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Pemphigus is a severe autoimmune disease impairing barrier functions of epidermis

and mucosa. Autoantibodies primarily target the desmosomal adhesion molecules

desmoglein (Dsg) 1 and Dsg 3 and induce loss of desmosomal adhesion. Strikingly,

autoantibody profiles in pemphigus correlate with clinical phenotypes. Mucosal-dominant

pemphigus vulgaris (PV) is characterised by autoantibodies (PV-IgG) against Dsg3

whereas epidermal blistering in PV and pemphigus foliaceus (PF) is associated with

autoantibodies against Dsg1. Therapy in pemphigus is evolving towards specific

suppression of autoantibody formation and autoantibody depletion. Nevertheless, during

the acute phase and relapses of the disease additional treatment options to stabilise

desmosomes and thereby rescue keratinocyte adhesion would be beneficial. Therefore,

the mechanisms by which autoantibodies interfere with adhesion of desmosomes need

to be characterised in detail. Besides direct inhibition of Dsg adhesion, autoantibodies

engage signalling pathways interfering with different steps of desmosome turn-over.

With this respect, recent data indicate that autoantibodies induce separate signalling

responses in keratinocytes via specific signalling complexes organised by Dsg1 and Dsg3

which transfer the signal of autoantibody binding into the cell. This hypothesis may also

explain the different clinical pemphigus phenotypes.

Keywords: adhesion, pemphigus, signalling, autoantibodies, autoimmune blistering disease

INTRODUCTION

Pemphigus is a severe autoimmune blistering skin disease disrupting desmosomes and thereby
affecting the epidermis of the skin and the mucosa (1, 2). Desmosomes are important epithelial
cell-cell contacts providing high mechanical stability (3–5). Disruption of desmosomes causes the
cells to detach from each other, leading to acantholysis. The desmosomal transmembrane cadherins
comprise desmogleins (Dsg) 1–4 and desmocollins (Dsc) 1–3 (3). They are connected to the plaque
proteins plakoglobin (PG), plakophilin (PKP) 1–3, and desmoplakin (DP). The plaque anchors
the desmosomes to the keratin filament cytoskeleton (6–11). The composition of desmosomes
varies within tissues and different layers of the epidermis which is relevant since Dsg isoforms
differ in their function to regulate signalling pathways in pemphigus. Dsg2, which is ubiquitously
expressed throughout other epithelia, can only be found in the basal layer of neonatal epidermis but
is absent in adult epidermis outside of hair follicles (12–14). In contrast, Dsg1 and Dsc1 expression
increase whereas the amount of Dsg3 and Dsc3 decrease towards superficial epidermal layers with
Dsg3 being absent in the stratum granulosum. Dsg4 on the other hand is missing from basal cells,
described to be only found in the granular layer and hair follicles (13). Starting from the granular
layer, corneodesmosine starts additionally linking cadherins together in the extracellular space (13).
This shift in composition marks the stepwise maturation of the adaptable desmosomes towards
stable corneodesmosomes found in the cornified layer. In mucosal epithelium, the situation is
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slightly different. Dsg2 is found in the basal layers only (15). Dsg1
is less predominant and particularly absent in the basal layer of
mucosa whereas Dsg3 is present in all layers (15). Dsg4 can also
be found in all layers above the basal layer. In contrast, Dsc1 is
not present in oral mucosa while Dsc2 and 3 are present in all
layers (3). The expression patterns of desmosomal cadherins in
the mucosa are thus more homogeneous compared to epidermis.
In neonatal mouse skin, it was shown, that the more ubiquitous
distribution of Dsg3 without a distinct enrichtment of Dsg1 in
the upper epidermal layers (16).

All pemphigus variants are rather rare and here we focus
on the two main variants of the disease pemphigus vulgaris
(PV) and pemphigus foliaceus (PF). Incidence and prevalence of
PV vary profoundly in different geographical regions as well as
ethnicities. In Germany, the prevalence for PV in 2014 was 94.8
per one million population (pmp) (17). It was shown that some
genetic variations particularly of the HLA class II (18–24) but also
non-HLA genes (23, 25–37), including DSG3 (38) play a role.
Especially, different expression of the transcription factor ST18,
which alters signalling pathways including ERK and is associated
with apoptosis, was found tocorrelate with increased prevalence
in of PV (22, 32, 39, 40). Of course, environmental risk factors
might be of importance as well.

For PF, the prevalence was 10.01 pmp (17), with an estimated
incidence rate of <1 pmp in the USA and Europe. PF can
manifest sporadically, usually at a middle age. It was shown, that
genetic-HLA (41–45) and non-HLAmarkers (28, 46) are relevant
as well. However, there are also more frequent endemic PF
variants, e.g., in some subtropical areas of Brazil with incidence
rates as high as 3–5% and an onset often at a relatively young
age (47–52). Other regions such as Tunisia (53) or Colombia (54)
show similar variants.

In most cases, PV initially shows mucosal erosions sometimes
spreading to the oesophagus, the airways, the anogenital mucosa
(2, 55) and in rare cases even the conjunctiva (56) (Figure 1).
In about half of the cases after mucosal erosions additional
epidermal lesions develop (57). In contrast, PF affects the more
superficial layers of the epidermis only and is less severe (2, 58,
59), however a spread to deeper layers as well as the mucosa and
thus progression to PV is possible (60).

For diagnosis of pemphigus, the specific histology with
separation at the suprabasal layer for PV and at the granular
layer for PF is important (3, 61) (Figure 1). The second specific
diagnostic marker are the circulating auto-antibodies against
Dsg1 and Dsg3 and in some cases against Dsc3 (57, 61–66),
Dsc1 (65), or Dsc2 (66, 67) as well as the accumulation of auto-
antibodies in perilesional skin (55, 57). Auto-antibody titers often
correlate with disease severity (57, 61, 68, 69).

Pemphigus is a very severe disease with a mortality of around
71% if untreated. Secondary infections due to the disruption
of the skin barrier are the most severe problem (58, 70). All
treatment strategies aim to reduce the levels of circulating
pathogenic autoantibodies. With the introduction of systemic
corticosteroid therapy for unspecific immunosuppression, the
mortality rate was significantly improved to about 21% (71).
However, especially under long-time therapy, these medications
cause many side effects including increased infection tendency,

FIGURE 1 | The clinical phenotype and histology of PV and PF. (a) mPV.

(b) mPV. (c) mcPV. (d) PF. (e) mcPV. (f) PF.

osteoporosis, low blood sugar, weight gain arterial hypertonia,
cataracts, and glaucoma. These side effects can be reduced or
delayed by combination therapy with other immune-suppressive
agents or antibodies such as Rituximab, which depletes
pathogenic B cells, to reduce the steroid dose (72–75). Current
combination therapies reduce the mortality to about 5–10% with
death mostly resulting from adverse drug side effects (76). These
agents usually show less severe but nonetheless considerable side
effects including liver toxicity, anaemia, neutropenia, increased
infection risk, cold-like symptoms, increased thirst and urination
or in some rare worst cases neurological symptoms reaching from
sight loss to impaired movement or speech. Patients might also
develop an insensitivity to many of these agents (73, 77).

Novel therapy options are for example intravenous injection
of high doses of IgG of healthy donors (78, 79), competitively
blocking Fc-receptors of inflammatory cells, reducing B-cell
response and inducing autoantibody catabolism (80). Another
successful concept is plasmapheresis, where the patient’s
pathogenic autoantibodies are removed (76). In recent years,
plasmapheresis is replaced by immunoapheresis, depleting the
patient’s own autoantibodies by protein A immunoadsorbtion
and thus causing less side-effects (81, 82). However, all these
therapies have their own drawbacks, including the high costs
(83), availability of donor IgG (84) and the need for regular long
treatment sessions. Currently the treatment with corticosteroids
in combination with immune suppressive agents and Rituximab
is still the standard method (72, 85, 86). Furthermore, it is known
that not all patients respond to these therapy concepts.

There are some experimental therapy approaches including
humanised anti-CD20 antibodies other than Rituximab, designed
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to be more specific, more potent and/or less immunogenic (87–
89). Antibodies directed against targets other than CD20 are
also in development (90–92). A similar approach is targeting
B-cell signalling and crosstalk with specific inhibitors (93,
94). Furthermore, IgE signalling via IL-4 on Th2 cells which
are involved in pemphigus pathology are a novel target (95–
97). Targeting Abl-thyrosine kinase-mediated extravasation of
autoantibodies into the skin seems to be a promising approach,
too (98–100). Another target impacting the autoantibody
function are Fc receptors, which prevent IgG degradation and
increase autoantibody halflife (101–103). Another approach is
to restore Dsg tolerance (104, 105) by transferring Foxp3-
expressing regulatory T cells which were shown to be markedly
reduced in pemphigus (95). A different emerging option is the
therapy with chimeric antigen receptor T-cells (CAR-T)/chimeric
autoantibody T-cells (CAA-T) which target a specific antigen
and kill the target cell. They could thus deplete autoreactive
B-cells (106–108).

