For the phagocytosis
assay, cells were incubated with Abeta coated, pHrodo labeled
beads. To obtain these beads Amidine Latex Beads (A37322/
Thermo Fisher Scientific) were washed once with PBS, pelleted
by centrifugation (16,000 g/5 min) and incubated at 37°C
overnight in PBS containing 1 mg/ml Ab42 (AnaSpec). After
Frontiers in Immunology | www.frontiersin.org 6
incubation with Ab42 beads were pelleted, washed with PBS and
re-suspended PBS containing 0.2 mg/ml pHrodo™ Red,
succinimidyl ester (pHrodo™ Red, SE/Thermo Fisher
Scientific). Beads and pHrodo were incubated for 1 h at room
temperature. After the incubation, beads were washed with PBS
and re-suspended in PBS. Phagocytosis of beads was monitored
using Incucyte S3 acquiring brightfield and red fluorescence
images. Cells were recognized using the Incucyte software
adherent cell-by-cell classification tool.

Statistics
Unless otherwise mentioned, all data values are expressed as
means ± standard deviation (SD). Unless otherwise indicated,
experiments were performed at least three times (i.e., using three
different cell preparations), with at least three technical replicates
per condition. Statistical methods for analyzing the various data
sets are indicated directly in the figure legends, data were
analyzed using Graphpad Prism software.
RESULTS

For the generation of iPSC microglia many protocols still mostly rely
on co-culturing microglia with neurons, astrocytes or neurons and
astrocytes to mimic the brain environment (25, 26, 56). However, for
drug screening purposes, e.g., with functional cellular assays, pure
cultures of monolayer cells are highly desirable. One key aspect is to
achieve proper microglia morphology in vitro in order to establish
their functional phenotype as well (8).

In our hands, using the media condition that was closest to
the previously published approach to generate iPSC microglia in
monoculture (25), the cells showed only little ramifications
(Figure S1 N2, IL34, GM-CSF, Fibronectin). To increase
ramification and marker gene expression of iPSC monoculture
microglia, we began to screen existing protocols and tested six
different media conditions (either N2 or RPMI media
supplemented with either IL34+GM-CSF, IL34+M-CSF+TGF-
b1 or IL34+M-CSF+TGF-b+CD200+CX3CL1) in combination
with six different matrix coatings (Tissue culture treated only,
Poly-D-lysine, CollagenI, Gelatin, Fibronectin, or Laminin)
(Figure S1A). Conditions, where cells displayed ramifications,
were chosen for follow up qPCR analysis (Figure S1B). Strongest
differences between the different cultures were observed for key
regulatory receptors of microglia such as fractalkine receptor
CX3CR1, ADP chemoreceptor P2Y12, receptor tyrosine kinase
AXL and lipoprotein lipase LPL mRNA expression. Based on the
morphology and only minor differences upon CD200 and
CX3CL1 addition for the last three days of differentiation, we
chose for further analysis the condition of RPMI supplemented
with IL-34, M-CSF and TGF-b1 on fibronectin coating (Figure
S1A and Figure 1A for timeline). Under this condition, we
confirmed the expression of P2Y12 on protein level by
immunocytochemistry as well (Figure 1B). The iPSC microglia
from monoculture displayed a similar morphology as the co-
culture iPSC microglia (Figure 1C) suggesting that the
fibronectin matrix resembles aspects of the matrix found in
co-cultures.
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To benchmark the microglia monoculture model towards
iPSC microglia in co-culture with iPSC-derived neurons, we
performed magnetic-activated cell sorting to remove the neurons
and compared the microglia based on their bulk RNA-seq
profile. A principal component analysis (PCA) demonstrated a
sufficient cellular differentiation of the mono- and co-culture
derived microglia with their common macrophage precursor
(pre-Macs) (Figure 2A). Similarly, gene expression profiling
between mono- versus co-cultured microglia revealed a higher
expression of ENPP2, FOSB,CCL13, F13A1, IL1B, CD74 in
microglia co-cultured with iPSC-derived neurons, whereas
monocultured microglia expressed higher levels of ID1,
LINC01235, MRC2, FABP4, TIMP3, APOE, and SPP1 (Figure
Frontiers in Immunology | www.frontiersin.org 7
2B). Together, this confirms that the mono- and co-culture
conditions induce two different microglia subsets.

