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Immunodeficient mice engrafted with a functional human immune system [Human

immune system (HIS) mice] have paved the way to major advances for personalized

medicine and translation of immune-based therapies. One prerequisite for advancing

personalized medicine is modeling the immune system of individuals or disease groups

in a preclinical setting. HIS mice engrafted with peripheral blood mononuclear cells

have provided fundamental insights in underlying mechanisms guiding immune activation

vs. regulation in several diseases including cancer. However, the development of

Graft-vs.-host disease restrains relevant long-term studies in HIS mice. Alternatively,

engraftment with hematopoietic stem cells (HSCs) enables mimicking different disease

stages, however, low frequencies of HSCs in peripheral blood of adults impede

engraftment efficacy. One possibility to overcome those limitations is the use of

patient-derived induced pluripotent stem cells (iPSCs) reprogrammed into HSCs, a

challenging process which has recently seen major advances. Personalized HIS mice

bridge research in mice and human diseases thereby facilitating the translation of

immunomodulatory therapies. Regulatory T cells (Tregs) are important mediators of

immune suppression and thereby contribute to tumor immune evasion, which has made

them a central target for cancer immunotherapies. Importantly, studying Tregs in the

human immune system in vivo in HIS mice will help to determine requirements for efficient

Treg-targeting. In this review article, we discuss advances on personalized HIS models

using reprogrammed iPSCs and review the use of HIS mice to study requirements for

efficient targeting of human Tregs for personalized cancer immunotherapies.
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INTRODUCTION

With the discovery of checkpoint inhibitors andmore recently, the use of chimeric antigen-receptor
T cells, immunotherapies have taken center stage in oncology. The common goal for cancer
immunotherapies is to boost the immune system to attack and destroy cancerous cells. The
gold-standard for pre-clinical testing of cancer therapies has long been the use of xenograft
models, where human cancer cell lines are engrafted into immunodeficient hosts. However,
both development and evaluation of immunotherapies requires the presence of a functional
immune system closely mirroring the immune reaction in the human disease. Immunodeficient
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mice engrafted with a functional human immune system [human
immune system (HIS) mice] have opened up new ways of
evaluating immunotherapies directly in vivo in a pre-clinical
setting. One main obstacle remaining in cancer therapy is intra-
tumor heterogeneity. The use of personalized medicine offers
a promising approach to tackle this major hurdle and HIS
mice engrafted with patient-derived hematopoietic cells are an
important tool for the development of personalized medicine.

HUMAN IMMUNE SYSTEM MOUSE
MODELS FOR IMMUNOTHERAPIES

Since the discovery that severe combined immunodeficiency
(Prkcdscid or SCID) mice, engrafted with human hematopoietic
stem cells (HSCs) or human peripheral blood mononuclear cells
(PBMCs), can develop a human immune system (1), researchers
are constantly working on improving xenoengraftment in such
HIS mice to study human diseases. Advancements have been
made especially regarding background strain, immunodeficiency
mutation as well as engraftment method and material, thereby
considerably improving engraftment efficacy (2). For example,
mice on the NOD background present with the highest
engraftment efficacy due to a polymorphism in the gene Sirpa,
encoding the signal regulatory protein alpha (Sirpa) that shows
enhanced interaction with human CD47 on hematopoietic cells,
thereby preventing their phagocytosis by macrophages (3).

Moreover, to overcome human T cell xeno-reactivity directed
against murine MHC molecules, strains of immunodeficient
mice lacking murine MHC class I and class II were developed
(4, 5). We have used murine MHC class II deficient NOD-
scid IL2Rgammanull (NSG)-HLA-DQ8 transgenic mice engrafted
with fresh human cord blood (CB) HSCs and demonstrated a
high engraftment efficacy in peripheral blood of these animals
(6). Importantly, we identified autoreactive disease-relevant
insulin-specific CD4+T cells, indicating positive selection on
HLA-DQ8 molecules in the thymus of humanized mice (6). The
development of T cells with a TCR repertoire recapitulating that
of the human donor is essential to analyze T cell responses,
also in the setting of cancer immunotherapy. In this regard, in
a mouse model for prostate adenocarcinoma, tumor-infiltrating
regulatory T cells (Tregs) showed a significant enrichment for
distinct TCR specificities targeting an antigen present in healthy
pancreatic tissue and not specific to the tumor (7). Therefore,
the use of HIS mice with transgenic expression of human HLA
molecules will be important to permit for accurate representation
of TCR repertoires to study T cell responses to the tumor.

