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Despite recent advancements in the treatment of hematologic malignancies and the
emergence of newer and more sophisticated therapeutic approaches such as
immunotherapy, long-term overall survival remains unsatisfactory. Metabolic alteration,
as an important hallmark of cancer cells, not only contributes to the malignant
transformation of cells, but also promotes tumor progression and metastasis. As an
immune-escape mechanism, the metabolic adaptation of the bone marrow
microenvironment and leukemic cells is a major player in the suppression of anti-
leukemia immune responses. Therefore, metabolic rewiring in leukemia would provide
promising opportunities for newer therapeutic interventions. Several therapeutic agents
which affect essential bioenergetic pathways in cancer cells including glycolysis, b-
oxidation of fatty acids and Krebs cycle, or anabolic pathways such as lipid
biosynthesis and pentose phosphate pathway, are being tested in various types of
cancers. So far, numerous preclinical or clinical trial studies using such metabolic
agents alone or in combination with other remedies such as immunotherapy are in
progress and have demonstrated promising outcomes. In this review, we aim to argue the
importance of metabolic alterations and bioenergetic pathways in different types of
leukemia and their vital roles in disease development. Designing treatments based on
targeting leukemic cells vulnerabilities, particularly in nonresponsive leukemia patients,
should be warranted.

Keywords: acute lymphocytic leukemia, acute myeloid leukemia, chronic lymphocytic leukemia, chronic myeloid
leukemia, cellular metabolism, immunometabolism
INTRODUCTION

Hematologic malignancies are heterogeneous disorders caused by the carcinogenic
transformation of hematopoietic cells. Leukemias are the most common set of these
malignancies characterized by rapid and aggressive production of abnormal white blood cells
(WBCs) that are not functional and efficient immune cells. This state finally eventuates to
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impairment of the bone marrow ability to produce sufficient
and beneficial blood cells like platelets, red blood cells (RBCs),
and normal WBCs because of space occupation (1–3).
According to the American Cancer Society, about 60,530 new
cases and approximately 23,100 deaths of leukemia were
estimated in the United States in 2020 (4). Despite significant
improvements in its treatment and the advent of newer and
more efficient therapies such as immunotherapeutic
approaches, long-term survival remains unsatisfactory and
more investigation in this field is still a requisite. There are
several categories of leukemia based on various criteria, but
according to the most well-known one, leukemia can be divided
into lymphocytic and myelogenous (or myeloid) groups (1).

Metabolic alteration is a significant hallmark of cancer cells
which enables them to fulfill their requirements. Actually,
metabolic adaptations not only contribute to cancer cells
transformation, but also promote tumor progression (5, 6). It
seems that metabolic rewiring is also a critical implement for
leukemic cells so that metabolic properties of these cells can
remarkably influence the disease progress and effective response
to treatments. Indeed, both cell-intrinsic and extrinsic factors
including oncogenic mutations and some aspects of the bone
marrow microenvironment (BMM) significantly affect leukemic
cells’ metabolism. The bone marrow and thymus, where the
leukemia and lymphoma cells expands, are hypoxic areas with
specific metabolic condition (7–9). Metabolic characteristics of
leukemia cells, particularly leukemic stem cells (LSCs) that are
usually different from normal hematopoietic stem cells (HSCs),
actively contribute to the initiation and maintenance of
malignancy. Furthermore, metabolic adaptations in the BMM
and leukemic cells have a critical role in the suppression and
eradication of anti-leukemia immune responses (10, 11).
Regarding these issues, metabolic vulnerabilities in leukemia
provide promising opportunities for therapeutic intervention.
In this review, we try to discuss the importance of metabolic
regulations and bioenergetic pathways in leukemia pathogenesis
and their vital roles in disease development. In addition,
designing of treatment based on targeting leukemic cells
vulnerabilities, particularly in nonresponsive leukemia patients,
is considered.
CLASSIFICATION OF LEUKEMIA AND
COMMON THERAPIES

According to several references, leukemias can be classified as
acute and chronic as well as myelocytic and lymphocytic based
on the degree of cell differentiation and the predominant type of
cells involved (12). Acute myeloid leukemia (AML) which
accounts for approximately 33% of leukemia new cases in the
US, is the most frequent and worst prognostic type. According
to the French–American–British classification, AML is divided
into eight subtypes (M0–M7) (13). It occurs because of some
genetic abnormalities in myeloblasts, which leads to bone
marrow function failure eventually. A combination of
cytarabine plus anthracycline cytotoxic chemotherapy has
fonc.2021.767026.3d 2
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been the standard therapy of AML since the past three
decades (14, 15). Despite advances in AML therapy, its
prognosis is still poor, especially for older leukemia patients.
Therefore, along with chemotherapeutic strategies, some
immunotherapeutic approaches such as immune checkpoint
blockade and multi-specific T cell-engaging antibodies, are
under investigation (16–18). Chronic myeloid leukemia
(CML) is a clonal myeloproliferative disease that accounts for
about 15% of adult leukemia cases (13). It is characterized by
aggressive proliferation of dysfunctional myeloid-derived cells
and is classified into three stages including the chronic phase,
accelerated phase, and blastic crisis (19). The overexpression of
BCR-ABL1 fusion oncogene, which is resulted from a reciprocal
translocation between chromosome 9 and 22 (Philadelphia
chromosome) in HSCs, eventually gives rise to a constitutively
active non-receptor tyrosine kinase activity. This incident is
considered as the main origin point of the disease, especially in
the chronic phase (20, 21). Hence, tyrosine kinase inhibitors
(TKIs) which are classified into three generations, are the main
standard treatment and have remarkably improved the
outcomes of CML patients in the chronic phase. Nevertheless,
almost 50% of CML patients suffer a relapse of disease post-TKI
therapy due to the presence and drug-resistance of TKI-resistant
CML stem cells (22, 23).

Acute lymphoblastic leukemia (ALL) is known as the most
common leukemia in pediatrics with an approximate prevalence
of 80% childhood leukemias, however, its adult‐onset form
mostly involves males age >70 years (24, 25). ALL arises from
the transformation of hematopoietic B cell or T cell progenitors
with chromosomal abnormalities or genetic alterations. Not only
genetic but also environmental predisposing factors, like
childhood infections, will contribute to the initiation and
progression of ALL. Although the 5-year overall survival (OS)
of pediatric ALL patients has increased from 31% in 1975 to
nearly 70% in 2009 and even to 90% in recent years, only 25% of
patients older than 50 years old live longer than 5 years after
diagnosis. That shows urgent needs for further improvements for
its treatment particularly the adult form (25). Accordingly,
frontline treatment of ALL includes four phases during 2–3
years: induction, consolidation, intensification, and long-term
maintenance. Asparaginase therapy, as a frontline approach to
cytoreduction, is administered in all cases of pediatric and even
most cases of adult ALL and this issue declare the importance of
cellular metabolism in its pathogenesis and treatment.
Asparaginase is considered a critical component used for the
treatment of childhood ALL and can give rise to complete
remission in 40%–60% of patients, while the 5-year OS in
older patients (>60 years old) is still poor, even less than 20%
(25–27). The last type of leukemia is chronic lymphocytic
leukemia (CLL) that is considered as the most common adult
leukemia accounting for approximately 40% of all cases in adults.
It results from an overproduction of abnormal B cell
lymphocytes in the bone marrow that accumulate in the
bloodstream and homing tissues. Even though it is known as
slow-progressing leukemia, CLL is somehow incurable, and drug
resistance or relapse is often presented in CLL patients (28).
11/08/2021 08:52:56am
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THE GENERAL IMPORTANCE
OF METABOLIC PATHWAY IN
CANCER THERAPY