Microglia are highly plastic cells that can change their
morphological and functional phenotype as a reaction to
different stimuli (8). Such stimuli can derive from
environmental alterations in the brain due to aging and
neurodegeneration. In support of this, comprehensive RNA-
seq analyses of microglia isolated from human and mouse
brain in an AD or other neurodegenerative disease context
indicate an association between gene transcription pattern and
a specific activation state of microglia. Recently, different
transcription patterns were proposed to categorize microglia
into different subsets (38, 54, 57, 58). In that context the
A B

C D

FIGURE 2 | Comparison of gene expression profiles in mono- and co-culture-derived microglia. (A) Principal component analysis of complete expression profiles of
macrophage precursors (pre-MACS), mono- and co-cultured microglia-like cells. The lack of any intersection between the ellipses (95% confidence interval) indicates
a clear statistically significant separation between the gene patterns of the different cell types. (B) MA plot to visualize gene expression differences between mono-
and co-culture-derived microglia-like cells. The MA plot is based on gene expression levels measured in log2(rpkm), the logarithm to the base of two of the reads per
kilobase of transcript per million reads sequenced. The x-axis shows, for every gene, the average expression value between the two conditions, on the y-axis is, for
every gene, the difference between the two expression levels. Some strongly affected genes are highlighted in yellow, with gene names specified. (C) Radar plot to
visualize changes in gene expression in microglial modules. The red circle indicates the reference level as detected in co-cultured microglia. Peaks outside the red
circle indicate higher expression in monoculture microglia and modules closer to the center indicate higher expression in microglia generated in co-culture with
neurons. (D) Heatmap of the genes belonging to the DAM or interferon module in co- and monoculture derived microglia. Expression values were standardized and
depicted on a z-scale with red indicating high and blue low expression, respectively. The five red and five blue boxes on top of the heatmap indicate the two different
culture conditions, respectively, and that each culture condition was performed in five independent experiments. The downregulation of the “interferon” module and
the upregulation of “DAM” modules is consistent between different experiments as indicated by the similar gene expression patterns between different biological
replicates. This confirms the robustness of our new protocol.
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upregulation of APOE and SPP1 as observed in our monoculture
condition is part of a DAM signature (38). This indicates that in
contrast to the co-culture condition, our monoculture condition
provides stimuli that drive iPSC microglia towards a more
disease associated expression pattern.

In order to explore the transcriptional pattern of the
monoculture microglia further and to gain more insight into the
different stimuli that possibly induced the transcriptional
phenotype, we defined nine different modules of microglia states
based on published data sets (See Table S3 for the names of the
genes and of the different modules) (38, 54). We then mapped the
differences in gene expression profiles of the two culture conditions
towards these modules (Figure 2C). Our mono- and co-culture
iPSC microglia were similar in the “microglia” module validating
the chosen differentiation conditions to generate microglia. The
most prominent differences were observed for “macrophage” and
“interferon” modules, which were lower expressed in the
monocultured iPSC microglia. The reduced “interferon” signature
is most likely attributed to the change from GM-CSF
supplementation in co-culture to M-CSF supplementation in
monoculture (59). The lower “macrophage” signature combined
with the also slightly reduced “monocyte”module indicates an even
stronger differentiation away from the peripheral myeloid cells than
the co-cultured microglia. Furthermore, we observed upregulation
of “TREM2-dependent” and “TREM2-independent” modules
suggesting a more DAM-like phenotype for iPSC microglia in
monoculture compared with microglia from co-culture. The
downregulation of the “interferon” module and the upregulation
of “DAM” modules is consistent between different experiments as
indicated by the similar gene expression patterns between different
biological replicates (Figure 2D).