For all therapy approaches to reduce autoantibody formation
one limitation is that time is required until patients benefit.
Therefore, for the acute phase of disease as well as for patients
suffering from relapses additional therapeutic options directly
stabilising keratinocyte desmosomal adhesion would fulfil an
unmet medical need. Directly interfering with keratinocyte
signalling to stabilise desmosomes and to induce desmosome
assembly could thus be a very promising therapeutic target.

THE ROLE OF AUTOANTIBODIES

Pathogenic autoantibodies in pemphigus are mostly directed
against Dsg1 and Dsg3. Antibodies against other desmosomal
and non-desmosomal proteins are also found. However, whilst
it was shown that anti-Dsg1 and anti-Dsg3 antibodies are
pathogenic, the role of most other antibodies for the pathology
of pemphigus is not clear (2, 58, 105–112). One rare exception
are the autoantibodie against Dsc isoforms such as Dsc3 which
induce a pathology similar to anti-Dsg antibodies (57, 61–67).
Nevertheless, it is likely that some of these auto-antibodies may
cause additive effects which affect the clinical phenotype (109).
To address this possibility, the so-called “multiple hit hypothesis”
postulates that for the actual disease to occur the cumulative
effects of several of these antibodies against desmosomal and
non-desmosomal antigens are needed (110, 111). However,
AK23, which is a Dsg3-specific antibody from an active mouse
model, and monoclonal autoantibodies targeting Dsg1 isolated
from PF patients have been shown to induce pemphigus-typical
acantholysis (112, 113). This demonstrates that autoantibodies
against Dsg molecules are sufficient to cause pemphigus, at least
under experimental conditions.

Pathogenic pemphigus autoantibodies targeting Dsg1
and Dsg3 are mostly directed against EC1 and 2, while
antibodies directed for example against EC5 are reported to
be non-pathogenic (23, 114). It is theorised that pathogenic
pemphigus autoantibodies can evolve from the non-
pathogenic antibodies via epitope spreading. It is known
that non-pathogenic Dsg1 autoantibodies are increased in

unaffected individuals of high incidence endemic populations
(23, 45, 115, 116). In endemic PF, the subtype of IgG usually was
found to be IgG4 whereas antibodies in unaffected individuals
were almost exclusively IgG2 (117). However, non-pathogenic
and pathogenic antibodies often share the same light and heavy
chains (114), providing credence to this theory (23, 95, 114).
Epitope spreading from Dsg3 to Dsg1 is described in the
relatively frequent transformation from mucosal-dominant
(anti-Dsg3-IgG only) to mucocutaneous PV (anti-Dsg1-
and anti-Dsg3-IgG). The same is true for a less frequent
transformation from PF (anti-Dsg1-IgG only) to PV (anti-Dsg1-
and anti-Dsg3-IgG) (58, 70). Similarly, autoantibodies against
plaque proteins or Dsc isoforms also support this hyposthesis
(95). A further piece of evidence is the observation that the
introduction of a single Dsg3-reactive T-cell was sufficient to
induce the expression of polyclonal anti-Dsg3 IgG in mice in
vivo (118).

The importance of these most prevalent pemphigus
autoantigens is demonstrated further by models to deplete
the expression of the corresponding proteins. It was shown
that knockout of Dsg3 in mice alone is sufficient to cause a
pemphigus-like phenotype (119–121). Similar results were
observed for deletion of Dsc3 (122), the autoantigen of atypical
pemphigus (123). Similar results were observed in an active Dsc3
mouse model producing autoantibodies against Dsc3 in vivo
(124). In contrast, Dsg1K.O. mice show a complete abrasion
of the superficial epidermis comparable to the histology in PF
during normal birth and are not viable (125).

PATHOGENESIS INDUCED BY
AUTOANTIBODIES TARGETING Dsg1 AND
Dsg3 AS REVEALED BY EXPERIMENTAL
MODELS

Under experimental conditions, autoantibodies against Dsg1
and Dsg3 have been demonstrated to disturb the amount and
localisation of the respective desmosomal cadherins as well as to
induce reorganisation of the cytoskeleton. anti-Dsg3-IgGs cause
reorganisation and depletion of Dsg3 from the cell surface (126,
127). In the skin of PV patients less Dsg3 compared to healthy
individuals was detectable (128). Both PV-IgG (126, 129) and the
monoclonal antibody AK23 reduced membranous Dsg3 in vitro
(130) in human skin ex vivo (127) and in neonatal mice in vivo
(127). Starting at a reduction by about 50%, cell adhesion in vitro
was significantly reduced (130). For mice injected with PF-IgG a
reduction of Dsg1 by about 30% was enough to cause blistering
(128). In line with this, blister formation in neonatal mice was
inhibited under conditions which blocked the depletion of Dsg3
(127). The internalisation of Dsg3 occurs via endocytosis in a
complex with PG. Following the internalisation, the proteins are
degraded in the lysosome (126).

Despite the well-established importance of Dsg3 depletion
in pemphigus pathogenesis it is yet unclear if this is an
early or late mechanism (3). Furthermore, it was shown
that different Dsg3 fractions exist which behave differently
in terms of depletion (129–132). This is important since
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localisation of desmosomal cadherins is not limited to the
desmosomes (133, 134). Rather, extradesmosomal Dsg molecules
(135–137) linked to the actin cytoskeleton (138) are reported
as well. It was observed that the extradesmosomal Dsg3 is
depleted relatively rapidly following exposure to pemphigus
autoantibodies whereas it takes much longer until the Dsg3
integrated in desmosomes is notably impacted by pathogenic IgG
(129–131, 139). Since it was observed that acantholysis is actually
initiated in the spaces between the desmosomes (140, 141) while
keratinocytes stay connected punctually via the desmosomes
(142) which are disrupted later (143–145), it is hypothesised
that the exradesmosomal Dsg3 complexes represent desmosome
precursors, which are later integrated into desmosomes (135,
146). This process could possibly be disrupted by pathogenic
autoantibodies leading to endocytosis and degradation of these
precursors (129, 135, 139). Since desmosomes are dependent on
a dynamic equilibrium and are constantly remodelled under high
molecular fluctuation (147, 148) this would prevent desmosome
formation and cause disassembly of existing desmosomes (135,
149). A different hypothesis proposes a membrane-receptor-like
function for non-desmosomal Dsg3 (59, 144, 150) suggesting
that extradesmosomal and desmosomal cadherins may have
distinct roles.

Together with the disorganisation of the desmosome a
retraction of keratin filaments from the cell surface occurs (151–
153). During this process, keratin filaments detach from the
desmosomes (142, 143, 145, 154) and concentrate around the
nucleus (141, 153–156). It was shown that the retraction of
keratin filaments starts even before the internalisation of Dsg3
and correlates with the time the cell dissociation starts. Keratin
filaments show a clear association with Dsg3 reorganisation at
the membrane, preceding endocytosis (153) and turnover after
PV-IgG treatment (151). This mechanism is thus proposed to
play an important role in pemphigus pathogenesis and especially
the time of onset before desmosome disassembly suggest keratin
filament retraction to be a primary pathogenic mechanism (153).
The actin cytoskeleton was also shown to be affected by PV-IgG
which may interfere with desmosome assembly (129, 157).

MECHANISMS CAUSING ACANTHOLYSIS
IN PEMPHIGUS

Meanwhile it is widely accepted that the mechanisms underlying
loss of cell adhesion in pemphigus comprise both direct
inhibition of Dsg interaction by bound autoantibodies and
signalling mechanisms regulating keratinocyte adhesion
triggered by autoantibody binding (158). In the pioneering
studies on pathologic mechanisms direct inhibition of Dsg3
adhesion by steric hindrance was very suggestive to be causal
for acantholysis (159) whereas signalling such as PLC-induced
Ca2+ release (156, 160) was regarded more as secondary
bystander effect.

Meanwhile, there are some studies available on steric
hindrance of Dsg1 and Dsg3 adhesion, which for technical
reasons are mostly carried out under cell-free conditions in vitro
using bead assays or single-molecule atomic force microscopy

(161) but rarely were performed in cultured keratinocytes
(Table 1). However, studies using in vivo models or human
organ culture are lacking which makes it hard to decide whether
effects of autoantibodies on recombinant extracellular domains
of Dsg1 and Dsg3 can be transferred to the situation in intact skin
where desmosomes are formed in a complex multi-step process.
In contrast, there is ample evidence for the role of signalling
pathways in the regulation of desmosomal adhesion in PV from
studies not only performed in cultured cells but also using in vivo
mouse models and ex-vivo human epidermis whereas data for PF
are still limited (Table 2).