To fulfill the bioenergetic and biosynthetic needs, some
alterations occur in the energy metabolism of cancer cells.
These metabolic shifts are mainly triggered by various
mechanisms which instigate signaling pathways and eventually
manipulate the expression of some metabolism-related genes
(29). Cancer cells generally have three metabolic hallmarks
including increased glycolysis, glutaminolysis, and lipogenic
pathways (30). It has been reported that the phosphoinositol 3-
kinase (PI3K)-AKT signaling pathway, which activates
mammalian target of rapamycin (mTOR), hypoxia-inducible
factor 1 (HIF1) and other transcription factors like c-Myc, p53,
or Oct1, has a critical role in these metabolic adaptations (29, 30).
Cellular metabolism is mainly controlled by mTORC master
regulator that affects the translation and transcription of
metabolic genes, such as peroxisome proliferator activated
receptor g coactivator-1 a (PGC-1a), sterol regulatory
element-binding protein 1/2 (SREBP1/2), and hypoxia
inducible factor-1 a (HIF-1a). This regulator complex not
only promotes glycolytic activity that contributes to cell growth
but also, interestingly, can regulate mitochondrial metabolism.
Thus, representing an important regulator in mitochondrial
function (31–33). Fortunately, these metabolic rewirings of
cancer cells have provided promising drug targets during the
past decades. Several therapeutic agents which affect either
requisite bioenergetic pathways or anabolic pathways in
leukemia cells are being applied in various types of cancers.
Numerous preclinical studies or clinical trials using these
metabolic agents alone or in combination with other remedies
such as immunotherapy are in progress and have demonstrated
promising outcomes (5).
METABOLIC DIFFERENCES OF NORMAL
HEMATOPOIETIC AND LEUKEMIC CELLS

Metabolic differences between normal hematopoietic and leukemic
cells can provide new therapeutic windows to treat leukemia
patients. HSC self-renewal and lineage differentiation potency are
not only influenced by cytokines and transcription factors but also
regulated by cell metabolism (7, 10). In the dormant state, low
levels of ROS and ATP production due to the presence of anaerobic
glycolysis were observed in HSCs. However, when switching to an
active state, HSCs usually utilize oxidative metabolism through
elevated levels of oxidative phosphorylation (OXPHOS) and fatty
acids oxidation (FAO) due to a higher energy demand (34, 35).
Actually, because of the low oxygen microenvironment of bone
marrow, HIF-1s are stabilized and promote a glycolytic phenotype
in HSCs mostly through the stimulation of the pyruvate
dehydrogenase kinase (PDK) 2 and 4 as an active preventer of
the TCA cycle (8, 36). Additionally, asymmetric division of HSCs
which is requisite for the production of eternal daughter cells and
committed progenitors is considerably dependent on PML-
Frontiers in Oncology | www.frontiersin.org 3
peroxisome proliferator-activated receptor delta (PPARd)-FAO
(37). According to previous studies, it seems that although LSCs
may have some similar metabolic properties to normal HSCs, there
are also some differences that exist. Lagadinou et al. have
demonstrated that LSCs have a higher expression of BCL-2 and
thus, contain lower ROS levels than HSCs (38). Some other
investigations have demonstrated metabolic differences between
leukemic cells and their normal counterparts. Zhong et al. have
reported that T-ALL leukemic cells show increased OXPHOS in
comparison to normal HSCs (39). Increased free fatty acids
utilization and energy production by OXPHOS has been detected
in CLL cells unlike normal B-lymphocytes (40). Interestingly, AML
cells have more mitochondrial mass but lower respiratory chain
complex activities and spare respiration in comparison to normal
CD34+ cells (41, 42). On the other hand, a high level of glucose
consumption is considered a conserved feature of LSCs in most
hematological malignancies, regardless of genetic defects or types of
them. Upregulation of glycolysis has been indicated in several kinds
of leukemia including AML, ALL, CLL, and multiple myeloma
(43–46). Moreover, it has been indicated that increased glycolysis
correlates with drug resistance in both leukemia patients and cell
lines (47). Oncogenic drivers in human leukemia including MYC
and RAS are major operative factors in the metabolic rewiring of
leukemia cells. For instance, MYC overexpression is considered a
significant hallmark of B-cell and T-cell ALL and also Burkitt’s
lymphoma, which can actively promote some metabolic pathways
such as glycolysis, mitochondrial biogenesis, glutaminolysis, lipid,
and nucleotide biosynthesis (48–52).
IMPORTANCE OF CELLULAR METABOLIC
PATHWAYS IN MYELOID DISORDERS

Glucose Related Metabolic Pathways
Regarding the critical role of glycolysis pathway in the growth
and proliferation of cancer cells, myeloid leukemia cells also
upregulate this metabolic pathway. Numerous genetic studies in
mouse models have implicated the importance of glycolysis and
high expression of glycolysis-associated enzymes in the initiation
and maintenance of myeloid malignancies. They have proved
that deletion of glycolytic enzymes such as pyruvate kinase
(PKM2) or lactate dehydrogenase A (LDHA) can considerably
extenuate the initiation and maintenance of murine CML and
AML (53). Raised glycolytic activity not only gives rise to a
decreased level of autophagy leading to more aggressive
leukemia, but also is associated with drug resistance (54, 55).
In AML cells, higher mTORC1 activity and FLT3-ITD-mediated
signaling contribute to the continuance of glycolysis and
leukemic cells survival and therefore, render therapeutic
sensitivity to glycolytic inhibition (Figure 1) (56, 57). 2-
Deoxyglucose, as an inhibitor of the glycolysis pathway, has
shown beneficial effects in AML treatment (47, 58). Moreover,
leukemic cells are significantly dependent on the pentose
phosphate pathway (PPP) which provides ribonucleotides for
nucleic acid synthesis and NADPH for lipid synthesis. Redox
homeostasis and glucose-6-phosphate dehydrogenase (G6PD)
November 2021 | Volume 11 | Article 767026
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overexpression are the key regulators of this pathway and
correlate with an adverse prognosis in AML (Figure 1).
Therefore, inhibition of G6PD activity can be a promising
therapeutic target in AML and its beneficial effects have been
demonstrated in FLT3-ITD-mutated AML (56, 59, 60).
Additionally, synergic effects of G6PD and 6-phosphogluconate
dehydrogenase (6PGD) inhibition with cytarabine to produce
anti-leukemic activities in AML have been proven (42). BCR‐
ABL fusion oncogene in CML also increases glucose transport
and renders cells more glycolytic compared with normal
counterparts (61). It has been demonstrated that continuous
exposure of K562, a CML cell line, with imatinib which decreases
glucose uptake and inactivates glycolytic enzymes, can lead to
induction of autophagy in CML cells by mechanisms involving
activation of AMPK and suppression of S6K1 (62).