In order to study tumor related immune responses in the
human immune system in vivo, HIS mice engrafted with
cell line-derived (CDX), or patient-derived xenografted tumors
(PDXs) have been established (8, 9). Importantly, MART1-TCR-
transgenic T cells from humanized mice reconstituted with fetal
thymic tissue and human HSCs were able to mount efficient
HLA/antigen-dependent anti-melanoma immune responses also
after transfer into tumor-bearing recipients (10). Among others,
especially the potent checkpoint inhibition with anti-PD1
humanized antibodies has been tested in HIS mice bearing

various types of tumors (8, 9, 11), highlighting the value of PDX
engrafted HIS models for cancer immunotherapies.

HIS MICE AS PRECLINICAL MODEL FOR
THE TREATMENT OF CANCER

Despite the therapeutic advances indicated above, some hurdles
remain which hinder efficient and safe implementation of cancer
immunotherapies to the patient. During disease progression,
genomic instability leads to genetic variations within tumor cells
resulting in various distinct populations of cancer cells (12). This
intra-tumor heterogeneity is a major obstacle for the success of
efficient immunotherapies since it fosters resistance to therapy
and leads to highly variable treatment outcomes thereby calling
for personalized strategies.

The potential of personalized HIS mouse models for the
analysis of patient specific immune responses was demonstrated
in a PDX-bearing HIS mouse model based on NSG mice
engrafted with autologous tumor-infiltrating T cells and tumor
cells from the same patient. Importantly, the autologous T
cell transfer was successful in eradicating tumors only in mice
generated with material from patients that show a positive
autologous cell transfer response in the clinic (13).

To investigate complex immune responses more closely in
a preclinical personalized setting, the engraftment of HIS mice
with autologous hematopoietic cells and tumor cells from the
same patient is required. This can be achieved by engraftment
with patient-derived PBMCs. However, such mice are not useful
for long-term studies as they can develop severe Graft-vs.-
Host-Disease (GvHD) within few weeks upon engraftment.
Alternatives for long-term studies are the engraftment with
patient-derived HSCs or HSCs originating from fetal liver or
CB. Here, engraftment with patient-derived HSCs allows for
positive selection of T and B cells based on murine antigens in
the thymus and bonemarrow, therefore limiting GvHD reactions
and further enabling MHC compatibility with the autologous
tumor tissue. One drawback of HSC engraftment, however, are
low frequencies of HSCs in the peripheral blood of adults without
mobilization, which impede an effective reconstitution of the
human immune system in HIS mice. Of note, in 2006, a group
led by Shinya Yamanaka generated pluripotent stem cells from
adult cells. The discovery of these induced pluripotent stem cells
(iPSCs) has thenceforward substantially revolutionized the field
of translational research and personalized medicine (14) and
enabled an unlimited source for the derivation of HSCs (15, 16).

NEXT GENERATION HIS MOUSE MODELS
USING IPSC-DERIVED HSC FOR
PERSONALIZED MEDICINE

The discovery that iPSCs are able to self-renew and differentiate
into any cell type by introducing the reprogramming factors
Oct4, Sox2, cMyc, and Klf4 (14, 17) has enabled the development
of novel therapeutic strategies in personalized and regenerative
medicine. Noteworthy, iPSCs can be derived from different
sources of somatic cells, thereby evading the limitations of using
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FIGURE 1 | HIS mouse models for personalized Treg-based cancer immunotherapies. Immunodeficient mice engrafted with human PBMC-derived HSCs develop a

functional human immune system. These HIS mice are valuable tools for various areas of medical research, including preclinical trials, regenerative medicine,

transplant rejection research, and immunotherapies. In the field of immunotherapies, next-generation HIS mouse models enable the development and testing of novel

immune targeting strategies, aiming at Treg inhibition to boost the immune reaction against the tumor, in a human immune system in vivo.

primary, patient-derived disease affected cells for e.g., disease
modeling (18) (Figure 1).

Yet, de novo generation of functional HSCs from iPSCs
for efficient in vivo engraftment and multi-lineage potential
remains challenging due to the complex nature of hematopoietic
ontogeny (19). Recently, methods for the generation of
self-renewing hematopoietic stem and progenitor cells with

multi-lineage potential after engraftment into immunodeficient
hosts have been developed. Although analysis was largely limited
to the bone marrow, T and B cells, as well as myeloid cells
were also detected in spleen, thymus and peripheral blood,
showing a diverse TCR repertoire and functional antibody
responses (16, 20). These initial studies highlight the potential
use for the generation of HIS mice with iPSC-derived HSCs
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(20). Furthermore, hPSCs generated from iPSCs from patients
with Diamond-Blackfan anemia (DBA) were used to enable
a new therapeutic pathway for the treatment of DBA (21)
and immunodeficient mice reconstituted with patient-derived
iPSCs were used to develop a drug-testing system for chronic
myelomonocytic leukemia (22). Even though still low in
number, such studies highlight the vast opportunities and
potential therapeutic applications that are offered by iPSC
technology, which have to be further explored and improved for
future investigations.