DIRECT INHIBITION OF DESMOGLEIN
ADHESION VS. CELLULAR SIGNALLING

The cadherins were reported to undergo homo- as well as
heterophilic Ca2+-dependent interactions via their extracellular
domains (3). The outermost extracellular domain EC1 domain
seems to be most important for Dsg adhesion (1, 27, 162–
164). As discussed above, the pathogenic autoantibodies found
in pemphigus mostly bind to this domain (27, 162, 165, 166).
At first glance, it appears obvious that the binding of a large
protein like an antibody to this region would cause steric
hindrance by directly inhibiting the Dsg binding and thus cell
adhesion. For Dsg3 it was possible to show the occurrence of
such a direct inhibition by PV-IgG in vitro, both under cell-
free conditions and for adhesion to the cell-surface (151, 167)
(Table 1). A PV-mouse-model did also show possible indications
of direct inhibition of Dsg3 adhesion (165). The finding that
the monoclonal anti-Dsg3-antibody AK23, which causes a PV-
like phenotype in mice (112), also causes direct inhibition of
homophilic Dsg3 interaction under cell-free conditions supports
this hypothesis (152, 168). Homophilic Dsc3 and heterophilic
Dsc3-Dsg1 were reported to be important for adhesion in
keratinocytes as well. Direct inhibition of these interactions
greatly reduced the adhesive strength (64). However, another
study reported heterophilic interactions between Dsg1 and Dsc1
and Dsg3 and Dsc3 to be the fundamental adhesive unit of
desmosomes. In a cell-free assay, mixtures of Dsg1 and Dsc1
or Dsg3 and Dsc3 ectodomains formed large aggregates while
Dsg1 or Dsg3 as well as Dsc1 or Dsc3 alone only formed minor
to no aggregates. Autoantibodies where effective to directly
inhibit binding of Dsg1 to Dsc1 and Dsg3 to Dsc3 beads (169).
Direct inhibition has thus to be considered to play a role in PV
pathology (150, 167, 170). However, direct inhibition alone is not
adequate to cause a complete loss of keratinocyte adhesion. This
is highlighted by the fact that impairing cellular signalling but
not direct inhibition by incubating the cells at 4 ◦C did prevent
PV-IgG induced loss of cohesion (126). Moreover, inhibition of
p38MAPK rescued cell adhesion although direct inhibition of
Dsg3 binding by PV-IgG was still detectable which demonstrates
that modulation of autoantibody-induced signalling is sufficient
to outbalace effects of steric hindrance (137). For PF, the
intracellular signalling seems to be even more important since
no direct inhibition of Dsg1 interaction was observed in several
studies (151, 152, 168, 171).
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TABLE 1 | Studies on direct inhibition of Dsg1 and Dsg3 interaction in pemphigus.

PV In vitro (cell-free) In vitro (cultured cells) In vivo (mice) Ex vivo (human)

Dsg1 No inhibition

(homophilic): AFM

– Heupel, JI 2008

– Walter, Sci Rep 2017

(heterophilic Dsc3): AFM

– Spindler, JBC 2009

Inhibition

(heterophilic Dsc1): beads

– Ishii, JID 2020

No inhibition

(homophilic): AFM

– Walter, SR 2017

No Data No Data No Data

Dsg3 Inhibition

(homophilic): AFM

– Heupel, JI 2008

– Heupel, JBC 2009

– Spindler, JCI 2013

– Walter, SR 2017

Inhibition

(heterophilic Dsc3): beads

– Ishii, JID 2020

Inhibition

(homo/heterophilic): AFM

– Vielmuth, JID 2015

Inhibition

No Data No Data

PF In vitro (cell-free) In vitro (cultured cells) In vivo (mice) Ex vivo (human)

Dsg1 No inhibition

(homophilic): AFM

– Waschke, JCI 2005

Inhibition

(heterophilic Dsc1):

– Ishii, JID 2020

No inhibition

(homophilic): AFM

– Walter, SR 2017

No inhibition

(homo/heterophilic): beads

– Waschke, JCI 2005

No inhibition

(homo/heterophilic): AFM

– Vielmuth, Frontiers Immunol 2018

No Data No Data

Over time, several signalling pathways have been identified
to be essential for the pathology of pemphigus (59, 152, 171–
173) (Table 2). The focus of current research is to integrate all
the different pathways and to define their role in pemphigus
pathogenesis. Especially, the chronology of many steps is not
clear at present.

THE PATHOLOGY OF PATIENTS’ LESIONS
IDENTIFIES THE UNDERLYING
MECHANISMS INTERFERING WITH
DESMOSOME TURN-OVER

Microscopic evaluation of skin lesions in pemphigus revealed
that the pathogenic mechanisms involved cannot be simple.
Rather, the different clinical phenotypes in PV and PF are defined
by characteristic histology and ultrastructural alterations of
desmosomes, which only can be explained by severe impairment
of desmosome turn-over, have been established as hallmarks of
the disease.

In PV, deep epidermal blisters and mucosal erosions typically
separate supra-basal keratinocytes in the blister roof from tomb-
stone-like cells of the basal layer in the blister bottom (174, 175)
(Figure 1). In contrast, superficial erosions in PF tear of granular

and apical spinous cell layers. Since Dsg3 is the predominant
desmosomal cadherin in oral mucosa whereas Dsg1 is sparsely
expressed, it is conceivable why in PF mucosal erosions usually
are absent. Similarly, because in the granular layer Dsg1 and
Dsc1 are the main desmosomal cadherins expressed, superficial
blistering in PF can be explained by the Dsg compensation
hypothesis (176). Supporting this, it was reported, that in
neonatal mouse skin, the more ubiquitous distribution of Dsg3
without a distinct enrichtment of Dsg1 in the upper epidermal
layers provided a protective effect against PF-IgG (16). However,
the morphology of epidermal lesions in PV does not reflect the
distribution patterns of Dsg1 and Dsg3 which in human skin
broadly overlap. Thus, desmoglein compensation cannot explain
a sharp supra-basal cleavage plain as found in PV (3, 150). Also,
morphologic alterations typical for apoptosis usually are not
present on histologic or ultrastructural levels in patients’ lessons
demonstrating that apoptotic cell death is not a major cause for
acantholysis (154, 177, 178).

It has been shown that Dsg3 clustering in the absence
of epidermal blistering correlates with the presence of
autoantibodies against Dsg3 in patients with mucosal-dominant
PV (149, 178, 179). Similarly, inter-desmosomal widening in
PV and PF was present in unaffected epidermis suggesting that
these events are not sufficient to cause skin blistering. Rather,
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TABLE 2 | Studies on signalling pathways in pemphigus.

PV Activation Pathogenic Pathogenic Pathogenic

In vitro

(cultured cells)

In vivo

(mice)

Ex vivo

(human)

p38

MAPK

– Berkowitz, JBC 2005

– Berkowitz, PNAS 2006

– Chernyavsky, JBC 2007

– Berkowitz, JID 2008

– Lee, JBC 2009

– Marchenko, JBC 2010

– Spindler, JI 2010

– Mao, JBC 2011

– Bektas, JBC 2013

– Spindler JCI 2013

– Mao, JID 2014

– Spindler, JID 2014

– Hariton, ED 2017

– Walter, Sci Rep 2017

– Vielmuth, FI 2018

– Jin, BA 2021

– Berkowitz, JBC 2005

– Chernyavsky, JBC 2007

– Lee, JBC 2009

– Mao, JBC 2011

– Bektas, JBC 2013

– Spindler JCI 2013

– Mao, JID 2014

– Rötzer, JBC 2014

– Spindler, JID 2014

– Walter, Sci Rep 2017

– Vielmuth, FI 2018

– Burmester, BJP 2020

– Berkowitz, PNAS 2006

– Spindler JCI 2013

– Mao, JID 2014

– Saito, PO 2012

– Egu, BJD 2017

– Burmester, BJP 2020

MK2 – Mao, JID 2014

– Egu, BJD 2019

– Mao, JID 2014 – Mao, JID 2014 No data

HSP25/27 – Berkowitz, JBC 2005

– Berkowitz, JID 2008

– Bektas, JBC 2013

– Mao, JID 2014

No data No data No data

RhoA – Waschke, JCB 2006

– Jin, BA 2021

– Waschke, JCB 2006

– Spindler, AJP 2007

– Gliem, AJP 2010

– Jin, BA 2021

No data – Waschke, JCB 2006

Adducin – Rötzer, JBC 2014 No data No data No data

Ca2+ – Esaki, JID 1995

– Seishima, JID 1995

– Rötzer, JBC 2014

– Walter, Sci Rep 2017

– Schmitt, BJD 2021

– Esaki, JID 1995

– Arredondo, AJP 2005

– Rötzer, JBC 2014

– Walter, FI 2019

– Schmitt, BJD 2021

No data – Schmitt, BJD 2021

PI4K No data – Schmitt, BJD 2021 No data No data

PLC – Seishima, JID 1995

– Schmitt, BJD 2021

– Esaki, JID 1995

– Schmitt, BJD 2021

– Sanchez-Carpintero, BJD 2004 – Schmitt, BJD 2021

IP3R No Data – Schmitt, BJD 2021 No data – Schmitt, BJD 2021

CRAC No Data – Schmitt, BJD 2021 No data No data

PKC – Osada, JID 1997

– Kitajima, JID 1999

– Rötzer, JBC 2014

– Kitajima, JID 1999

– Cirillo, J Cell P 2010

– Spindler, AJP 2011

– Walter, Sci Rep 2017

– Sanchez-Carpintero, BJD 2004

– Spindler, AJP 2011

– Egu, Frontiers 2019

cAMP/PKA – Spindler, JI 2010

– Walter, SR 2017

– Spindler, JI 2010 – Spindler, JI 2010 – Meier, 2020 FI

Src – Chernyavsky, JBC 2007

– Pretel, ED 2009

– Marchenko, JBC 2010

– Gil, ED 2012

– Tsang, JP 2012

– Walter, Sci Rep 2017

– Kugelmann, FI 2019

– Chernyavsky, JBC 2007

– Cirillo, AI 2014

– Walter, SR 2017

– Kugelmann, FI 2019

– Pretel, ED 2009

– Gil, ED2012

Not protective

ADAM10 – Ivars, BJD 2020 – Ivars, BJD 2020 No data No data

MMPs – Grando, JDS 1992

– Cirillo, JCP 2007

No data No data No data

EGFR – Frusić-Zlotkin, AI 2006

– Chernyavsky, JBC 2007

– Pretel, ED 2009

– Marchenko, JBC 2010

– Bektas, JBC 2013

– Frusić-Zlotkin, AI 2006

– Bektas, JBC 2013

– Sayar, ED 2014

– Walter, FI 2019

– Pretel, ED 2009 No data

(Continued)
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TABLE 2 | Continued