OXPHOS andmitochondrial metabolism also have a significant
role in myeloid leukemia. According to Krtić et al, oxygen
Frontiers in Oncology | www.frontiersin.org 4
consumption rate and mitochondrial mass are increased in AML
cells compared with normal hematopoietic progenitors (63).
Furthermore, amplification of mitochondrial DNA (mtDNA)
levels in AML has been indicated in various studies (64, 65).
Noteworthily, different AML cell lines exhibit a different
preference on glycolysis or mitochondrial OXPHOS for energy
demand. For instance, NB4 was proved to be a “glycolytic” cell line
while THP-1 was identified to be dependent on OXPHOS, even
though they are all AML cell lines (66). Further mechanism
investigation revealed that AMPK is responsible for the
bioenergetic production difference, highlighting that the
oncogene background of leukemia cells, at least partly,
determines their metabolism preference. Furthermore, leukemia
continuously reprograms to adapt to environmental pressures and
alteration of growth conditions, resulting in the ratio between
glycolysis and OXPHOS are continuously changing (67). Due to
higher mitochondrial biogenesis and higher dependency on
FIGURE 1 | Metabolic alterations in leukemia cells. Important reactions of the metabolic pathway in leukemia cells are summarized in the schematic, including glycolysis,
glutaminolysis, lipogenesis, TCA cycle, fatty acid oxidation (FAO), pentose phosphate pathway (PPP) (blue). Dominant nutrient transporters and metabolic enzymes are
emphasized (brown). GLUT, glucose transporter; HK2, hexokinase-2; PKM2, pyruvate kinase isozymes M2; LDH, lactate dehydrogenase; MCT, monocarboxylate
transporters; G6PD, glucose-6-phosphate dehydrogenase; ASCT2, glutamine transporter encoded by Solute Carrier Family 1 Member 5 gene; GLS, glutaminase; FASN,
fatty acid synthase; CPT1, carnitine palmitoyltransferase I; IDH2, isocitrate dehydrogenase 2; IDO, Indoleamine-pyrrole 2,3-dioxygenase; a-KG, alpha-ketoglutarate; SucCoA,
Succinyl-CoA; OAA, oxaloacetate. The figure was produced with the assistance of Servier Medical Art (https://smart.servier.com).
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mitochondrial oxidation in leukemia myeloblasts, it has been
indicated that metformin suppresses leukemia cell survival,
proliferation, and clonogenic activity in both AML and CML (68,
69). The compound CPI-613, as an inhibitor of pyruvate
dehydrogenase (PDH) and a-KG dehydrogenase (KDH), has
clinical benefits through decreasing oxygen consumption rate in
AML cells (70). An unexpected high remission rate has been
observed in relapsed and refractory AML patients after co-
administration of CPI-613 with high-dose Ara-C (71). Several
OXPHOS or ETC complexes inhibitors including Tigecycline,
Metformin, 2’3’-Dideoxycytidine, IACS-010759, and A2-32-01
have revealed clinical benefits in AML and CML (63, 65, 72, 73).
Metformin, as a widely used anti-diabetic drug, has interestingly
exhibited anti-leukemic activities in some leukemias such as AML.
However, regarding its pharmacokinetics and maximum efficient
dose, it is usually administered in association with other remedies
but not alone in clinical settings. Regarding that AML cells are
strongly dependent on mitochondrial metabolism, metformin is
administered in doses which could inhibit ETC complex I (69, 74).
It has been proven that in order to eliminate disease persistence in
CML patients, a combination of tigecycline and imatinib can serve
as a suitable clinical approach (75).

One of the most important and well-known metabolism-
related hallmarks of AML is a mutation of isocitrate
dehydrogenases. These are crucial enzymes of the TCA cycle.
In their wild-type form, these isoforms oxidatively decarboxylate
isocitrate to 2-KG and generate NADPH. However, their mutant
forms oxidize NADPH and produce the oncometabolite 2-
hydroxyglutarate (2-HG) from a-KG (Figure 1) (76–78). This
alteration has been found approximately in 20% of AML patients
and has been proven to be a promising therapeutic point. In
2018, ivosidenib (formerly known as AG120), an allosteric
IDH1R132 inhibitor, was firstly approved by the FDA for
patients with relapsed or refractory IDH1-mutated AML.
Additionally, it is considered as front-line therapy for newly
diagnosed patients who are 75 years or older and also some
patients who are ineligible to receive intensive chemotherapy (79,
80). Enasidenib (formerly known as AG-221) that has gained
FDA approval for IDH2 mutant AML patients, is a small
molecule that selectively inhibits mIDH2 (IDH2R140Q and
IDH2R172K) via binding to its allosteric site and prevents the
conformation change requiring for the catalytic action and the R-
2-hydroxyglutarate (R2HG) production. Its clinical benefits in
AML treatment have been demonstrated in both in-vitro studies
and clinical trials (80–82). Furthermore, Vorasidenib (AG-881)
is under investigation in phase I for the treatment of AML
patients with a mutation in IDH1 and/or IDH2 (83).

Amino Acids and Protein Related
Metabolic Pathways
Amino acids not only serve as essential building blocks of protein
biosynthesis but also are considered as a significant source of
carbon and nitrogen on nucleotide synthesis and therefore they
contribute to cancer cells’ growth and proliferation. According to
numerous studies, it seems that three amino acids glutamine,
arginine, and tryptophan have prominent roles in hematological
malignancies particularly in myeloid leukemia. The importance
Frontiers in Oncology | www.frontiersin.org 5
of branched−chain amino acids (BCAAs) metabolism in myeloid
leukemia has also been studied. Accordingly, in several leukemic
cell lines, glutamine depletion can induce significant apoptosis
(84–86). AML primary cells have indicated a higher level of
glutamine dependence than normal CD34+ cells because this
amino acid controls OXPHOS in these cells (87). Small molecule
inhibitors such as BPTES and CB-839 that are glutaminase (GLS)
inhibitors, can lead to cell proliferation arrest and apoptosis in
AML and BCR–ABL-positive CML cells (88, 89). CB-839 can
also inhibit glutathione production and cause accumulation of
mitochondrial ROS and eventually apoptotic cell death in AML
(90). Recent research showed that high-risk MDS patients can
benefit from the combination of CB-839 and 5-azacitidine due to
the rapid reduction of BM blasts (91). Moreover, GLS inhibition
and BCL-2 inhibitor Venetoclax have displayed synergic effects
in AML (Figure 1) (86).

Various studies also described a strong dependence of myeloid
leukemia cells on arginine. Arginine is a semi-essential amino acid
that is involved in many biochemical processes and can be
considered as a potential therapeutic cancer target (92–94).
Because of defects in the arginine-recycling pathway enzymes
like argininosuccinate synthase and ornithine transcarbamylase,
AML blast cells are mostly dependent on arginine uptake by the
CAT-1 and CAT-2B arginine transporters. In addition, the plasma
arginine levels are significantly higher in AML patients compared
with healthy counterparts. Hence, BCT-100, a PEGylated human
recombinant arginase that can deplete extracellular arginine, has
resulted in proliferation arrest, apoptosis, and decreased AML
engraftment in vivo. Generally, the cultivation of AML blasts or
AML cell lines in an arginine-free media can lead to their
apoptosis (94).

Tryptophan metabolism and its conversion to kynurenine,
have an important role in a variety of malignant tissues, such as
ovarian cancer, melanoma, and head and neck cancer (95).
Increased kynurenine/tryptophan ratio in AML patient sera
which negatively correlates with their OS, also indicates its
importance in myeloid leukemia (96). In fact, in more than
50% of the cases tested at diagnosis, AML blasts constitutively
express IDO (Indoleamine-2,3-dioxygenase) and so can promote
the formation of regulatory T cells (Tregs) (97).

leucine, isoleucine, and valine are known as BCAAs
synthesized by the BCAA transaminases 1 (BCAT1) and 2
(BCAT2) in a reversible transamination reaction. A quantitative
expression proteomics analysis detected significant BCAT1
overexpressed in AML LSCs but not in the non-LSC bulk
population. A high level of BCAT1 is involved in AML biology
(98). Furthermore, Hattori et al. have indicated highly elevated
BCAA levels in CML-initiating cells isolated from a BC-CML
mouse model using amino acid-specific fluorescent markers. They
also have shown that BCAT1 inhibition impairs CML blast crisis
propagation in vitro and in vivo (99).