Personalized HIS mice reconstituted with tumor cells and
autologous patient-derived hematopoietic cells from the same
donor are especially important, since they will help to mirror
the immunological tumor microenvironment. Importantly, the
tumor microenvironment contains immunosuppressive immune
subsets [reviewed in (23)], including Tregs that promote tumor
immune evasion and hence impede effective antitumor immune
responses [reviewed in (24)].

TARGETING TREGS FOR CANCER
IMMUNOTHERAPIES IN HIS MICE

Tregs are a specialized suppressive subtype of CD4+T cells
that controls the immune response in the periphery and
prevents adverse immune reactions and autoimmunity (25).
They are characterized by the high expression of the high-affinity
interleukin-2 receptor alpha-chain (CD25) and the expression
of the transcription factor Foxp3, which is the master regulator
of their phenotype and function (26–28). Mutations in the
Foxp3 gene lead to defects in Treg development and function
as illustrated by severe multiorgan autoimmunity in patients
with the Immunodysregulation polyendocrinopathy enteropathy
X-linked (IPEX) syndrome (29) and mice with Scurfy mutations
(30). While defects in Treg function and reduced frequencies
are associated with autoimmune disorders, increased Treg
infiltration into solid tumors and the resulting suppression of
effector immune cells are associated with poor prognosis in
several types of cancer (31–35). Accordingly, the manipulation of
Tregs has gained interest in the field of cancer immunotherapy.
However, many aspects of Treg-mediated immune suppression
in tumors remain to be determined. Importantly, HIS mice
reconstituted with CB HSCs or PBMCs display comparable
frequencies of Tregs in various tissues as non-humanized mice
(6, 11, 36–40), making them a suitable tool to study human
Tregs in vivo in a preclinical model (Figure 1). Notably, the
development of immune cells in NSG mice is skewed to
the lymphoid lineage, with cells of the myeloid lineage being
under represented, due to limited cross-reactivity of murine
cytokines with human hematopoietic cells [reviewed in (41)].
Therefore, novel humanized mouse strains such as NSG-SGM3
mice (42) and others (43) that transgenically express human
cytokines and thereby support myeloid cell development have
been developed. Importantly, it was demonstrated that NSG-
SGM3 mice further support the development of Foxp3+Tregs
(44), thereby highlighting the importance of considering different
HIS mouse models as basis for pre-clinical studies.

It is now established, that Tregs take residence in various
tissues, where they express tissue specific signature genes
and exert key non-canonical functions (45–49). Notably,
a tissue specific signature has been likewise identified for
tumor-infiltrating Tregs. Importantly, the investigation of gene
expression of Tregs isolated from breast cancer, colorectal cancer,
non-small cell lung cancer and hepatocellular carcinoma in
comparison to Tregs from adjacent healthy tissue or peripheral
blood identified a tumor-specific Treg gene expression signature
(50–52). Some of these signature genes (e.g., CTLA4, GITR,
CCR4) are likewise present on peripheral Tregs, whereas their
expression is increased in tumor-infiltrating Tregs. Other tumor-
specific Treg signature genes (e.g., CCR8, FCRL3, IL1R2) are
exclusively expressed on tumor-infiltrating Tregs and absent
in their peripheral counterparts. However, the functional
consequence of this gene signature in tumor-infiltrating Tregs
remains to be determined.