PV Activation Pathogenic Pathogenic Pathogenic

In vitro

(cultured cells)

In vivo

(mice)

Ex vivo

(human)

– Sayar, ED 2014

– Walter, FI 2019

PI3K No data – Burmester, BJP 2020 No data – Burmester, BJP 2020

PDK1 No data – Burmester, BJP 2020 No data No data

mTor – Pretel, ED 2009

– Gil, ED2012

No data – Pretel, ED 2009 No data

FAK – Gil, ED2012 No data – Gil, ED2012 No data

nNOS No data No data – Espana, ED 2013 No data

Casp3 – Arredondo, AJM 2005

– Frusić-Zlotkin, AI 2006

– Dusek, JBC 2006

– Lee, JBC 2009

– Marchenko, JBC 2010

– Pacheco-Tovar, AD 2011

– Gil, ED2012

– Luyet, PO 2015

– Hariton, ED 2017

– Arredondo, AJM 2005

– Frusić-Zlotkin, AI 2006

– Marchenko, JBC 2010

– Pacheco-Tovar, AD 2011

– Luyet, PO 2015

– Schmitt, AJPhysiol 2009

– Pretel, ED 2009

– Hariton, ED 2017

No data

Casp8 – Puviani, JID 2003

– Arredondo, AJM 2005

– Marchenko, JBC 2010

– Lotti, FI 2018

– Sanath, JOMP 2018

– Puviani, JID 2003

– Arredondo, AJM 2005

– Marchenko, JBC 2010

– Pretel, ED 2009 No data

Casp9 – Marchenko, JBC 2010

– Gil, ED2012

– Marchenko, JBC 2010 – Pretel, ED 2009 No data

c-Myc – Williamson, EMBOJ 2006

– Williamson, JID 2007

No data No data No data

JNK – Marchenko, JBC 2010 No data No data No data

c-Jun – Frusić-Zlotkin, AI 2006 No data No data No data

PG No data – Spindler, JID 2014 No data No data

ERK/MEK – Frusić-Zlotkin, AI 2006

– Bektas, JBC 2013

– Rötzer, JBC 2014

– Walter, Sci Rep 2017

– Radeva, Frontiers 2019

– Walter, FI 2019

– Frusić-Zlotkin, AI 2006

– Walter, Sci Rep 2017

– Radeva, Frontiers 2019

– Burmester, BJP 2020

No data – Egu, FI 2019

– Burmester, BJP 2020

Calmodulin No data No data – Sanchez-Carpintero, BJD 2004 No data

Calpain – Arredondo, AJM 2005 No data No data No data

CytC – Marchenko, JBC 2010 No data No data

CETP No data – Burmester, BJP 2020 No data No data

FAS – Puviani, JID 2003

– Wang, Appt 2004

– Arredondo, AJM 2005

– Lotti, FI 2018

– Puviani, JID 2003

– Wang, Appt 2004

– Marchenko, JBC 2010

– Lotti, FI 2018

No data No data

FLIP – Arredondo, AJM 2005 No data No data No data

PLK1 No data – Burmester, BJP 2020 No data No data

TrkA No data – Burmester, BJP 2020 No data – Burmester, BJP 2020

VEGFR2 No data – Burmester, BJP 2020 No data – Burmester, BJP 2020

PF Activation Pathogenic Pathogenic Pathogenic

In vitro

(cultured cells)

In vivo

(mice)

Ex vivo

(human)

p38 MAPK – Berkowitz, JID 2008

– Lee, JBC 2009

– Walter, Sci Rep 2017

– Yoshida, JDS 2017

– Berkowitz, AJP 2008

– Lee, JBC 2009

– Yoshida, JDS 2017

– Walter, Sci Rep 2017

– Vielmuth, FI 2018

– Vielmuth, FI 2018

HSP25/27 – Berkowitz, AJP 2008

– Berkowitz, JID 2008

No data No data No data

(Continued)
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TABLE 2 | Continued

PF Activation Pathogenic Pathogenic Pathogenic

In vitro

(cultured cells)

In vivo

(mice)

Ex vivo

(human)

RhoA – Waschke, JCB 2006 – Waschke, JCB 2006

– Spindler, AJP 2007

No data – Waschke, JCB 2006

Src – Walter, Sci Rep 2017 – Walter, Sci Rep 2017 No data No data

c-Myc – Williamson, EMBOJ 2006

– Williamson, JID 2007

No data No data No data

ERK/MEK – Walter, Sci Rep 2017

– Walter, FI 2019

– Walter, Sci Rep 2017 No data No data

EGFR – Sayar, ED 2014

– Walter, FI 2019

– Sayar, ED 2014

– Walter, FI 2019

– Pretel, ED 2009 No data

Casp6 – Li, JI 2009 No data No data No data

Ca2+ – Seishima, JID 1995

– Walter, Sci Rep 2017

– Walter, FI 2019

– Schmitt, BJD 2021

– Walter, FI 2019

– Schmitt, BJD 2021

No data No data

PLC – Seishima, JID 1995 No data No data No data

PKC No data – Walter, Sci Rep 2017 No data No data

epidermal blistering occurred when autoantibodies against
Dsg1 were present in PV and PF, the number of desmosomes
was reduced, desmosomes were smaller in size and keratin
filament retraction from desmosomal plaques was identified by
electron microscopy (145, 178, 180). Split desmosomes with
partial or complete separation of the two desmosomal plaques
from neighbouring cells and double-membrane structures,
reflecting engulfment of membrane domains, were detected
also. Thus, the best strategy to evaluate the relevance of the
different mechanisms causing pemphigus pathology is to
correlate mechanisms with the morphologic hallmarks of the
disease. Direct inhibition of desmoglein binding by steric
hindrance through bound autoantibodies would cause splitting
of desmosomes but no alterations of desmosome ultrastructure.
Indeed, mechanical shear has been demonstrated to cause split
desmosomes (181) which therefore may be caused by steric
hindrance. Since split desmosomes mostly were found to be
smaller and displayed altered insertion of keratin filaments
(15, 178, 181, 182), splitting of desmosomes most likely is a
consequence of altered desmosome composition. Moreover,
most desmosomes in ex vivo human skin models of pemphigus
are not split but rather smaller and characterised by less
opaque plaques, less dense desmoglea in the desmosomal
intercellular space and shorter keratin filaments attached
(15, 182). Taken together, the ultrastructural alterations
can be explained only by impaired desmosome turn-over
(178, 183).

Therefore, the major goal is to decipher which mechanisms
shown to be induced by autoantibodies interfere with the
distinct phases of desmosome assembly and dissasembly. The
different steps of desmosome assembly have been characterised
in detail (184). First, Dsg and Dsc molecules together with
PG are transported to cell borders with preformed adherens
junctions along microtubules and via kinesin. At the membrane,
desmosomal cadherins associate with lipid rafts via Flotillin-1

and 2 which are required for proper desmosome assembly
(185, 186). Here, intermediate junctions composed of Dsgs and
adherens junction components including E-cadherin, PG and β-
catenin are assembled in Src-dependent manner (138, 187, 188).
In a next step, Dsg molecules are transferred to DP coupled
to keratin filaments (9, 189). Actin binding proteins such as
adducing, which is regulated via RhoA/Rho kinase, and cortactin
are important for directed targeting of Dsg molecules during
desmosome assembly (190–193). The assembly of Dsgs with DP
is controlled by PKP3 in a Rap1-dependent manner (194), the
latter of which is a GTPase activated by cAMP and EPAC1. Inside
of desmosomes, Dsg isoforms including Dsg1 and Dsg3 in a
Ca2+-dependent andmost likely homo- and heterophilic manner
interact with Dsc1 and Dsc3 via their extracellular domains
(64, 168, 169, 171, 188, 195).