Lipid Related Metabolic Pathways
In a general perspective, lipids are considered as central players in
cancer biology due to their critical roles in cell growth
and proliferation. Therefore, extensive rewiring of lipid
metabolism, which is driven by both oncogenic and tumor
November 2021 | Volume 11 | Article 767026
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microenvironmental cues, is a significant hallmark of cancer cells.
Indeed, these metabolic reprogramming and specific lipid profiles
of cancer cells are so important that can be regarded as disease
biomarkers, with diagnostic, prognostic, and predictive values.
Lipids and their metabolism are emerging as promising tools and
targets for anti-cancer therapies and numerous natural or
synthetic compounds targeting lipid metabolism have been
discovered with curative effects against cancer (100, 101).
Interestingly, bone marrow-resident LSCs express higher fatty
acid transporter CD36 than normal HSCs and hence, they can
induce lipolysis in BM adipocytes to fuel FAO in leukemic cells. It
seems to be that BM-resident adipocytes remarkably impair the
anti-leukemia effect of various chemotherapeutic agents and obese
mice compared to normal-weight counterparts show higher rates
of relapse after chemotherapy (102). It has been proven that cell
growth and survival of AMLmonocytes are strongly supported by
BM adipocytes, which promote their fatty acid b-oxidation (103).
Firstly, a study in 2010 showed that pharmacological inhibition of
the carnitine palmitoyltransferase 1 (CPT1) which catalyzes one of
the rate-limiting steps in FAO, enhanced AML sensitivity to
apoptosis (Figure 1) (104). Moreover, other pharmacologic
agents that inhibit fatty acid oxidation, such as Etomoxir or
Ranolazine, restrain AML cell proliferation and sensitize human
leukemia blasts to apoptosis (104). Even somemore common lipid
targeting drugs like statins are also clinically useful in AML
treatment in combination with chemotherapy. Some studies
have demonstrated that statin treatment can enhance complete
remission rates in favorable-risk AML groups, but had a less clear
role in high-risk AML (105, 106).

Lipids are not only a source of energy to produce ATP, NAD
(P)H, and building blocks for cell membrane, but also are
essential signaling molecules. This group of lipids including
prostaglandins, leukotrienes, and eicosanoids has a critical role
in several processes like inflammation, and carcinogenesis (107).
Chen and colleagues have demonstrated that mRNAs for both
Alox5 and Alox15 (arachidonic acid lipoxygenase enzymes) are
highly expressed in CML stem cells and their overexpression is
vital for their survival. Additionally, they showed that in vivo
administration of PD146176 (an Alox15 inhibitor) and/or
zileuton (an Alox5 inhibitor) can diminish the relapse of CML
disease in WT CML model mice (108, 109). Another study has
indicated that increased expression of the enzyme Gdpd3
(lysophospholipase D), which activates lysophospholipid
metabolism, can eventually lead to stem cell quiescence and
TKI resistance in CML. These observations suggest that targeting
Gdpd3 or other enzymes that are involved in lysophospholipid
metabolism can contribute in reducing CML disease
relapse (110).
GENERAL ALTERATIONS OF
METABOLITES IN LYMPHOID LEUKEMIA

Glucose Related Metabolic Pathways
Although different hematological malignancies harbor individual
genetical alterations and locate in a diverse microenvironment,
Frontiers in Oncology | www.frontiersin.org 6
ALL shows a conserved symptom of high consumption of
glucose as myeloid leukemia does (111). B precursor ALL
lymphoblasts exhibit a preferential upregulation of genes
related to glycolysis compared to the TCA cycle, indicating the
dominant position of aerobic glycolysis in glucose metabolism of
ALL (111). However, in contrast to ALL, CLL shows a relatively
low uptake of 2-Deoxy-2-[18F] fluoroglucose (FDG) and low
sensi t iv i ty of posi tron emiss ion tomography-FDG,
demonstrating that the glycolytic pathway might not be a
critical role in CLL cells’ metabolism (112, 113). As the glucose
transporter, GLUT promotes the uptake of glucose
extracellularly in ALL cells, and after deletion, a decrease in
proliferation and a limited degree of apoptosis was observed in B
cell ALL lymphoblasts harboring the BCR-ABL1 tyrosine kinase
fusion oncogene (114). Moreover, inhibition of rate-limiting
enzymes that catalyze the metabolic intermediates during
glycolysis, such as HK2, PKM2, and LDHA, induces apoptosis,
blocks proliferation, and even attenuates drug resistance in ALL
cells. Therefore, opens a potential therapeutic window for ALL
treatment by targeting crucial enzymes in the glycolysis pathway
(114, 115). Numerous oncogenic pathways, such as MYC, PI3K/
Akt, AMPK, and Notch, have been reported to participate in the
glycolysis procedure in lymphoid leukemia, upregulating the
expression of glucose transporters and glycolytic enzymes or
balancing glycolysis and mitochondrial metabolism (116–118).

The PPP, which branches from glycolysis, produces NADPH
and ribose-5-phosphate after an oxidative phase and plays an
unreplaceable role in lipids generation and redox homeostasis in
lymphoid leukemia (119). G6PD, the first enzyme in the PPP
pathway, can serve as a prognostic biomarker of ALL (120).
Furthermore, in B cell ALL, the serine/threonine-protein
phosphatase 2A (PP2A) switches glucose carbon utilization
from glycolysis to the PPP to cope with oxidative stress,
implicating the possibility to remove the gatekeeper function of
PP2A in the PPP by inhibiting this molecule in ALL (121).

Despite the roles of aerobic glycolysis as a predominant
pathway for providing a source of energy and anabolic
precursors for tumorigenesis in most hematopoietic
malignancies, some subsets of leukemia, like CLL, satisfy from
increasing energy demands during growth by upregulating
mitochondrial OXPHOS activity. For instance, an increase in
the number of mitochondria, the total mitochondrial mass, and
mitochondrial biogenesis was evidenced in CLL cells, in
comparison to normal B lymphocytes (122). Elevated
mitochondrial oxidative activity generates a proper high level
of ROS, contributing to tumor progression by mediating the
tumor microenvironment and protecting cells from apoptosis.
When compared with normal B cells, the level of mitochondria-
derived ROS in CLL cells is higher due to a more active
mitochondrial activity, thereby promoting the progression of
leukemia (40, 122). Metformin, an inhibitor of mitochondrial
complex I, has been proved to suppress cell cycle progression and
cell proliferation via disruption of mitochondrial OXPHOS in
CLL and ALL (123, 124). Furthermore, a synergetic antileukemia
effect has been observed when combining metformin with
daunorubicin or vincristine, which are extensively used to treat
leukemia clinically. This has revealed that, revealing that
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targeting mitochondrial OXPHOS could be a potent adjuvant
therapy strategy for lymphoid leukemia treatment (125, 126).

Amino Acids and Protein Related
Metabolic Pathways
Glutamine provides a rich resource of carbon and nitrogen,
which can be used to produce amino acids, nucleotides, and fuel
mitochondrial activity via offering a-KG. Thus, many cancer
cells become addicted to glutamine and rely heavily on
glutaminolysis for rapid growth. Likewise, ALL cells show an
active utilization of glutamine for leukemogenesis, while
suppression of glutaminolysis enhances the antileukemic effects
in mice harboring T cell ALL (127). Genetic or pharmacological
targeting ASCT2 molecule, a transporter of neutral amino acids,
especially glutamine, decreases leukemia initiation and
maintenance driven by the oncogene MLL-AF9 or Pten
deficiency (128). Furthermore, glutaminase (GLS), An enzyme
that catalyzes glutamine into glutamate, has proved to be a
potential therapeutic target in the treatment of ALL (129, 130).