At this point, we wanted to complement the DAM-like gene
expression pattern of our monoculture iPSC microglia with
functional data. Given the implication of TREM2 in the DAM-
like expression pattern and the association of TREM2 with AD
we focused on modulating this gene. To that end, we employed
the isogenic TREM2 knock-out (KO) of the same iPSC line and
differentiated the two cell lines in parallel in the same
monoculture condition. As before, we first made sure there is
an effect of TREM2 KO on a gene expression level. The PCA
revealed a minor but clear separation in RNAseq-based gene
expression between iPSC-derived microglia and their isogenic
KO form (Figure 3A). The majority of differentially regulated
genes were downregulated in the KO compared to the cells
having functional TREM2 (Figure 3B). This included DAM-
signature associated genes and became evident in the module
analysis as well (Figure 3C). The iPSC-derived microglia lacking
TREM2 also displayed an upregulation of the interferon,
proliferation and macrophage module, while the monocyte and
neurodegeneration module were downregulated. Confirming the
genotype, TREM2 independent DAM signature stayed
unaffected by the loss of TREM2. The upregulation of the
“interferon” module and the downregulation of “DAM”
modules in the TREM2 KO microglia compared with wild type
cells is consistent and robust between different experiments as
indicated by the similar gene expression patterns between
Frontiers in Immunology | www.frontiersin.org 8
different biological replicates (Figure 3D). A gene ontology
(GO) term analysis revealed that in iPSC-derived microglia
lacking TREM2 “myeloid cell homeostasis”, “myeloid cell
development”, and “myeloid progenitor cell differentiation”,
and GO terms related to cell adhesion, motility, and migration
as well as lipid metabolism and mitochondrial organization were
enriched (Figure S2, red boxes). Together, this indicates that the
transcriptional phenotypes of the TREM2 KO and wild type
iPSC microglia are sufficiently different from each other in order
to expect functional differences as well.

To confirm some of the GO term associated functions and to
explore feasibility of functional assays with microglia from our
monoculture condition, we subsequently tested iPSC-derived
microglia for their mitochondrial activity, cellular calcium
responses and migratory capacity. First, we used Seahorse
extracellular flux analysis to assess mitochondrial respiration.
TREM2 KO microglia displayed a significantly lower basal
mitochondrial respiration (Figure 4A, B), spare respiratory
capacity (Figure 4C), and less ATP production (Figure 4D),
while there was no significant difference detected in the proton
leak (Figure 4E) when compared to isogenic wild type iPSC
microglia, indicating reduced use of the respiratory chain for
ATP production.

Microglia continuously monitor their environment and can
react to damage signals (e.g., ADP/ATP released by dying
neurons, local activation of complement pathways in the aging
brain and in neurodegeneration), i.e., by directed migration to the
damage site (60). Many of the microglial receptors rely on changes
of free intracellular calcium levels to mediate the internal signal
transmission and integration. For instance, chemoattractants and
damage-associated molecules signal through GPCR receptors
thereby increasing intracellular calcium levels. To check for this
functionality, we stimulated the cells with different concentrations of
the typical chemoattractants and damage signals ADP, ATP and
complement factor C5a (Figures 5A–C) and monitored the related
intracellular calcium changes. The anaphylatoxin C5a is a well-
described chemoattractant for innate immune cells that can be
employed in cell culture (27). In an in vivo setting light induced
microglial migration in the retina has been reported to be C5aR
dependent (61) and in context of AD recent reports suggest a role of
C5a in the regulation of microglial inflammatory response (62).
ATP and its metabolites are also well-described chemoattractants
for microglia through their plethora of receptors (63–65)
Confirming the GO term result, TREM2 KO cells reacted already
at lower concentrations and with a higher maximum to all three
stimuli than their isogenic wild type iPSCmicroglia. This indicates a
potentially more rapid signal integration in the TREM2 KO versus
the wild type microglia. This is supported by a slightly elevated
baseline migratory phenotype, and muchmore by the robust almost
doubling of the migration speed of TREM2 KO versus wild type
microglia upon stimulation by C5a (Figure 5D).

Phagocytosis and in particular uptake of Ab—a major
component of senile plaques in the AD brain—is a prominent
function of microglia, which according to preclinical in vitro and
in vivomodels is reduced by TREM2 loss of function (39, 66–68).
In line with literature, we observed a strongly diminished uptake
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of Ab-coated beads by the TREM2 KO compared with the wild
type microglia (Figures 5E, F) confirming a critical role of
TREM2 in regulation of microglial phagocytosis. Together,
these functional data confirm the DAM-like phenotype of our
iPSC microglia; a phenotype which can be reversed by knocking
out TREM2.