HYPERADHESION AS A STATE OF
INCREASED DESMOSOME STABILITY

Finally, the desmosomal components are locked inside of
desmosomes by signalling mechanisms which control the
anchorage of DP to keratin filaments and thereby induce a
hyperadhesive state (196). This indicates that once a desmosome
is established it is remarkably stable but the protein exchange
of desmosomal components is regulated on the molecular level
resulting in low half-life of desmosomal components (147,
196, 197). This paradigm allows desmosome disassembly when
the net exchange by molecules diffusing out of desmosomes
outbalances the assembly process as described above in
processes like wound healing and migration (198–200). Also,
this explains why uptake of entire desmosomes in double-
membrane structures as observed under pathologic conditions
in pemphigus ex vivo models is rarely observed in intact
epidermis (182).
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Interestingly, under hyperadhesive conditions the binding
properties of desmogleins change dramatically. For instance,
in hyperdahesive keratinocytes oligomerization of Dsg3
but not Dsg1 is enhanced and the Ca2+-dependency of
desmosome integrity is abolished (196, 198, 201–203). Rather,
if trans-interaction between Dsg3 molecules was maintained
desmosomes were preserved under Ca2+-depletion although the
ordered array of the Dsg3 extracellular domains in desmosomes
was lost (196). This indicates that Ca2+-dependency of Dsg3
interaction may get lost when adhesion molecules and plaque
proteins in desmosomes are locked by cytoskeletal anchorage.
Moreover, since it was shown that Dsg1 interaction can be
rescued after re-substitution of Ca2+ whereas Dsg3 cadherin
order was not re-established (171, 196, 204), it is also possible
that the roles of Dsg1 and Dsg3 in hyperadhesion are different.
This can be concluded from the observation that in intact human
epidermis, in which the majority of desmosomes is assumed
to be hyperadhesive (198, 201, 202, 205), immunostaining
of Dsg1 but not of Dsg3 was drastically altered by Ca2+

depletion indicating that Dsg3 in the epidermis indeed loses
its Ca2+ dependency (206). In line with this, the molecular
binding strength of Dsg3 but not of Dsg1 was increased when
keratinocytes were hyperadhesive.

As the underlying molecular mechanism regulating
hyperadhesion, PKC-mediated phosphorylation of DP under
control of PKP1 has been shown to result in decreased
cytoskeletal anchorage and thus to revert the hyperadhesive state
in order to allow desmosome reorganisation (196, 197, 199–
201, 207, 208). To allow this adaption, PKC was shown
to be sequestered to desmosomes via the adaptor-protein
RACK1 in DP-dependent manner and is regulated by keratins
(170, 208, 209). However, since in cultured cardiomyocytes and
cardiac slice cultures besides inhibition of PKC a hyperadhesive
state can also be induced by PKA activation and p38MAPK
inhibition, it is likely that other signalling mechanisms
involved in the assembly of the desmosomal plaque and
its anchorage to keratin filaments are also important for
hyperadhesion (210–212). Other targets besides DP appear to
be relevant as well because hyperadhesion can be abolished
when expression of desmosomal components such as Dsg3 or
PKP1 and PKP3 is disturbed (203, 213), which is also similar to
cardiomyocytes where depletion of Dsg2, PG, or PKP2 abrogated
hyperadhesion (214).

An open question, which also has relevance to identify the
central molecular mechanisms impairing desmosome turn-over
in pemphigus remains: whether the hyper-adhesive state can be
recognised on the level of desmosome ultrastructure. It has been
proposed that a dense midline in the desmosome intercellular
space where extracellular domains of neighbouring cells trans-
interact would be a hallmark of hyperadhesion (198). Indeed,
in intact epidermis most desmosomes exhibit dense midlines
which is not the case in the vicinity to epidermal blisters
or where the desmosome ultrastructure is altered in ex vivo
human pemphigus skin models (182, 215). However, in cultured
keratinocytes under hyperadhesive conditions desmosomes
were lacking midlines completely (196). This indicates that
the hyperadhesive state cannot be concluded for a specific

desmosome from its ultrastructure in cultured cells. On the other
hand it can be assumed that in the epidermis desmosomes with
altered morphology and lacking midlines most likely are not
hyperadhesive and thus PKC is likely to participate in pemphigus
pathology by reverting hyperadhesion of desmosomes.

AUTOANTIBODIES AGAINST Dsg1 AND
Dsg3 INDUCE SPECIFIC SIGNALLING
PATHWAYS IN PEMPHIGUS

As summarised above a vast set of signalling pathways has
been associated with pemphigus pathogenesis (Figures 2–5 and
Table 2). Before we try to allocate the different mechanisms to
the steps of desmosome assembly and disassembly, we introduce
the concept that the signalling pathways activated by a specific
autoantibody are defined by the signalling complexes organised
by Dsg1 and Dsg3. It was an important observation that
signalling responses in keratinocytes are not a consequence of
loss of cell adhesion but rather signallingmolecules are associated
with Dsg isoforms. This was shown first for Dsg3, which was
found to form a complex with activated p38MAPK, a process
enhanced by pemphigus autoantibodies (216). This adhesion
receptor was regulated in adhesion-dependent manner because
reduced Dsg3 adhesion by specific autoantibodies or peptides
or tryptophan caused p38MAPK activation whereas stabilisation
of Dsg3 binding by cross-linking peptides reduced p38MAPK
activity (216, 217). This process is regulated by PG because
depletion of PG also caused p38MAPK activation. In contrast,
depletion of DP or PKP1 and PKP3, which also cause a profound
loss of keratinocyte adhesion, did not enhance p38MAPK activity
(203, 218, 219).

The signalling complexes organised by Dsg molecules appear
to be both isoform- and cell type-specific because Dsg2 in
contrast to Dsg3 andDsg1 does not associate with p38MAPK (14,
220, 221). Nevertheless, in enterocytes Dsg2 regulates p38MAPK
activity (222). In contrast, Dsg2 has been shown to bind and
to control EGFR in enterocytes in fashion similar to Dsg3 in
keratinocytes (187, 223).

All of this led us to propose that Dsg molecules form cell-type
specific signalling complexes which serve as adhesion-dependent
signalling receptors and regulate complex functions such as
keratinocyte migration and wound healing (59, 224). Most
recently, we observed that Dsg1 also forms signalling complexes
which are at least in part different to Dsg3. The majority
of signalling molecules involved in pemphigus pathogenesis
analysed so far including p38MAPK, PLC, and PKC were
associated with both Dsg1 and Dsg3. However, PI4K acting
upstream of the PLC/Ca2+/PKC pathway was found exclusively
to interact with Dsg1 (220). The fact that p38MAPK binds to both
Dsg1 and Dsg3 is compatible with the observation that blister
formation in vivo caused by PV-IgG and PF-IgG is blocked by
inhibition of p38MAPK (225, 226) and that both PV-IgG and PF-
IgG reduced activity of RhoA in p38MAPK-dependent manner
(127, 227).

Moreover, these findings are in line with the observation that
autoantibody fractions including antibodies targeting Dsg1 in
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FIGURE 2 | Schematic depiction of p38MAPK-dependent signalling in pemphigus (grey RhoA and cAMP steps represent potential rescue pathways).

PV and PF induce a different signalling response compared to
antibodies against Dsg3. Most striking, PLC activation and Ca2+

influx was found only when Dsg1 autoantibodies were present
in PV-IgG and PF-IgG fractions but not induced by mucosal-
dominant PV-IgG or AK23 (152, 220, 228). Similarly, ERK
activation was detectable after incubation with PF-IgG and PV-
IgG only when Dsg1 antibodies were present and similar to Ca2+

influx activation was preserved in Dsg3-deficient keratinocytes.
In contrast, EGFR activation was found to be dependent on Src
and caused by AK23 and mucosal-dominant PV-IgG and thus in
the absence of autoantibodies against Dsg1 (152, 228). Similarly,
Src- and ADAM10-dependent EGFR activation has been found
in response to PV-IgG including autoantibodies against Dsg1/3
whereas blister formation with additional autoantibodies against
Dsc2/3 was ADAM10-independent (66).

For PKC it is not clear whether the different isoforms are
regulated via Dsg1 or Dsg3. PKC was found to associate with
both Dsg1 and Dsg3 and inhibition of PKC ameliorated loss of
cell adhesion in response to PF-IgG and PV-IgG independent of
the presence of autoantibodies against Dsg1 (152, 220). Also, PKC
was found to be involved in Dsg3 depletion in vivo (127). On the
other hand, at least for Ca2+-dependent PKC isoforms activation
via autoantibodies against Dsg1 can be assumed (220).

Taken together, the studies on composition of signalling
complexes on one hand and evaluation of signalling pathways
on the other hand suggest that besides p38MAPK activation
autoantibodies against Dsg3 in PV cause SRC-dependent EGFR
activation whereas autoantibodies against Dsg1 in PV and
PF activate both ERK and the PI4K/PLC/Ca2+ pathway. The
hypothesis that the signalling pattern orchestrated by Dsg1
and Dsg3 in pemphigus are to some extent different also
helps to explain why blister formation in pemphigus requires
antibodies against Dsg1. In this line of thoughts, some pathologic
effects such as clustering and depletion of Dsg3 molecules in
unaffected skin of mucosal-dominant PV patients (149, 179)
can be induced by signalling pathways such as p38MAPK,
Src/EGFR and PKC. However, clustering of Dsg1 as well as
shrinkage and loss of desmosomes which finally cause epidermal
blistering (149, 179, 182) require ERK and PLC/Ca2+ signalling
in addition to p38MAPK. This third line of evidence that the
relative contribution of various signalling pathways for skin
blistering in pemphigus is different comes from studies in human
skin ex vivo where inhibition of p38MAPK, ERK, and PLC
activity as well as of Ca2+ influx were sufficient to abrogate
skin blistering whereas inhibition of Src and PKC was not
(182, 191, 215, 220, 229).
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FIGURE 3 | Schematic depiction of EGFR-dependent signalling pathways (purple lines indicate diffusion of extracellular second messengers).