Asparagine synthetase (ASNA) catalyzes the conversion from
aspartate to asparagine in most tissues. However, due to the low
expression of ASNA, ALL cells are auxotrophic for asparagine and
highly sensitive to asparaginase treatment, which degrades
extracellular asparagine systematically and blocks the cell growth
of ALL cells (131, 132). Taking advantage of this unusual metabolic
dependency on an exogenous supply of asparagine in ALL cells,
asparaginase has become one of the standard therapeutic regimens
in ALL treatment. Asparaginase already exhibited a synergetic and
profound antileukemia effect when combining with
chemotherapies for ALL treatment in clinical practice (133, 134).
Intriguingly, asparaginase diminishes not only asparagine but also
glutamine in the intracellular pool (130). Moreover, asparaginase
reduces glucose uptake and glycolysis and hampers pyrimidine
synthesis in ALL cells (135). Altogether, asparaginase can fulfill its
antileukemia function in a comprehensive method.

Arginine is a semi-essential amino acid, which is critical for
the synthesis of protein, nitric oxide, and other amino acids.
Arginine can be synthesized from citrulline intracellularly while
taking up exogenous arginine is also necessary to meet the
cellular demands in leukemias. Increasing studies have shown
the potential therapeutic benefit of pegylated-human-arginase I
(peg-Arg I) in ALL treatment. By depleting the existence of
arginine and starving ALL cells of it, peg-Arg I induces a
decreased progression of the cell cycle via impairing the
expression of cyclin D3 (136). Further study suggested the
central role of phosphorylation of the eukaryotic-translation-
initiation factor 2 alpha signaling in the antileukemia effects
induced by peg-Arg I (137). Interestingly, although endogenous
or genetic upregulation of argininosuccinate synthase or
ornithine transcarbamylase rescues ALL survival from a
moderately low arginine condition, these enzymes cannot
prevent the cytotoxic effects of peg-Arg I towards ALL (138).

Lipid Related Metabolic Pathways
Lipids serve as fundamental building blocks for the construction
of membranes. Cancer cells satisfy the high demands of lipids for
the biosynthesis of membrane structure via synthesizing fatty
Frontiers in Oncology | www.frontiersin.org 7
acids themselves, rather than absorbing lipids from the blood.
Fatty acid synthase (FASN), a large enzyme with multiple
catalytic domains, carboxylates malonyl-CoA into fatty acid
chains. An elevated level of FASN was evidenced in drug-
resistant ALL and correlated with a poor prognosis, while
inhibition of FASN increases apoptosis rates and overcomes
dexamethasone resistance (139). Moreover, not only the
suppression of FASN inhibits ALL cells growth but also
produces a remarkable impairment of PD-L1 expression,
indicating the potential role of FASN inhibitors in
antileukemia immunotherapy (140).

FAO in the mitochondria degrades fatty acids and generates
acetyl-CoA for OXPHOS and energy production in cancer cells.
The transportation of fatty acids into mitochondria for FAO
requires the assistance of CPT, an enzyme located in the outer
membrane of mitochondria. CLL cells exhibit elevated levels of
CPT1 and CPT2, while inhibition of CPT induces compromised
FAO activity due to ineffective transportation of fatty acids into
mitochondria, subsequently leading to massive CLL cell
death (141).

Lipoprotein lipase (LPL), a water-soluble enzyme that
hydrolyzes triglycerides in lipoproteins, has found to be
abnormally expressed in CLL cells (142). Moreover, the
elevated expression of LPL is associated with a poor prognosis
and an aggressive disease stage of CLL (142, 143). LPL displays
its oncogenic function via storing lipids in cytoplasmic vacuoles
and fueling fatty acids for energy production, reprograming CLL
cells to utilize fatty acids as the major energy resource (144).
Furthermore, this unique metabolic feature of CLL cells is driven
by STAT3, an oncogenic pathway that endows CLL cells’ survival
advantages by binding and activating the promotors of LPL (145,
146). Additionally, further study has revealed that LPL in
aggressive CLL cells generates activating ligands for the nuclear
receptor PPARa and allows fatty acids to be employed as fuel
(147). Thus, STAT3-mediated aberrant LPL in CLL can serve as
an ideal targeted marker for blocking lipid metabolism.
IMPACT OF METABOLIC REGULATION
ON ANTI-LEUKEMIA IMMUNE
RESPONSES

Several research have revealed that altered cellular metabolism
not only changes the phenotype of leukemia cells but also
impacts the BMM greatly, resulting in the initiation,
progression, and metastasis of leukemia (148). As a dynamic
and complex biological tissue, the bone marrow niche influences
the anti-leukemia immune responses significantly via cellular or
noncellular components in the tumor microenvironment (TME)
(Figure 2). For instance, by depriving essential nutrients from
the bone marrow niche, leukemia cells fabricate a long-term
nutrients deficiency microenvironment, resulting in the
dysfunction of immunocytes, leading to a suppression of
antileukemia immune responses. Although the current
understanding of the relationship between metabolic regulation
in the leukemia-resided BMM and antileukemia immunity is still
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incomplete, a deep investigation of this field will undoubtedly
open a therapeutic avenue for leukemia immunotherapy.

As the preferential glucose metabolism of leukemia, aerobic
glycolysis generates and secretes a high level of extracellular lactate
and hydrogen ions, these products in turn, acidify the
microenvironment. The acidic environment is beneficial to the
invasion of leukemia cells, while detrimental to immune cells that
target leukemia cells (149). Previous studies exhibited that a high
level of extracellular lactate suppresses the differentiation from
monocytes to dendritic cells (DC) and inhibits the cytokine
secretion of DCs and effector T cells (150, 151). Furthermore,
elevated lactate in the microenvironment attenuates the secretion
of lactate from T cells because the transportation of lactate
depends on the difference between intracellular and extracellular
concentration in T cells, leading to the accumulation of
intracellular lactate in T cells, which inhibits the cytotoxic T cell
function (152). Additionally, an acidic microenvironment induces
the polarization of macrophages from M1 to immunosuppressive
M2 phenotype, which supports leukemia angiogenesis and
metastasis (149). Meanwhile, a low-pH microenvironment also
impairs the cytotoxicity of NK cells. Huge consumption of glucose
by leukemia cel ls causes glucose deficiency in the
microenvironment under limited blood supplement, inhibiting
the proliferation and differentiation of tumor-infiltrating
lymphocytes via glucose competence (153). However, glucose
competition has limited effects on regulatory T (Treg) cells due
Frontiers in Oncology | www.frontiersin.org 8
to the predominant role of lipids metabolism in the energy
production of Treg cells. Thus, under glucose-deprived
conditions, Treg cells still exert consistent immunosuppressive
functions while effector T cells show a relatively weakened
antileukemia capability, which is favorable for the progression of
leukemia (154). Taken together, neutralizing the acidic BMM and
suppressing glucose deprivation of leukemia cells can serve as
novel strategies against leukemias, prompting immune
surveillance and clearance.