In conclusion, the overall results of our different approaches
to generate iPSC microglia combined with gene expression and
functional phenotypes confirm the feasibility to employ
monoculture conditions to generate microglia-like cells, which
express relevant functional gene sets including the key surface
receptor TREM2. The ability to ablate specific genes such as
TREM2 to reverse their DAM-like phenotype make these iPSC
Frontiers in Immunology | www.frontiersin.org 9
microglia a valuable tool for studying biological mechanisms
relevant for AD and to perform compound screening and testing
for drug discovery.
DISCUSSION

Studying microglia in humans and ultimately finding and testing
novel therapeutic approaches targeting these cells remains a huge
challenge. This is attributed to the heterogeneity of phenotypes
microglia can acquire. For instance, proliferation, migration,
phagocytosis, neurotrophic signaling, factor release for the
A B

C D

FIGURE 3 | Differences in gene expression in wild type and TREM2 KO monoculture-derived iPSC microglia. (A) Principal component analysis of complete
expression profile of monoculture derived microglia-like cells generated from wild type (WT) and TREM2 knockout (KO) iPSC lines. The lack of intersection between
the ellipses (95% confidence interval) indicate a statistically significant separation between the gene patterns of the two cell types while the fact that the ellipses seem
to touch each other indicate only a minimal separation in the PCA. (B) MA plot to visualize gene expression differences between WT and TREM2 KO monoculture
iPSC microglia. The MA plot is based on gene expression levels measured in log2(rpkm), the logarithm to the base of two of the reads per kilobase of transcript per
million reads sequenced. The x-axis shows, for every gene, the average expression value between the two conditions, on the y-axis is, for every gene, the difference
between the two expression levels. Genes highlighted in yellow are part of the TREM2-dependent DAM signature genes according to Keren-Shaul et al. (38).
(C) Radar plot to visualize changes in gene expression in microglial modules. The red circle indicates the reference level as detected in WT iPSC microglia. Peaks
outside the red circle indicate higher expression in TREM2 KO microglia and modules closer to the center indicate higher expression in microglia generated from the
WT iPSC line. (D) Heatmap of the genes belonging to the DAM module in WT and KO monoculture microglia. Expression values were standardized and depicted as
z-scores with red indicating high and blue low expression, respectively. The five red and five blue boxes on top of the heatmap indicate the two different cell types,
respectively, and that each cell type was analyzed in five independent experiments. The gene expression patterns for each cell type appear consistent between
different experiments. This confirms the robustness of our new protocol for WT and TREM2 KO iPSC microglia.
February 2021 | Volume 11 | Article 617860

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Reich et al. iPSC-Derived Microglia Replicate TREM2-Dependent Deficits
modulation of immune function and blood-brain barrier
integrity contribute to their high degree of plasticity (1–7, 69).
This allows them to react to various cues and to switch between
the phenotypes rapidly (8). Moreover, microglia are reported to
have different regional abundance and activity states during
aging, brain activity and neurodegenerative processes (58, 70–
72). In addition, accessing microglia in the human brain is in the
majority of cases only possible in postmortem tissue (73).

To overcome the need to study microglia in or isolated from
humans, the field investigates rodent microglia in situ or as
primary cells in vitro as a surrogate (38, 74, 75). Apart from the
need to use large numbers of animals in order to isolate sufficient
quantities of microglia, there are also many technical caveats
when using rodent microglia; for instance batch-to-batch
variations caused by the isolation process and a rapid switch of
their previous gene expression pattern and phenotype (12, 13).
Additionally, there are concerns about phenotypes induced by
in-breeding, different mouse strains with different immune
backgrounds and the often-limited translatability between mice
and humans. This inter species translatability is of general
concern for all animal models but especially for various
Frontiers in Immunology | www.frontiersin.org 10
receptors and ligands related to innate immunity and
particularly microglia (74, 76).

Besides rodent models, microglia like cells have also been
derived from human peripheral monocytes (77). These cells have
been shown to resemble microglia specific gene signatures and
functional properties. However, due to the difference in
hematopoietic origin, these cells rather resemble infiltrating
monocytes than brain resident microglia (77).