Another important aspect is that inhibition of p38MAPK
is effective to abolish PV-IgG-induced epidermal blistering in
ex vivo human skin models whereas antibodies against Dsg3
such as AK23 or in mucosal-dominant PV-IgG fractions are
not sufficient to induce skin blistering, although they activate
p38MAPK (152, 182). This suggests that p38MAPK for epidermal
blistering is required but not sufficient. In a mucosa model,
inhibition of p38MAPK did not block blistering although AK23
in mucosa activated p38MAPK indicating that the relevance of
signalling pathways in pemphigus is also tissue-specific (15). All
these results indicate that the clinical phenotype of PV with
mucosal erosions and deep epidermal blistering on one hand and
PF characterised by superficial acantholysis on the other hand are
unlikely to be caused by different expression pattern of Dsg3 and
Dsg1 alone as suggested by the Dsg compensation hypothesis.
Rather, the mechanisms regulating cell adhesion in mucosa and
epidermal layers appear to be different and to be regulated by
Dsg3 and Dsg1 (3, 150).

Finally, it has to be noted that the observation of Dsg3
and Dsg1 to regulate keratinocyte adhesion and function via
different mechanisms is also in line with the different phenotypes
of mouse models deficient for these molecules. Dsg3-deficient
mice besides hair-loss display rather mild erosions in the

skin with PV-typical histology, which have been observed to
spontaneously heal within several days, but also suffer from
eye involvement in conjunctiva and cornea (56, 119, 224).
The phenotype may be explained by the observation that in
both affected and unaffected skin p38MAPK activity was up-
regulated, which was found to be required for wound healing
(224). This shows that Dsg3 supports epidermal integrity at
least in part via regulation of signalling pathways controlling
cell adhesion. In contrast, Dsg1-deficient mice lose their
superficial epidermis during birth and all die within 24 h due to
complete loss of epidermal barrier properties (125). Because TJ
morphology was altered in heterozygous mice, it is likely that
the function of Dsg1 via Erbin to control EGFR-mediated TJ
assembly in the superficial epidermis is involved also (230–232)
(Figures 2–5).

THE CENTRAL ROLE OF p38MAPK TO
REGULATE DESMOSOME TURN-OVER

For some signalling pathways the role in pemphigus pathogenesis
and the mechanisms underlying loss of desmosomal adhesion
became clearer during the last two decades.
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FIGURE 4 | Schematic depiction of specifically Dsg1-dependent signalling mechanisms (grey RhoA complex represents a potential rescue pathway). The specific

target of Erk1/2-Elk1 is not known.

An important molecule contributing to pathogenesis of
pemphigus is p38MAPK, a protein involved mostly in the
reaction to external stressors, including oxidative (233, 234),
thermal and chemical stress (234, 235) but can also be activated
by growth factors (236). Upon activation by phosphorylation
at threonine residue 180 and tyrosine 182 (225, 237–239)
p38MAPK activates other kinases further downstream and finally
impacts cell growth, differentiation (240), migration as well as
wound healing (224) possibly also modulating gene expression
(235) and was also reported to directly phosphorylate keratins in
keratinocytes and enterocytes (241–243).

p38MAPK is activated by PV-IgG (225, 237) as well by
PF -IgG (226) in keratinocytes in vitro and in mouse skin
in vivo. p38MAPK is associated with both intra- as well
as extradesmosomal Dsg3 (187) and is phosphorylated in a
protein complex with Dsg3 and PG (216). p38MAPK then via
MAPKAPK2 (56, 244) activates HSP27 (225, 237, 245). In skin
biopsies of PV and PF patients, activation of p38MAPK (238),
MAKAPK2 (244) as well as HSP27 (238) were confirmed also.
HSP27 regulates both actin (236) as well as intermediary filament
(246) dynamic restructuring. Moreover, p38MAPK is associated
with the keratin cytoskeleton (151, 161, 216, 237).

To delineate the role of p38MAPK in pemphigus pathogenesis
it was shown that specific inhibition of p38MAPK or its
downstream target MAPKAPK2 are sufficient to reduce loss

of adhesion in keratinocytes in vitro (221, 247), depletion
of both extra- and intradesmosomal Dsg3 (132, 233, 244)
from both the soluble and insoluble fractions (132) and
the activation of and reorganisation of the cytoskeleton by
HSP27 (237) upon PV-IgG treatment. In murine skin in
vivo, p38MAPK inhibition was sufficient to prevent skin
blistering and activation of HSP25, the murine analogue to
human HSP27, in the skin (225, 226) upon PV- or PF-IgG
treatment. In human skin ex-vivo, inhibition of p38MAPK
ameliorated the pathogenic effects of PV-IgG, including skin
blistering, Dsg3 fragmentation, reduction of desmosome number
and size, membrane detachment and keratin retraction (182).
In contrast, inhibition of p38MAPK was protective against
Dsg1 clustering but did not prevent acantholysis induced by
PF-IgG (113).

However, it is currently unclear how exactly p38MAPK is
activated after antibody binding to Dsg1 and Dsg3. One study
reported activation with two peaks in activity at different points
in time, which was different in vivo vs. in vitro as well as
between PV- and PF-IgG. It was proposed that both peaks would
most likely cause different cellular responses (248). In other
experiments, different peaking patterns were reported (249) or
experiments were only performed at specific time points (233)
making it impossible to directly compare many of these results
(Figures 2, 5).
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FIGURE 5 | Signalling pathways activated by pemphigus-IgG (purple lines indicate diffusion of extracellular second messengers). The specific target of Erk1/2-Elk1 is

not known.
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Rho A/ADDUCIN-MEDIATED DESMOSOME
ASSEMBLY

One pathway by which p38MAPK could deplete Dsg3 from intra-
and extradesmosomal pools is interference with RhoA/adducing-
mediated assembly of desmosomes. Reorganisation of the actin
cytoskeleton was observed upon treatment with both PV-IgG and
PF-IgG (171, 237). RhoA was shown to induce reorganisation
of the actin cytoskeleton (157) and is inactivated following PV-
IgG and PF-IgG treatment (227). This mechanism appears to
be important in pemphigus because pharmacologic activation
of RhoA inhibited epidermal blistering in response to PV-IgG
and PF-IgG in human skin ex vivo and inactivation of Rho-
GTPases induced epidermal splitting similar to autoantibodies
(227, 250). It was demonstrated that inhibition of p38MAPK
abolished RhoA inactivation after PV-IgG treatment identifying
RhoA as another downstream target of p38MAPK (127, 227).
PKP2 was shown to prevent the localisation of RhoA to cellular
interfaces having similar effects as RhoA inactivation (190).
RhoA activity was furthermore linked to possible apoptotic
signalling in pemphigus (251). The effects of RhoA inactivation
include reduced incorporation of DP into the desmosomal plaque
(190), reduced anchorage of the desmosomes to the keratin
cytoskeleton (227) and depletion of Dsg3 andDsg1 finally leading
to loss of cell adhesion (250, 252–254).

All these effects can be explained by the fact that RhoA
via Rho kinase regulates the actin binding protein adducin
(192). Adducin is essential for cell adhesion in keratinocytes by
controlling the incorporation of Dsg3 into desmosomes (193).
Other actin binding proteins such as cortactin, which have been
shown to be involved in pemphigus pathogenesis, also bind to
extra-desmosomal Dsg3 and thus may participate in desmosome
assembly (191). Thus, it is possible that inhibition of desmosome
assembly via p38MAPK-mediated inactivation of Rho family
GTPases and actin binding proteins is a general paradigm in
pemphigus pathogenesis (Figures 2, 5).

PLAKOGLOBIN ACTS AS SIGNAL
TRANSDUCER AND TRANSCRIPTION
FACTOR IN PEMPHIGUS

As described above, PG is essential for the assembly of
desmosomes (255–257) and cellular adhesion (8, 256, 258) e.g.,
as part of the Dsg3-PG complex (187). This complex is later
incorporated into the desmosomes and becomes insoluble via
interaction with Dsg1 (259). It was shown, that PV-IgG impairs
the distribution of PG (260–262) and its association with Dsg3
(263). As described this is a result of PG endocytosis (218,
260). It was shown that the composition of the desmosomes
and cellular adhesion and keratin filament integrity is largely
dependent on PG (218, 261). Loss of PG activated p38MAPK as
discussed above (218). However, PG was reported to contribute
to both desmosomes and adherents junctions (255, 256) but is
also found free at the cell membrane as well as in the cytosole
(130) and even in the nucleus (218) of keratinocytes. It is thus
most likely displaying an even broader range of functions. The

localisation of PG is regulated by phosphorylation via GSK3β
and thus inhibitors of this pathway were shown to be protective
against PV-IgG-induced skin blistering in vivo (264). By its
relocalization to the nucleus, PG also regulates gene expression
in pemphigus patients. This role is distinct from its function as a
plaque protein (218). PG increases expression of urokinase-type
plasminogen-activator receptor (uPAR) at the cell membrane.
uPAR was described to be involved in wound healing and
cellular reorganisation at the cell membrane (262). Nuclear PG
also increased expression of the proto-oncogene c-Myc, which
ultimately leads to hyperproliferation, reduced cell adhesion and
eventually skin blistering in pemphigus patients (264, 265). This
increase of nuclear c-Myc is characteristic for PV and is not
observed for other skin diseases including PF, again highlighting
that for both variants of pemphigus different signalling pathways
are activated. It was observed that c-Myc activity is already
increased very early in the pathogenesis and does correlate
with disease severity (265). Very recently, inhibitors against the
signalling cascade PI3K/PDK1/Akt, which regulate GSK3β, have
been shown to be protective against skin blistering in vivo and
ex vivo human skin and also inhibition of the down-stream
molecule mTOR was shown to protective in mice (229, 266).
Therefore, it is possible that this signalling pathway regulates
desmosome turn-over also by mechanisms different from PG
(Figures 3, 5).