Amino acids provide building blocks for the synthesis of proteins
and other compoundsnecessary for structure construction, signaling
transduction, and etc. Deprivation of amino acids in the BMM by
leukemia cells profoundly impacts the immune cells, leading to an
immunosuppressive microenvironment eventually. For instance,
IDO was found to be highly expressed and abnormally activated
in leukemias, exhibiting its inhibitory effects on T cells via
tryptophan deprivation (155). Moreover, leukemia cells can
induce immune tolerance by increasing the expansion of Treg
cells in an IDO-dependent manner (155, 156). In addition to
leukemia cells, mesenchymal stem cells (MSCs), critical
contributors to tissue inflammation homeostasis, were evidenced
to utilize tryptophan-depleting IDO to suppress T cells via STAT1
glycosylation. Interfering with STAT1 activity in MSCs impacts
IDO upregulation, further impeding T cell suppression (157).
Arginine, a non-essential amino acid, also participates in the
regulation of immune responses. Enhanced arginine metabolism
FIGURE 2 | The influence of metabolic alterations of leukemia cells and immune cells on the immune responses under the microenvironment. Reprogramming
glucose-related metabolism impacts immunity via releasing lactate and hydrogen ions, which create an acidic microenvironment, as well as depriving of extracellular
glucose, resulting in an immunosuppressive status of filtrating immune cells. Furthermore, leukemia cells also destitute the amino acids in the microenvironment,
leading to the inactivation of T lymphocytes and phenotype shift of monocytes. Lastly, by recruiting adipocytes in the BMM via the lipid-related pathway, leukemia
cells reveal a potential effect on immunological regulation. Immune cells, like tumor-associated macrophages, tumor-associated DCs, and MDSCs can also impact
the T cells’ function via upregulating the expression of IDO and arginine-1, contributing to an immune-tolerant microenvironment. The figure was produced with the
assistance of Servier Medical Art (https://smart.servier.com).
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in AML blasts contributes to the secretion of arginase II in the
microenvironment and a high concentration of arginase II in the
plasma has been evidenced in patients with AML (158). The low
arginine microenvironment created by AML blasts acts as an
immune brake resulting in T cells anergy, including impaired
proliferation, reduced IFN-g release, and up-regulation of PD-1
(159). Furthermore, AML blasts show an arginase-mediated ability
to polarize monocytes into a suppressive M2-like phenotype and
hamper the proliferation and differentiation of human CD34+

progenitors (158). Another key amino acid, glutamine, was also
reported to be involved in immunological regulation. Depletion of
glutamine impedes proliferation and cytokine production of T cells
and this cannot be salvaged by offering biosynthetic precursors of
glutamine (160). Paradoxically, a recent study revealed that tumor-
infiltrating CD8+ T cells, under glutamine-restricted conditions,
exhibit a boost in proliferation with an increased expression of Ki67,
whereas T cells exhaustion was limited (161). Therefore, an
integrated understanding of the impacts of glutamine metabolism
on the BMM, even on immunological regulation towards leukemias,
is urgently needed to clarify the underlying mechanism by which
glutamine influences immune responses.

The BMM is an area filled with numerous adipocytes. When
tumor cells migrating from other tissues are located in the BMM,
adipocytes will be recruited and deliver lipids to tumor cells via the
CD36 receptor (162). In addition, these adipocytes secrete a set of
inflammatory adipokines, such as leptin, tumor necrosis factor-
alpha (TNF-a), and IL-6, as well as an anti-inflammatory
adipokine, called adiponectin, to modulate the immunological
microenvironment (163). Furthermore, adipocytes have been
found to induce the differentiation of bone marrow precursors
into adipose tissue macrophage-like cells via releasing exosome-
sized, lipid-filled vesicles (164). These results implicit lipids
metabolism regulated by adipocytes might be involved in
antileukemia immune responses. Besides, the existence of lipid
intermediates in ascites of ovarian cancer patients induced a
proliferation arrest of ascites-derived lymphocytes in the G0/G1
phase, implying that targeting lipid metabolism in the
microenvironment can serve as a therapeutic option to struggle
against tumors via regulation of immune responses (165).
However, our current understanding concerning the relationship
between lipid metabolism and antileukemia immunity remains
elusive and in-depth investigations correlated with this field are
encouraged to broaden the knowledge.

Nevertheless, not only does the reprogramming metabolic
wiring of leukemia cells influences the leukemic niche but also the
alteration of metabolism in some immune cells impacts the BMM,
contributing to an immunosuppressive microenvironment that
favors the progression of leukemia (Figure 2). As we mentioned
above, acidification polarizes infiltrating macrophages into the
tumor-supporting M2 phenotype, also known as “ tumor-
associated macrophages” (TAMs). TAMs exhibit atendency of
upregulation of transcription factor HIF1a, which in turn
enhances the expression of vascular endothelial growth factor
(VEGF) and arginase-1, underlining the tumor-favoring function
of TAMs (166). Furthermore, an elevated IDO expression has been
evidenced in TAMs (167). TAMs induce the proliferation of Treg
cells via tryptophan catabolite, leading to the suppression of T cells
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function and immune-tolerant microenvironment (168). Another
immunosuppressive cell phenotype, tumor-associated DCs
(TADCs), has also been reported to participate in the modulation
of the microenvironment via metabolic alterations. By enhancing
the expression of arginase-1 and IDO, which delete the arginine and
tryptophan in the TME, TADCs attenuate the tumor-fighting
function of effector T lymphocytes, supporting the immune
evasion of leukemia cells (169). The role of myeloid-derived
suppressor cells (MDSCs) in the regulation of the TME via
metabolic rewiring also could not be ignored. It has been reported
that DMSCs overexpress IDO to catalyze tryptophan into
kynurenine, suppressing T cells function and promoting Treg
cells generation (170). These facts together imply that
the metabolic reprogramming of immune cells also play a
pivotal role in the modulation of the BMM, highlighting the
promising possibility to target immune cells metabolism for
leukemia treatment.
EXPLOITING OF METABOLISM
TARGETING TREATMENTS IN LEUKEMIA

As discussed above, altered metabolism is essential in hematologic
malignancies to overcome survival stress and adjust to the diverse
microenvironment. Thus, therapy against leukemias by targeting
reprogramming metabolic molecules seems to be an ideal option
to struggle against hematological malignancies and the selection of
specific biomarkers is critical in the development of targeted
therapeutic agents (171). Recently, researchers are dedicated to
identifying novel metabolism-targeting drugs. Metabolic enzymes
and the components within the glucose, amino acid, and fatty acid
metabolic pathways, are regarded as attractive targets (172), and
some of them have shown inspiring results in clinical trials, as
shown in Table 1.

Targeting Glycolysis
Generally, most of the glucose consumed by leukemia cells is
catabolized through glycolysis. Thus, preventing glucose uptake
and glycolysis will be an effective strategy to struggle against
leukemia. GLUT mediates the glucose uptake and transportation
of leukemia cells. By inhibiting GLUT4, protease inhibitor
ritonavir exhibits similar toxic effects on CLL cells as glucose
deprivation does in vitro (173). Furthermore, when co-incubating
with metformin, an inhibitor of mitochondrial complex I activity,
ritonavir-resistant CLL cells are sensitized, resulting in the
elimination of CLL cells via perturbation of glucose metabolism.
Promising antileukemia results have also been evidenced by
targeting rate-limiting enzymes related to glycolysis and the
PPP, such as HK2 (174), G6PD (175), PKM2 (176). Leukemia
cells prefer shunting pyruvate into lactate production to adjust to
rapid energy consumption rather than into the TCA cycle for
further OXPHOS, providing a probability to target LDH to inhibit
the production of lactate in leukemia cells. The LDHA inhibitor
oxamate fulfills its antileukemia effects by arresting ALL cells in
G0/G1 phase and inducing apoptosis (177). Further mechanism
exploration revealed that blocking LDHA also leads to the
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inactivation of the c-Myc and PI3K signaling pathway, suggesting
that targeting LDH is an ideal selection to achieve antitumor
benefits when applying in vitro. Last but not least, prohibiting
monocarboxylate transporters (MCTs), the transporter of lactate,
will results in the accumulation of glycolytic end-products
including lactate and H+, which consequently, lead to
Frontiers in Oncology | www.frontiersin.org 10
intracellular acidification and apoptosis. A recent study
demonstrated that AR-C155858 and syrosingopine, inhibitors of
MCT1 and MCT4, exert an anti-proliferative effect and enhance
AML cells’ sensitivity to chemotherapeutic agents (178).
Altogether, the results highlight the important role of targeting
the glycolysis pathway in the treatment of leukemia. Regretfully,
TABLE 1 | Metabolism-targeted agents and their antileukemia effects in vitro and in vivo.