The iPSC technology together with the evolving
understanding of microglial origin in mice and humans (21–
23) allow now the robust generation of human iPSC-derived
microglia-like cells (24–26, 78) in large amounts (25, 27).This
provides the opportunity to employ human iPSC microglia for
large-scale drug screening and for extensively studying biological
mechanisms under more physiological and translational
conditions. Additionally, iPSC based models provide the
opportunity to study the effect of disease associated genes with
isogenic mutation or knockout pairs (42, 43, 45). All of these
protocols aim to follow the course of embryonic development
and to recapitulate this in vitro as far as possible (24–27, 79). For
the first part, the generation of myeloid progenitors via
A B

C D E

FIGURE 4 | Differential mitochondrial respiratory activity in TREM2 KO versus wild type iPSC microglia. WT and TREM2 KO monoculture iPSC microglia-like cells
were re-plated after 14 days of differentiation into fibronectin pre-coated seahorse assay plates (A–E). (A) The baseline oxygen consumption rate (OCR) of WT and
TREM2 KO cells was assessed, followed by the sequential injection of different indicated mitochondrial electron transport chain complex inhibitors (oligomycin and a
combination of rotenone and antimycin A) and the mitochondrial uncoupler carbonyl cyanide-4-(trifluoromethoxy)phenylhydrazone (FCCP). OCR was measured three
times initially and after each injection. (B) The basal respiration was calculated by subtracting the OCR of non-mitochondrial respiration (OCR after rotenone/
antimycin A injection) from the baseline OCR. (C) The spare respiratory capacity results from the subtraction of the basal respiration from the maximal respiration
[(OCR after FCCP injection) – (non-mitochondrial respiration)]. (D) ATP production is the OCR of the basal respiration with the proton leak subtracted. (E) The proton
leak is the remaining OCR after injection with oligomycin without non-mitochondrial respiration. n=3; Data shown as mean with standard deviation. Statistical analysis
was performed using t-test. (ns, p ≥ 0.05; ***p ≤ 0.001; ****p ≤ 0.0001).
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transcription factor MYB-independent primitive myelopoiesis,
most protocols are broadly similar. However, the challenge for
microglia generation as well as for the maintenance of primary
microglia lies in the simulation of the correct neuronal
microenvironment that determines the final differentiation and
is essential for the maintenance of the phenotype (12). Several
approaches exist for the in vitro simulation of this tissue niche,
most of which are based on co-culture approaches with either
neurons (25), astrocytes (42) or both. Other approaches use
chemokines, morphogens and metabolites to differentiate the
microglia-like cells in monoculture (17, 80)
Frontiers in Immunology | www.frontiersin.org 11
Recently, we demonstrated the scalability of a protocol for the
generation of myeloid precursors and primitive macrophages
(27). The protocol is based on a publication by van Wilgenburg
et al. (46) and cells generated with this differentiation protocol
have already been used previously to obtain microglia like cells in
co-cultures (2 and 3D) as well as in monoculture (25, 81).
However, further optimization of the monoculture protocol
seemed desirable. In our study, we aimed for such a
reductionist approach of monoculture microglia and compared
them on the morphological and gene expression level to the more
elaborate co-culture model. Our observations on the
A B
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C

FIGURE 5 | Functional differences in TREM2 KO versus wild type iPSC microglia. (A–C) Intracellular calcium kinetics following different stimuli. (A) Intracellular
calcium levels upon stimulation with different concentrations of ATP. Maximum measured fluorescence is indicated as relative fluorescence units (RFU), which are
baseline corrected (n = 3). Data shown as mean with standard error of the mean. Statistical analysis of two data sets was performed using a two-way ANOVA. (B)
Intracellular calcium levels upon treatment with different concentrations of ADP. Maximum measured fluorescence is indicated as relative fluorescence units (RFU),
which are baseline corrected (n = 3). Data shown as mean with standard error of the mean Statistical analysis of two data sets was performed using a two-way
ANOVA(****p < 0.0001). (C) Intracellular calcium levels upon treatment of different concentrations of complement component 5a (C5a). Maximum measured
fluorescence is indicated as relative fluorescence units (RFU), which are baseline corrected (n = 3). Data shown as mean with standard error of the mean. Statistical
analysis of two data sets was performed using a two-way ANOVA (****p < 0.0001). (D) Migration speed of WT and TREM2 KO monoculture microglia in presence or
absence of 1 ng/ml C5a as chemoattractant in the bottom compartment. Migration speed was calculated from the increase in iPSC microglia occupied area over
time in the bottom compartment of the transwell and expressed relative to untreated WT control. Statistical analysis was performed using t-test for PBS and
complement C5a condition, respectively (***p < 0.001). (E) Representative images of WT and TREM2 KO iPSC microglia incubated for 2 h with pH-rodo labeled Aß-
coated beads. (F) Quantification of pHrodo positive microglia after 2 h incubation with pHrodo labeled Aß-coated beads. n = 3; Data shown as mean with standard
deviation. Statistical analysis was performed using t-test (***p < 0.001).
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transcriptional as well as on the phenotypic level correlate with
the results reported from others (24, 25, 78)and extend these.
The constitution of growth factors in our finally chosen
microglia differentiation media is similar to the one published
by McQuade and colleagues (78). Even though the two protocols
differ in mesoderm induction and pre-Mac generation, resulting
cells showed similar transcriptional and morphological profiles.
However, a key advantage of the protocol shown here is the long
lifetime of the myeloid factories, which allows continuous pre-
Mac supply over a production period of 60–80 days (27).