THE Src/ADAM10/EGFR RECEPTOR
PATHWAY IN PEMPHIGUS

Src activated rapidly and in a Dsg3-dependent manner (267)
after PV-IgG treatment (249). Src activity was reported to cause
loss of Dsg3 from the membrane, phosphorylation of PKP3,
thereby destabilising the desmosomal plaque (268) and to induce
keratin retraction (249). These changes cause loss of adhesion
in vitro (191, 268) and skin blistering in mice in vivo (66,
172, 191, 266). In peri-lesional skin of pemphigus patients an
increased Src activity was observed. In contrast to that, in lesional
skin its activity was notably reduced, indicating an activation
of Src before akantholysis (267). However, in human skin Src
inhibition was not completely effective to prevent acantholysis
caused by PV-IgG fractions including higher anti-Dsg1 IgG
concentrations. Because Src was no longer activated after 24 h
and Src inhibition was only protective during timeframes when
Src was active (191), it can be assumed that Src plays a less
central role in pemphigus pathogenesis and likely contributes
during the initial phase only when the extradesmosomal Dsg3 is
depleted. In addition to its pathogenic role, Src is also essential
for the Ca2+-dependent incorporation of Dsg3 into desmosomes
by stabilising the complex of E-cadherin together with Dsg3,
potentially via cortactin (187, 191). Thus, Src seems to play an
interesting dual role by stimulating desmosome formation under
basal conditions but causing desmosome disassembly under
pathogenic conditions.

One target molecule of Src in pemphigus pathogenesis appears
to be EGFR which was shown to interact with (8, 269) and to be
activated via Src (228, 249, 270). EGFR inhibition was shown to
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be protective against effects induced by PV-IgG and PF-IgG in
vitro and in vivo (228, 271–273). EGFR is an important central
molecule of a complex network of signalling pathways (269) and
can be activated by ligands like the EGF or TGF but also in a
ligand-independent manner via phosphorylation by p38MAPK
and formation of intracellular signalling complexes (269, 270,
272, 274). EGFR was shown to regulate cellular adhesion and
inhibiting it’s basal activity promotes localisation of PG and DP
to the desmosomal plaque and strengthens cellular adhesion
(272, 275). Furthermore, it was demonstrated to be involved
in pemphigus signalling (249, 272, 273) but not to be crucial
because EGFR-independent loss of keratinocyte adhesion after
incubation with PV-IgG has been observed as well (217). EGFR
activity leads to endocytosis of Dsg3 and PG causing loss of
adhesion (272, 273).

EGFR downstream signalling is broad and the exact
mechanisms involved in acantholysis are not perfectly clear but
may involve PI3K and ERK which recently were associated
with pemphigus pathogenesis (152, 215, 229). PI3K, acting via
PDK1/Akt/mTOR/GSK3β on nuclear localisation of PG may
cause hyper-proliferation and loss of adhesion (269, 276, 277).
Similarly, the Ras/Raf/MEK/ERK pathway is involved in the
regulation of cell proliferation vs. differentiation and causes loss
of adhesion as well (228, 230, 269, 278–281). Another possible
target is JNK1 impacting cell proliferation and migration (269,
282, 283).

Besides direct activation of EGFR by phosphorylation at
Y845, Src is also involved in the release of activating EGFR
ligands in response to pemphigus autoantibodies (66, 228). In
this context, metalloproteinases (MMPs) are involved which
can cleave cellular proteins and thus convert proteins to active
forms, release second messengers or cleave and inactive proteins.
They are well-known to be involved in the pathology of bullous
pemphigoid (284). It was furthermore reported that in PV
and bullous pemphigoid levels of serin proteinases activity
were increased in patients’ serum and blister exudates whereas
MMP inhibitors were reduced (285). MMP9 was reported to
be significantly upregulated in PV model in vivo and in vitro
(286). Recently, ADAM10 was reported to be directly involved in
pemphigus pathogenesis (66). ADAM10 is activated downstream
of Src thereby modulating EGFR activation via release of EGF
and Betacellulin (BTC). Interestingly, the activation of ADAM10
is dependent on the autoantibody profile and restricted to
antibodies targeting Dsg1 and Dsg3. In contrast, additional
autoantibodies against Dsc2 and 3 triggered a more severe and
earlier acantholysis independent of ADAM10 (66) (Figures 3, 5).

Dsg1 REGULATES EGFR SIGNALLING
TOWARDS ERK WHICH MAY BE INVOLVED
IN PEMPHIGUS

Dsg1 is a very important antagonist of EGFR signalling. EGFR
promotes cell migration and proliferation in the basal layer of the
epidermis. In contrast, Dsg1 expression in superficial epidermis
shifts the gears more towards keratinocyte differentiation. This
antagonistic role is a result of at least one shared pathway. While

EGFR is known to activate ERK1/2, Dsg1 is a known suppressor
of this signalling pathway (215, 228, 230, 279–281, 287). This
suppression is mediated via the Dsg1-Erbin-SHOC2-complex
which interferes with EGFR-induced activation of MEK1/2 and
ERK1/2 (228, 279–281). Therefore, this pathway represents a very
important crossing point between Dsg3- and Dsg1-dependent
signalling and a protective role of Dsg1 against signalling induced
by anti-Dsg3 autoantibodies in pemphigus can explain why
in mucosal PV the epidermis is not affected although Dsg3
distribution is severely altered (149, 178, 179). In this line of
thoughts, anti-Dsg1 antibodies in PV would shut off the inherent
suppression on ERK via Erbin-SHOC2 and thereby activate
ERK in the absence of EGFR activation as observed following
incubation with PV-IgG and PF-IgG (152, 228). This hypothesis
is also in line with the inefficiency to prevent loss of adhesion by
EGFR suppression in presence of higher concentrations of anti-
Dsg1 autoantibodies, which releases the suppression of Erk1/2
signalling (217) (Figures 3, 5).

Dsg1-MEDIATED Ca2+-SIGNALLING IS
IMPORTANT FOR EPIDERMAL
BLISTERING IN PEMPHIGUS

Relatively early in pemphigus research, PV-IgG treatment was
demonstrated to induce activation of PLC and Ca2+-influx via
IP3R (156, 160). More recently, direct interaction of DSG1 and
PI4K (220, 288, 289), an upstream kinase of PLC (290), was
reported. For PLC, an interaction with both Dsg1 and Dsg3 was
shown (220). Activated PLC generates the secondmessengers IP3
and DAG (156, 172) which leads to a release of Ca2+ from the
endoplasmic reticulum (ER) to the cytoplasm (291). Stim1 and
Orai1 are two ubiquitously expressed proteins, which together
form the so-called CRAC (Ca2+-release-activated-channel). Stim
1 is located at the membrane of the ER (292) where it serves
as a sensor for the Ca2+ concentration. Upon low Ca2+, Stim1
contacts Orai1, located at the plasma membrane, and both
together from a Ca2+-specific channel causing Ca2+ influx and
replenishing the Ca2+ stores of the ER (293–298). In line with
this, inhibition of Ca2+ signalling via inhibition of either PI4K,
PLC, IP3R or CRAC was sufficient to ameliorate pathogenic
effects of pemphigus autoantibodies in vitro and inhibition of
PLC and IP3R abrogated skin blistering in human skin ex
vivo (220).

DAG and Ca2+ released by these mechanisms are activators
of PKC (195, 299), causing its redistribution to cell contacts (200,
299). PV-IgG was demonstrated to induce PKC activation as well
(127, 152, 172, 208, 300). The exact mechanism of action of PKC
is yet unknown, however, it was observed that PKC interacts with
the keratin filaments (161, 208, 301) and is regulated by PKP1
(207). PKC was furthermore shown to phosphorylate DP which
causes destabilisation of the desmosomal plaque (197, 208, 209).
Inhibition of PKC reduces the PV-IgG-induced depletion of Dsg3
(127), keratin retraction (208) and loss of cell adhesion (127, 152)
in vitro and in vivo (127, 172) and skin blistering in mice in
vivo (127, 172). PKC thus clearly plays a role in pemphigus
pathogenesis. However, since it was reported that inhibition of
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PKC was not sufficient to prevent skin blistering in human
skin ex vivo (215), PKC is probably not the only downstream
target of the PLC/Ca2+ pathway. Furthermore, it needs to be
noted that there are three types of PKCs with various isoforms,
activated by different sets of second messengers. More specific,
DAG and cytoplasmic Ca2+ activate Ca2+-dependent PKC
(cPKC), DAG activates novel PKC (nPKC) and translocation
activates atypical PKC (aPKC) isoforms, respectively (299). At
least cPKCs and nPKCs are downstream targets of PLC and thus
may be activated in response to autoantibodies in pemphigus
(Figures 4, 5).