Substance Phase Classification
of leukemia

Targeted
biomarker

Combination Study results Reference

Ritonavir Preclinical CLL GLUT4 Metformin Ritonavir inhibited the expression of GLUT4 and significantly reduced
glucose transportation, oxygen consumption, therefore inducing CLL
cells apoptosis.

(173)

2-DG Preclinical AML HK2 Sorafenib 2-DG caused apoptotic AML cell death in a dose-dependent manner.
Moreover, 2-DG plus sorafenib provided a significant therapeutic
benefit over sorafenib alone.

(174)

6-AN Preclinical AML G6PD cytarabine 6-AN effectively induced apoptosis of AML cells and inhibited tumor
proliferation in vivo without apparent systemic toxicity. 6-AN and
cytarabine synergized to induce cytotoxicity against AML cells.

(175)

DMAMCL Preclinical AML PKM2 None DMAMCL effectively promoted PKM2 tetramer formation and prevented
nucleus translocation, impairing AML cells proliferation and migration in
vivo.

(176)

Oxamate Preclinical ALL LDHA None Oxamate targeted LDHA, thereby inhibiting ALL progression through
the c-Myc-ROS and PI3K/AKT/GSK3b signaling pathways

(177)

AR-C155858,
Syrosingopine

Preclinical AML MCT1,
MCT4

Arabinosylcytosine AR-C155858 and syrosingopine inhibited lactate metabolism and
leukemic cell proliferation via inhibition of MCT1 and MCT4, and
enhanced cytotoxicity of arabinosylcytosine in AML cells

(178)

GPNA Preclinical AML ASCT2 None GPNA effectively suppressed leukemia progression and greatly
increased apoptosis in leukemic cells in both peripheral blood and
bone marrow of AML xenograft mice

(128)

CB-839 I AML, ALL GLS None One patient achieved a CR and has been on study for more than 10
months; Four additional patients remained on study for at least 12
weeks. Three out of 18 patients experienced grade 3 AEs.

(179)
NCT02071927

PEG-
asparaginase

Approved
for ALL

ALL Asparagine Chemotherapy
agents

Four-year continuous CR for leukemia patients was 68% with
asparaginase treatment as compared to 55% without asparaginase
treatment and toxicities were tolerable.

(180)

ADI-PEG20 II AML Arginine None PFS and OS were 1.8 months and 7.9 months in AML patients after
receiving ADI-PEG20. Among 21 evaluable patients, two achieved CR
while seven achieved SD.

(181)
NCT01910012

ADI-PEG20 I AML Arginine Cytarabine The median OS in 18 AML patients was 8.0 months, with an ORR of
44.4%. The ORR reached 71.4% and the CR rate reached 57.1% in
seven treatment- naïve patients.

(182)
NCT02875093

Indoximod I AML IDO Cytarabine Among 25 AML patients, 21achieved remission. Among 12 patients
with MRD available in remission, 10 had MRD negative status.
Indoximod combined with cytarabine was well-tolerated.

(183)
NCT02835729

AIC-47 Preclinical CML, ALL CPT1 Imatinib AIC-47 inhibited fatty-acid metabolism via suppression of CPT1, while
AIC-47 and imatinib in combination exhibited a significant synergic
cytotoxicity toward leukemia cells.

(184)

Etomoxir Preclinical AML CPT1 ABT-737 Etomoxir limited the proliferation of AML cells and sensitized leukemia
cells to apoptosis induction by ABT-737 in vitro. In vivo, combination
therapy effectively decreased tumor burden and prolonged median
survival.

(185)

Orlistat Preclinical CLL Lipase fludarabine Lipase inhibitor orlistat induced apoptosis and impeded the proliferation
of CLL cells. Simultaneous incubation with fludarabine enhanced the
cytotoxic effects of orlistat.

(186)

Enasidenib Approved
for AML

AML mutant
IDH2

None Among patients with relapsed or refractory AML, the ORR was 40.3%.
Median OS was 9.3 months in 176 patients and 19.7 months in 34
patients with CR. In 130 patients with IDH2-R140 mutations, ORR was
35.4% while ORR was 53.3% in 45 patients with IDH2-R172
mutations.

(187)
NCT01915498

Ivosidenib Approved
for AML

AML mutant
IDH1

None The CR plus CRh rate was 42.4% in 34 patients newly diagnosed with
AML. Median OS was 12.6 months while the estimated 12-month OS
rate was 51.1%. Ivosidenib monotherapy was well-tolerated.

(188)
NCT02074839
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glucose transporter 4; HK2, hexokinase-2; G6PD, glucose-6-phosphate dehydrogenase; PKM2, pyruvate kinase isozymes M2; LDH, lactate dehydrogenase; MCT, monocarboxylate
transporters; ASCT2, glutamine transporter encoded by Solute Carrier Family 1 Member 5 gene; GLS, glutaminase; IDO, Indoleamine-pyrrole 2,3-dioxygenase; CPT1, carnitine
palmitoyltransferase I; IDH, isocitrate dehydrogenase; CR, Complete remission; CRh, CR with partial hematologic recovery; OS, overall survival; PFS, Progression-free survival; SD, Stable
disease; CCR, Complete remission rate; ORR, Overall response rate; MRD, Measurable residual disease; AE, Adverse event.
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clinical results concerning glycolysis-related inhibitors to cure
leukemia are rare up to now so far. The bio-safe and efficacy of
glycolysis-related inhibitors for leukemia treatment are eager to
explore clinically.

Targeting Amino Acid Metabolism
The current development of targeted agents against glutamine
metabolism of cancer cells focuses on membrane glutamine
transporter inhibition, GLS inhibition, and glutamine depletion.
ASCT2 mediates the entry of glutamine and other amino acids
into cells. ASCT2 inhibitor GPNA showed potential in decreasing
survival and promoting apoptosis of AML cells in vitro. In AML
mice, GPNA treatment effectively suppressed leukemia
progression. Attenuated splenomegaly and hepatomegaly, and
reduced AML cells infiltration were observed. Notably, the
impact of GPNA on normal blood cell formation was limited
(128). As a selective and irreversible inhibitor of GLS, CB-839 has
shown ideal antileukemia effects on AML and ALL cells in vivo
(129). Furthermore, a completed phase I clinical trial also
evidenced the potential role of CB-839 to combat leukemias
(NCT02071927) (179). Eighteen patients, including AML (n=16),
ALL (n=1) and mixed leukemia (n=1), were enrolled in this trial.
Results showed that CB-839 was well tolerated in advanced
leukemia patients. One AML patient achieved a complete
remission (CR) and has been on study for more than 10
months, while four additional patients remained on study for
at least 12 weeks. Another Phase Ib/II clinical trial has
demonstrated that CB-839 is safe and effective in combination
with azacitidine in patients with advanced myelodysplastic
syndrome (MDS) (NCT03047993) (91). Among ten patients
with MDS, seven patients achieved CR, two patients had stable
disease (SD), while one patient had no response, suggesting that
GLS inhibition may induce a robust effect against hematopoietic
malignancies synergetically when combining with other
conventional treatments.