We observed on the transcriptional level that monoculture-
derived iPSCmicroglia showed an increase in genes related to the
so-called DAM signature compared with neuronal co-culture
derived microglia (Figure 2). The cell surface receptor TREM2 is
part of the DAM signature (37, 38). It is an important molecule
for microglia to interact with their environment and mutations
in the gene for TREM2 are associated with neurodegenerative
disorders including AD (9, 10, 31–36). Due to the importance of
TREM2 for microglia and in drug discovery attempts for AD in
general, we focused the characterization of our human iPSC
microglia on TREM2 related functions and chose a TREM2 KO
isogenic pair to further challenge the suitability of our
monoculture model in cellular assays. First, we compared the
isogenic controls on the transcriptional level and identified
differences in genes associated with mitochondrial
organization, cell motility and migration. Indeed, we could
confirm differences in mitochondrial respiration by the
Seahorse assay. Furthermore, we observed different responses
in free intracellular calcium following exposure to well-
established microglia chemoattractants, and pronounced
differences in the migration towards one of these attractants
(complement C5a) (Figures 5A–D), which is in line with
observations by others (82). Furthermore, we demonstrated
that the monocultured iPSC microglia are also suitable for
phagocytosis assays (Figures 5E, F) and confirmed here
observations published by others (39, 66–68). TREM2 signals
via DAP12 and phosphorylation of SYK resulting in
phosphorylation of the downstream kinases PI3K, PLCy and
ERK (42, 67). These pathways have already been linked to
alterations in cell proliferation, survival, metabolism, motility,
and phagocytosis (42, 82–84). TREM2 KO has been shown to
restore a homeostatic phenotype in AD and SOD models in vivo
(82, 84). However, our observation that TREM2 KO cells show
an increase in proliferative signatures and in motility was rather
unexpected. One possible explanation could be that DAP12 may
be stronger involved in the integration of other signaling
cascades upon TREM2 loss. For the complete understanding of
the pathway, we plan to explore the effect of loss of downstream
targets on the cellular phenotypes in future studies.

Overall, our monoculture microglia model performed
robustly in the applied functional cellular assays, pointing to its
suitability to study cellular effects of TREM2 modulation. In a
next step, our iPSC microglia model could be applied for cellular
screening and profiling of various microglia modulatory
pathways in the context of AD or other neurological diseases.
Additionally, the established protocol to generate iPSC microglia
Frontiers in Immunology | www.frontiersin.org 12
now forms the basis to expand the single cell type culture with
other cell types in order to generate multicellular spheroids and
organoids. However, such complex cell models also come with
greatly increased cultivation time, limited throughput and
reduced number of available readouts (85) and more
optimization will be required.

In this study, we have not addressed the suitability of the
monoculture microglia system to investigate the effects of other
disease-associated mutations or to model aspects of other
diseases. However, the transcriptional data set in combination
with the microglial module analysis provides a good basis to
judge suitability of this model for other purposes. Using this as a
starting point, one could test a variety of stimuli and see how they
affect the expression in the different modules. Once we know
what drives the differentiation of iPSC microglia towards a
desired phenotype could enable the development of a toolbox
for modeling key aspects of different microglial subtypes
in monoculture.

In conclusion, the combined results of our experiments
demonstrate that human iPSC microglia can be produced
robustly in monoculture and our data confirm that these cells
can be used in various microglia-relevant functional assays.
Additionally, genetic ablation of TREM2 leads to the expected
phenotypes validating these cells as a valuable tool for studying
microglia-related biological mechanisms and to perform
compound screening and testing for drug discovery.
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