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Infants suffering from neonatal chronic lung disease, i.e., bronchopulmonary dysplasia,

are facing long-term consequences determined by individual genetic background,

presence of infections, and postnatal treatment strategies such as mechanical ventilation

and oxygen toxicity. The adverse effects provoked by these measures include

inflammatory processes, oxidative stress, altered growth factor signaling, and remodeling

of the extracellular matrix. Both, acute and long-term consequences are determined

by the capacity of the immature lung to respond to the challenges outlined above.

The subsequent impairment of lung growth translates into an altered trajectory of lung

function later in life. Here, knowledge about second and third hit events provoked

through environmental insults are of specific importance when advocating lifestyle

recommendations to this patient population. A profound exchange between the different

health care professionals involved is urgently needed and needs to consider disease

origin while future monitoring and treatment strategies are developed.

Keywords: neonatal chronic lung disease, bronchopulmonary dysplasia, lung aging, inflammation, mechanical

ventilation, oxygen toxicity, lung function, preterm infant

DISEASE CHARACTERISTICS AND PREDISPOSITIONS

As the most common chronic lung disease in infants, Bronchopulmonary Dysplasia (BPD)
is associated with long-term sequelae that persist into adulthood (1, 2). Despite significant
improvements in perinatal care, i.e., surfactant and antenatal corticosteroid treatment together with
improved ventilation strategies, the incidence of BPD has remained unchanged or even increased
amongst the most immature infants (3). This is presumably due to a significant reduction of
mortality rates together with an increase in the overall number of treated infants born significantly
premature. The varying incidence of BPD between newborn care centers closely reflects differences
in patient population and infant management practices (4–7). Recent publications report an
incidence of BPD of up to 68% in very low birth weight infants (401–1,500 g) born prior to 29
weeks of gestation, or up to 77% in infants born at <32 weeks of gestation with a birth weight
below 1 kg (5, 8, 9), with numbers predominantly derived from high-income countries.
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The disease is classified into three different severity grades
(mild, moderate, severe) according to the need for supplemental
oxygen and/or ventilator support for >28 days of life, or beyond
36 weeks postmenstrual age (PMA) (2). Environmental insults
associated with preterm birth sum up to sustained inflammation
and extensive matrix remodeling resulting in substantial changes
to the scaffold provided for the developing organ in concert
with functional abnormalities as a consequence of diffuse
fibrotic changes and increased smooth muscle hypertrophy in
small pulmonary arteries and airways (10). The characteristic
histopathologic changes of impaired alveolarization and
vasculogenesis (2) are clinically mirrored by signs of impaired
respiratory gas exchange, i.e., alveolar hypoventilation with
resultant hypercapnia and hypoxemia leading to a mismatch of
ventilation and perfusion (11).

Large clinical trials have identified numerous risk factors for
the development of BPD, including congenital and nosocomial
infections, mechanical ventilation, and oxygen toxicity (12–17).
Poor nutritional support, vitamin deficiency as well as insufficient
adrenal and thyroid hormone release in the very premature infant
further increase the risk after birth (18–20). Prenatal risk factors
influence the capacity of the developing lung to respond to these
injuries. Preeclampsia is known as an independent risk factor
not only for preterm delivery, but more importantly also for
BPD, despite its underlying molecular mechanisms remaining
elusive (21, 22). Intrauterine growth retardation increases the
risk of BPD 3- to 4-fold (23–27), most likely through their
impact on altered growth factor signaling and subsequently
impaired alveolar and vascular development (28). Exposure
to prenatal smoke, although largely underestimated, has been
shown to significantly contribute to disease development,
potentially beyond growth restriction (29, 30), and even the
prenatal application of established therapeutic measures has to
be critically reviewed. Here, antenatal betamethasone, despite
its broad prenatal application to enhance lung maturation
and to prevent respiratory distress while reducing BPD rates
(31, 32), has been shown to increase indicators of lipid
membrane peroxidation (33). This word of caution is in line with
observations on behalf of postnatal dexamethasone treatment,
where adverse effects on cardiac function, life expectancy, and
neurologic development have been observed (34, 35). The broad
use of antenatal maternal antibiotic treatment on the other hand
not only significantly affects the bacterial flora of the child (36)
but leads to sustained alterations of immune functions, e.g., in
the response of invariant natural killer T cells, as indicated by
studies in mice (37). Although prenatal exposure to smoke and
antibiotics were shown to provoke lung changes on themolecular
level as shown by studies in mice, further investigations are
needed in order to establish these risk factors clinically, as prior
published data from preterm infants are inconsistent (38, 39).

With regard to the genetic background impacting on
the clinical course, prior work demonstrates that gene
polymorphisms account for 53% of the variance in BPD
(40). Identified genetic abnormalities include mutations in genes
associated with surfactant biogenesis, innate immune response
(41, 42), and superoxide dismutase (43), with details of the
possible pathophysiology explained in the paragraphs below.