PRE-APOPTOTIC CASPASE SIGNALLING
REDUCING Dsg1 AND Dsg3 IN
PEMPHIGUS

Several receptor-induced signalling cascades can initiate
signalling associated with apoptosis. The caspase protein
family plays a central role for this signalling. Caspases
cleave certain cellular proteins (154) causing morphologic
changes such as condensation of the nucleus, fragmentation
of the DNA, cell shrinkage (302) and degradation of the
cytoskeleton (303, 304). Amongst the proteins which are cleaved
by caspases are the desmosomal cadherins and the plaque
proteins causing degradation of desmosomes and cytoskeleton
(305). The possibility that these apoptotic pathways can be
active in pemphigus was demonstrated in several studies
(79, 154, 302, 306–310). Apoptosis can occur in the skin
(307, 309, 311, 312) as well as the mucosa (308) of pemphigus
patients. However, in acantholytic areas apoptotic cell death is
not typically observed (154, 177, 178).

It was shown that PV-IgG increases the activity of pro-
apoptotic and decreases that of anti-apoptotic proteins in
keratinocytes in vitro (309, 311, 313) and mice in vivo (266,
306, 307). Caspase3 seems to be the most relevant in this
context (306, 307, 314). Caspase signalling may be activated
by PV-IgG in several ways. Increased amounts of soluble Fas
receptor ligands were found in pemphigus patients’ sera and
in mice after injection of PV-IgG. These induce activation of
caspase8 which causes cleavage of Dsg molecules. Inhibition
of Fas receptors and depletion of soluble Fas ligand were also
shown to be protective in keratinocytes in vitro and mouse
skin in vivo (309, 315). Activation via caspase8 was reported as
well (316). In some patients anti-mitochondrial autoantibodies
were found and it was shown that they can penetrate into
mitochondria. These antibodies were reported to cause JNK
activation and via caspases may induce degradation of Dsg3
(317, 318). Similarly, Dsg1 was also identified as a caspase3
target (319). The activation via c-Jun is also supported by the
observation that inhibition of p38MAPK signalling, which causes
c-Jun activation via EGFR, was sufficient to block caspase3
activation after PV-IgG treatment (248). Furthermore, EGFR was
reported to induce caspase signalling and apoptosis (273). Thus,
signalling by antibodies against Dsg3 may use this Src/EGFR
signalling axis to activate caspases via PI3K/PDK1/Akt/GSK3β
and nNOS/mTOR/FAK suggestive because inhibitors against this

pathway have been shown to be protective against skin blistering
(229, 266, 320, 321).

Moreover, caspase signalling could also be induced via the
Ca2+ pathway. In this context, a mechanism was described
which links the mitochondrial Ca2+ specific channel VDAC1 to
IP3R via so-called mitochondria-associated membranes (MAM).
The resulting Ca2+ flux was reported to lead to mitochondrial
swelling and induction of apoptosis-related signals (322–326).
Caspase3 activity can further be linked to p38MAPK, c-Myc
(318), and RhoA activity (251). In line with this, several studies
demonstrated that activation of p38MAPK, cell dissociation,
and keratin retraction in keratinocytes in vitro (318) and
skin blistering in mice in vivo (79, 266, 306, 307, 318) were
significantly ameliorated under pharmacological inhibition of
caspase activity.

However, the relevance of apoptosis for the pathology of
pemphigus is controversly discussed and often attributed to
be a secondary effect caused by acantholysis (111, 154). It
was demonstrated that acantholysis takes place independent of
apoptosis in keratinocytes in vitro (154, 318, 327, 328) as well
as in pemphigus patient skin (154, 177, 318, 328). One group
reported a slight increase of caspase3 in vitro and in vivo before
the appearance of lesions but without any other sings of apoptosis
(318). Taken together, all studies indicate a possible role of
caspases for acantholysis independent of apoptotic cell death
(306, 318). Since it was already found that caspases also influence
several processes including proliferation, differentiation and cell
cycle regulation (329), it can be concluded that caspases activate
secondary pathways which contribute to skin blistering (154,
302). The fact that bothDsg1 andDsg3 can be cleaved by caspase3
also would provide a mechanism how apoptotic signalling is
directly interfering with desmosome turnover (Figures 3, 5).

RESCUE PATHWAYS IN PEMPHIGUS SUCH
AS Dsg2 AND cAMP UPREGULATION

Most interestingly, autoantibodies in pemphigus not only cause
pathogenic effects leading to loss of keratinocyte adhesion but
also induce rescue pathways. One compensatory mechanism is
up-regulation of Dsg2 expression in PV patients’ lesions (330). It
was demonstrated that forced expression of Dsg2 in the upper
skin layers of transgenic mice was protective against PF-IgG-
induced skin lesions (331). Moreover, in cultured keratinocytes
it was shown that expression of Dsg2 (221) similar to Dsg1
(332) was protective against anti-Dsg3-antibody-induced loss of
adhesion. Because Dsg2 can undergo heterophilic interaction
with Dsg3, which is less sensitive to direct inhibition of
autoantibodies targeting Dsg3, it is possible that Dsg2 up-
regulation is supporting to maintain cell adhesion in PV (333).

Another protective pathway is dependent on the second
messenger cAMP. Increased levels of cAMP were observed
after incubation with PV-IgG and a pharmacological increase in
cAMP blocked the effects of PV-IgG in vitro and skin blistering
in mice in vivo (334). It was demonstrated that cAMP was
protective against activation of p38MAPK which may involve
PKA activation (334). This mechanism may be related to a
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phenomenon referred to as positive adhesiotropy by which
adrenergic signalling in the heart strengthens cardiomyocyte
adhesion via PKA-mediated PG phosphorylation (210, 212, 214).
Recently, a case of a pemphigus patient was reported who was
treated with Apremilast, a phosphodiesterase-4 inhibitor which
enhances intracellular cAMP levels. Treatment ameliorated the
symptoms and led to a decrease in autoantibody titers (335).
Thus, the protective effect was attributed to changes in immune
cell signalling rather than modulation of keratinocyte signalling.

Most recently it was reported, that mechanical stimulation
also plays a very important role for the resistance against
pemphigus-IgG-induced effects. Stretching of cells reportedly
induced activation of RohA, strengthening the cortical
acting network and its crosslinking, leading to increased cell
contractility. This was shown to reduce pemphigus IgG induced
effects, indicating, that activation of RhoA in pemphigus might
represent an insufficient rescue pathway (336) (Figures 2, 5).

CONCLUSION: HOW TO ELUCIDATE A
FEASIBLE APPROACH TO STABILISE
DESMOSOMAL ADHESION FOR
PEMPHIGUS THERAPY?

From this review it can be concluded that some signalling
pathways such as p38MAPK, ERK and PLC/Ca2+ appear to be
more relevant for skin blistering in pemphigus than others. This
is supported by a recent study using an unbiased approach by
testing a library of 141 small molecule inhibitors in different
experimental models of pemphigus which found that inhibition
of ERK and p38MAPK signalling was effective to ameliorate
PV-IgG-induced loss of cell adhesion (229).

On the other hand, inhibition of p38MAPK in clinical
studies was not beneficial for pemphigus patients (271). This
maybe explained in part by the fact that inhibition of a central
signalling pathway involved in many different functions (234)
is associated with severe side effects. It can be envisaged
that the situation is not different for approaches modulating
ERK or PLC/Ca2+ signalling indicating that at least systemic
therapy using inhibitors of these pathways are most likely
not feasible. Nevertheless, since topical application of Dsg-
crosslinking peptides or drugs to increase cAMP were effective
in pemphigus mouse models in vivo (216, 334) it may also

be possible to reduce side-effects by site-specific application of
modulators of signalling pathways in the future. Therefore, it
is very encouraging that topical application of selumetinib to
inhibit MEK1, which is the kinase up-stream of ERK1/2, was
protective in the human skin organ culture model (229).

Moreover, identification of signalling mechanisms critical for
pemphigus pathology allows to focus on the molecular targets
of the associated signalling molecules. Because PKC downstream
of PLC/Ca2+ has been shown to regulate desmosome stability
via phosphorylation of DP, the modulation of DP cytoskeletal
anchorage may be a promising target for therapy. Similarly,
given that p38MAPK induces pathogenic effects via inhibition
of RhoA, which via Rho kinase and adducin phosphorylation
is important for desmosome assembly (190, 192, 193, 227),
therapeutic approaches to stimulate desmosome assembly should
be characterised in more detail. Finally, since the small inhibitor
library helped to identify a role in keratinocyte adhesion
regulation for VEGFR2, TrkA, PI3K, and PDK1 (Table 2),
new candidates for treatment options have been elucidated as
well (229). Therefore, we believe that studies on agents for
additional treatment of patients suffering from the acute phase
of pemphigus or facing relapses are of high importance in
the future.
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