Asparaginase has been approved by FDA as the frontline
therapeutic agent used in ALL. A previous clinical trial revealed
that 357 patients with ALL reached a 68% of four-year
continuous CR rate after receiving asparaginase treatment,
while the rate was only 55% in patients without asparaginase
(180). The overall one-sided logrank test favors the asparaginase
group over the control in ALL treatment. Toxicities related to
asparaginase were manageable.

Many types of cancer cells, including AML disease, depend on
the exogenous supply of arginine due to the defects in arginine
synthetase (189, 190). Therefore, arginine depletion is a possible
therapeutic option for leukemia cure. A phase II clinical trial
reported that two patients reached CR while seven patients
achieved SD among 21 argininosuccinate synthetase (ASS)-
deficient AML patients after receiving arginine deiminase (ADI-
PEG20) (NCT01910012) (181). The median progression-free
survival (PFS) and overall survival (OS) were 1.8 months and 7.9
months, respectively. Clinical outcomes and further transcriptome
sequencing implied that ADI-PEG20 monotherapy is required but
not sufficient for ASS-deficient leukemia treatment. A rational
combination with other targeted or conventional drugs may
improve the efficacy of the antileukemia response as a whole.
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Recently, another phase I study combining ADI-PEG20 and low-
dose cytarabine for the treatment of AML has completed and
encouraging outcomes have been observed (NCT02875093) (182).
Results revealed that the overall response rate (ORR) in 18 patients
was 44.4%, with a median OS of 8.0 months. In seven treatment-
naive patients, the ORR was 71.4% and the CR rate was 57.1%.
Moreover, patients suffered limited fatal side effects after receiving
the combination of ADI-PEG20 and cytarabine. Taken together,
ADI-PEG20 shows the superior clinical performance when
cooperating with conventional clinical agents for AML therapy,
and the underlying mechanism of combination warrants
further explorations.

Increased IDO activity results in T cells inactivation and
immunosuppression (191). Even though IDO inhibitors are
mainly being tested in solid tumors, clinical trials have also
started to test this potential biomarker in AML (NCT02835729)
(183). Among 25 AML patients who received more than one
dose of indoximod, a small-molecule inhibitor of the IDO
pathway, 21 AML patients attained disease remission.
Furthermore, ten patients experience measurable residual
disease (MRD) negative among twelve patients with MRD
available in remission. When combining with standard AML
induction therapy, indoximod is well tolerated. These promising
results indicated that indoximod could serve as an ideal targeted
agent to combat leukemia by inhibiting IDO activity.

Targeting Fatty Acid Metabolism
To meet the exquisite demands of cell growth and proliferation,
leukemia cells exhibit high dependence on FA metabolism,
making it possible to target this metabolic vulnerability to
eliminate leukemia cells (192). Currently, FAO inhibitors are
being tested in preclinical trials. Imatinib induces the
inactivation of BCR-ABL, thereby suppressing glycolysis in CML
cells. However, compensatory FAO activation rescued glucose-
independent CML cells’ survival after imatinib treatment. AIC-47
suppressed the expression of CPT 1 and directly fatty acid
metabolism, contributing to the complementary attack on CML
energy metabolism when combining with imatinib (184).
Moreover, another CPT 1 inhibitor, etomoxir, has been reported
to exhibit significant antiproliferative effects on AML cells and
sensitize AML cells to apoptosis induced by ABT-737 in vitro
(185). Although FAO inhibitors have not been practiced clinically,
preclinical studies already reveal the feasibility of appliance of
FAO inhibitors in leukemia treatment.

In CLL, LPL has been identified as a specific biomarker, which
indicates an unfavorable prognosis in patients (193, 194). Via
targeting LPL molecule, orlistat induced apoptosis of CLL cells,
while limited cytotoxicity was demonstrated in healthy B cells
and peripheral blood mononuclear cells (186). Moreover, the
antileukemia effects of orlistat on CLL cells strengthened when
incubated with fludarabine, simultaneously.

Targeting Isocitrate Dehydrogenase
Mutation
Retrospective studies claim that the IDH mutation was
associated specifically with a poorer prognosis in AML (195–
197). Currently, ivosidenib and enasidenib, inhibitors of IDH1
November 2021 | Volume 11 | Article 767026

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Soltani et al. Metabolic Pathways in Hematological Malignancies
and IDH2, have become the first FDA-approved metabolism
targeting drugs for AML. In a phase I/II trial, the efficacy of
enasidenib was examined in patients with mutant-IDH2
advanced myeloid malignancies (187). The median overall
survival among patients with relapsed/refractory AML was 9.3
months while patients who reached CR or partial remission had
a median survival of 19.7 months or 14.4 months, respectively.
The ORR for all relapsed/refractory AML patients was 40.3%,
with a median response duration of 5.8 months. This study
proved that daily enasidenib therapy induces antileukemia
responses and is well-tolerated in patients who failed in
conventional treatment previously. Ivosidenib, a mutant IDH1
specific inhibitor, has been evaluated in a phase I trial
(NCT02074839) (188). Thirty four patients with AML were
enrolled in this trial and their median overall survival was 12.6
months with a median follow-up period of 23.5 months. CR plus
CR with partial hematologic recovery rate was 42.4%. The most
commonly reported therapy-related serious adverse event was
IDH differentiation syndrome. These results demonstrated that
enasidenib and ivosidenib induce durable remissions and are safe
in mutant IDH AML treatment.
CONCLUSION AND PROSPECTIVES

In this review, we summarized the alteration of metabolic events
supplementing building blocks and energy for rapid proliferation,
drug resistance, self-renewal, etc. during leukemogenesis. Deep
explorations into leukemia metabolomics have extended a novel
therapeutic path through which targeting leukemia metabolic
vulnerabilities exerts prominent antileukemia effects.
Furthermore, the importance of cross-talk between leukemia
cells and immunocytes has been highlighted in the text,
especially under complicated BMM conditions. Since
metabolism participates in immunological regulation and
Frontiers in Oncology | www.frontiersin.org 12
usually results in an immunosuppressive microenvironment
favoring the occurrence and development of leukemia cells,
metabolic interventions could serve as a potential option to
improve immune response toward leukemia, particularly when
combined with immune regulatory agents. Although clinical
benefits were evidenced in patients with leukemia by targeting
metabolic molecules, the effectiveness is still far from satisfying
and cytotoxic side effects are still unignorable. Thus, exploring
leukemia-specific metabolic dependencies to identify potential
biomarkers with limited toxicities toward normal cells will be
the future research focus. Moreover, different subsets of leukemia
cells harbor individual genetic and biological features, therefore
exhibiting different metabolism mechanisms, which means
targeting metabolic vulnerabilities should be subgroup-specific,
even individual-specific, to achieve the greatest effect. The
application of accurate metabolic targeting requires sophisticated
new techniques to elucidate the complexity and dynamicity of
remodeling of metabolic wiring. Additionally, LSCs are
hypothesized to be responsible for the conventional treatment
resistance and leukemia relapse. Compared with normal leukemia
cells, LSCs reveal a different metabolic preference, emphasizing
that a comprehensive understanding of the metabolic status of
LSCs will also provide us novel insights into therapy against drug-
resistant or relapsed leukemia. Last but not least, a rational
combination therapeutic strategy, for instance, integrating
targeted agents related to metabolic pathways and conventional
chemotherapies, is worth further exploration clinically and may
improve the cure rate of leukemia comprehensively.
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