Checkpoint inhibitors have taken center stage in cancer
immunotherapy research, since they block signaling through
immune inhibitory molecules, especially programmed cell death
protein 1 (PD-1) and cytotoxic T-lymphocyte associated protein
4 (CTLA4) (53, 54). Many tumors promote immune evasion
by expression of PD-L1, a ligand for PD-1, which is in
turn expressed on activated T cells. The engagement of PD-
1 by PD-L1 is highly immunosuppressive and leads to T
cell anergy and apoptosis. Accordingly, blocking PD-1/PD-L1
signaling has shown great efficacy in various cancers, however
in a large proportion of patients PD-1/PD-L1 blockade shows
limited success, highlighting the importance of understanding
underlying mechanisms of checkpoint inhibitor blockade as
well as defining biomarkers to predict treatment success (39).
In addition to effector T cells, PD-1 is likewise expressed
on Tregs and multiple studies indicate, that PD-1 blockade
can increase Treg proliferation and suppression, which could
account for the differences in treatment outcome (53). In this
regard, the ratio of PD-1+CD8+T cells/PD-1+Tregs in the tumor
microenvironment can predict the efficacy of PD-1 blocking
therapy (39). While PD-1 blockade has been studied extensively
in HIS mice, only few studies investigated the specific effect
on Tregs. In line with highly variable treatment outcomes
in patients, two studies did not observe changes in tumor-
infiltrating Treg frequencies (11, 38), while one study using
a combination of anti-PD-1 antibody and CD137 antibody
therapies reported an increase in CD8/Treg ratio in tumors of
HIS mice xenotransplanted with gastric carcinoma and engrafted
with autologous PBMCs from the same donor (55). These
studies highlight the strength of personalized HIS mice using
xenotransplanted tumors and autologous immune cells for the
assessment of treatment outcome.

The identification of tumor-related Treg signature genes
is an important step toward more specific targeting of
tumor Tregs without affecting the peripheral Treg pool
which could potentially lead to autoimmune reactions. CTLA4
mediated tolerization of antigen-presenting cells is an important
mechanism of suppression by Tregs. Importantly, CTLA4
blockade has been studied extensively as checkpoint inhibitor
in cancer immunotherapy, since CTLA4 is often upregulated by
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tumor cells for immune evasion (54). However, the anti-tumor
effects of anti-CTLA4 treatment largely rely on the antibody-
dependent cellular cytotoxicity (ADCC) mediated depletion
of tumor-infiltrating Tregs (56, 57). Here, HIS mice offer
an important advantage over classical non-humanized mouse
models in the pre-clinical assessment of depleting antibodies.
ADCC relies on the interaction of the human IgG Fc region on
depleting antibodies with human immune cells and can therefore
be studied accurately only in the presence of these cells (58, 59).
Anti-CTLA4 antibodies were used to successfully deplete Tregs
in fetal liver engrafted HIS mice treated with low-dose IL2
to demonstrate that critical side effects and toxicity of high-
dose IL2 treatment are largely dependent on the depletion of
Tregs (40). This study highlights the usefulness of HIS mice to
study not only treatment efficacy, but also critical side effects of
cancer immunotherapy.

Like CTLA4 the chemokine receptor type 4 (CCR4), albeit
being expressed on peripheral Tregs, is further upregulated on
tumor-infiltrating Tregs, while additionally being expressed on
different types of cancer cells. To test anti-CCR4 treatment in
a pre-clinical setting, a humanized mouse model for lymphoma
based on CCR4+ lymphoma bearing NOG mice reconstituted
with human PBMCs was used (60). The treatment with an
anti-CCR4 antibody induced robust ADCC leading to reduced
tumor mass, accompanied by decreased Treg frequencies in the
tumor (60). The latter finding suggests that anti-CCR4 treatment
might be more generally applicable also to CCR4-negative
tumors, by targeting tumor-infiltrating Tregs. Accordingly, a
Phase Ia clinical trial demonstrated efficient Treg depletion by
an anti-CCR4 antibody in patients with CCR4-negative solid
tumors resulting in stable disease in half of the patients 12
weeks after treatment start (61). However, CCR4 is likewise
expressed on peripheral Tregs, albeit at lower levels, leading to
the simultaneous depletion of peripheral Tregs by anti-CCR4
treatment. Tumor cells and cells in the tumor microenvironment
secrete high amounts of CCL22, a ligand for CCR4, in various
cancers (32, 62, 63). Therefore, small molecule CCR4 antagonists
might be a safer alternative to block Treg migration to the tumor
microenvironment without Treg depletion.

An alternative to Treg depletion is the manipulation of their
functional properties. In this regard, glucocorticoid-induced
tumor necrosis factor receptor-related protein (GITR) has been
studied extensively as a target for cancer immunotherapies.
GITR is a coreceptor, which is expressed at low levels on
naïve CD4 and CD8T cells and is upregulated upon activation
with Foxp3+Tregs harboring the highest levels of GITR (64,
65). Importantly, targeting GITR for cancer immunotherapy
became of interest with the discovery that an agonist anti-GITR
antibody could break self-tolerance in mice by making effector T
cells resistant to Treg suppression (66). Accordingly, anti-GITR
antibody treatment could induce strong anti-tumor immunity
in mice (67–69). While these studies demonstrated that the
anti-GITR antibody acts mainly by enhancing effector T cell
frequencies through avoidance of Treg mediated suppression,
the exact mechanism remains unclear. In addition to rendering
effector T cells resistant to Treg mediated suppression, agonist
anti-GITR treatment was suggested to likewise enhance the

effector T cell: Treg ratio in the tumor (67, 70). This change
was attributed to the agonist anti-GITR antibody rendering Tregs
unstable, causing them to lose Foxp3 expression (67), or to Treg
depletion (70) in different studies. In NSG mice reconstituted
with human hCD34+HSCs and grafted with melanoma tumors
the treatment increased the effector T cell: Treg ratio in the spleen
and the tumor, while remaining tumor-infiltrating Tregs showed
reduced expression of activation markers such as ICOS (70).
Overall, although the treatment was not able to clear the tumor
completely, treated mice exhibited significantly reduced tumor
growth (70). The exact mechanisms leading to the enhanced
effector T cell: Treg ratio in this particular study remain to be
defined. The loss of activation markers such as ICOS observed in
the anti-GITR study in HIS mice could indicate that, in addition
to Treg depletion, remaining Tregs are rendered phenotypically
unstable by the treatment.

Destabilization of Tregs is a promising approach for Treg-
based immunotherapy and mechanisms of Treg destabilization
have been studied in the setting of autoimmune diseases. Treg
stability is mainly mediated by epigenetic mechanisms, most
importantly the demethylation of the conserved non-coding
sequence 2 (CNS2) in the Foxp3 locus (71). We were able to show
that microRNA (miRNA) 142-3p contributes to Treg instability
during progression of Type 1 Diabetes (T1D) by targeting
TET2, a molecule that can actively demethylate DNA (37, 72,
73). MiRNAs are small non-coding RNAs that can sequence-
specifically inhibit their target mRNAs, thereby regulating
complex cellular states, such as T cell activation, which makes
them important targets for immunotherapy (74). Importantly,
miRNAmodulation has been studied extensively in the setting of
autoimmunity and infection. Accordingly, a miR122 inhibitor is
currently being tested in clinical trials for hepatitis C virus (HCV)
infections, highlighting the feasibility of targeting miRNAs for
immune modulation in human diseases (75). Regarding miRNA
modulation for Treg targeting, we used NSG mice reconstituted
with PBMCs and were able to demonstrate that the blockade
of miRNAs that impact Treg induction or stability in vivo
enhances human Treg frequencies both in the periphery and in
the pancreas (36, 37, 76). Lessons learned from the autoimmune
setting could be used for cancer immunotherapy. Enhancing
the function of these miRNAs using miRNA mimics could
induce immune responses against cancer cells by reducing
Treg-mediated suppression mechanisms. Importantly, miRNAs
that induce autoimmunity when overexpressed in lymphocytes,
can still have tumor-promoting properties because of their
expression in other cell types (e.g., miR17∼92 cluster) (77,
78). Therefore, the implementation of miRNA modulation for
immune targeting in cancer therapy relies on the development
of targeted approaches that allow the modulation of these
miRNAs specifically in immune cells or even specific subsets.
Importantly, miRNA delivery systems are currently intensively
studied [reviewed in (79)], as miRNA instability and degradation
still hinder the development of a successful system. To
improve the delivery of miRNAs in a preclinical setting that
also enables the testing of drug safety and efficiency, HIS
mouse models offer a suitable platform prior the translation
to humans.
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OUTLOOK AND CONCLUSIONS

The perpetual improvements of HIS mouse models have enabled
the design of personalized immunotherapies for various diseases
including cancer and the evaluation of their efficacy prior to the
translation to the human setting. Using patient-specific HIS mice
will enable us to better understand the heterogeneity of immune
responses and advance the development of novel personalized
immunotherapies for the treatment of cancer. Even though still in
its infancy, the use of iPSC-derived HSCs for engraftment could
be an important step toward personalized HIS models.

Additionally, the immunosuppressive tumor
microenvironment influences antitumor responses and the
efficiency of cancer immunotherapies. Targeting Tregs has
therefore become an important tool in cancer immunotherapy
and has been studied extensively in murine models. In order to
target Tregs most efficiently in human diseases the development
of novel models depicting the immune reaction of the human
disease is pivotal. HIS mouse models offer the opportunity to
study the interaction of human immune cells, including Tregs,
with human tumors directly in vivo.

Overall, current advances in establishing a “truly” humanized
mouse model for the development of immunotherapies and drug
delivery systems will guide personalized medicine approaches
further to the translation to the clinic.
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