The higher risk for the development of BPD and pulmonary
arterial hypertension (PAH) in male preterm infants (44) has
been associated with differences in hormonal regulation (45),
although longer term, females with a history of BPD seem to be
more severely affected (46).

FROM CAUSE TO CONSEQUENCE:
BIOLOGICAL PROPERTIES, PULMONARY
STRUCTURE, AND LUNG FUNCTION

Inflammation and Oxidative Stress
Response
The sustained inflammatory processes that characterize BPD
are caused by pre- as well as postnatal mechanisms with key
players highlighted in the paragraph above. Both, infections as
well as the corresponding immature immune response play an
important role in the initiation and perpetuation of inflammatory
processes characterizing and driving BPD development (14, 47–
49). Perinatal processes, e.g., the fetal inflammatory response
syndrome (FIRS), chorioamnionitis, or their development into
congenital and nosocomial infections results in neutrophil
influx into the immature lung, with an increased number of
monocytes and macrophages during the so called “second wave”
of inflammation (27, 50, 51). Here, specific pathogens such as
Gram-negative bacteria play an important role, clearly increasing
the risk for neonatal chronic lung disease (52). Later nosocomial
infections are caused by a different, “non-maternal” spectrum
of pathogens (e.g., Staphylococcus epidermidis, Escherichia coli)
that are likewise associated with BPD development (53, 54).

Postnatally, non-infectious causes such as baro- and
volutrauma during mechanical ventilation in concert with
the effects caused by moderate or severe hyperoxia further
contribute to or even initiate the inflammatory processes
locally and on a systemic level (55–58). Ongoing studies
addressing the debate, whether recruitment of inflammatory
cells to the injured lung or activation of resident cells are
primarily responsible to start and drive the vicious circle
of inflammation (59–62) will give important insight for
mechanistic understanding and development of targeted
therapies. At the same time, extracellular matrix (ECM)
remodeling itself further promotes lung inflammation
through the release of proteases and inflammatory
mediators such as transforming growth factor beta (63–
65). The regulation of NF-kB signaling in inflammatory
processes (66) and its lately discovered role in alveolo- and
vasculogenesis that may even bear therapeutic potential
(67, 68) demonstrate the close relation of lung inflammation
during organ development to fundamental and long-lasting
structural changes.

The degree of lung inflammation and ECM remodeling as
well as early alveolar epithelial dysfunction is directly related
to the cellular capacity to respond to postnatal environmental
challenges. The relative deficiency of antioxidants and inhibitors
of proteolytic enzymes render the immature lung especially
vulnerable to the effects of inflammatory mediators and toxic
oxygen metabolites (69–72). Different markers have been

Frontiers in Medicine | www.frontiersin.org 2 May 2021 | Volume 8 | Article 665152

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Sucre et al. Lung Aging Following Bronchopulmonary Dysplasia

investigated to indicate enhanced oxidative stress in the preterm
infant. Elevated urinary malondialdehyde concentrations in the
first week of life, generated by peroxidation of lipid membranes
after oxidant-mediated injury, were correlated with the risk
for oxygen radical diseases including BPD (33). In a murine
model, reduced superoxide dismutase 3 (SOD3) in reaction
to postnatal hyperoxia was associated with alveolar injury,
whereas overexpression of SOD3 attenuated hyperoxic injury
in an alveolar epithelial cell line (73). Decreased pulmonary
antioxidant concentrations have also been measured in the
lavage of preterm infants (74). In line with this, intratracheal
application of recombinant human CuZn superoxide dismutase
at birth improved pulmonary outcome in high-risk premature
infants at 1 year corrected age (75). Studies indicated that
adolescent BPD patients have evidence of heightened oxidative
stress in the airway, suggesting that long-term respiratory
abnormalities after preterm birth align with sustained alterations
of the oxidative stress response (76). These effects might even
translate into altered responses to viral infections in later
life (77).

The increased susceptibility of the developing organ to
environmental challenges and the induction of long-term
consequences are supported by the observation that significant
maturational differences exist between neonatal and adult lung
cells in response to lung injury. While chronic oxygen exposure
(60% for 14 days) enhances lung vascular and airway smooth
muscle contraction and reduces nitric-oxide relaxation in the
neonatal rat lung, the opposite occurs in adults (78). In line with
the observations obtained in neonatal mice, long-term effects of
hyperoxia exposure in the first week of life (100% for 4 days)
include increased mortality associated with pulmonary vascular
disease and the development of right ventricular strain and
PAH in mice (79). The alteration of bone morphogenic protein
(BMP) signaling likely contributes to this adult lung phenotype.
Other mechanisms explaining the increased susceptibility to
injury and the subsequent likelihood of long-term effects
observed in the newborn lung are suggested from studies by
Balasubramaniam et al. showing that hyperoxia reduces bone
marrow derived, circulating, and lung endothelial progenitor
cells in the developing organ in contrast to adult mice (80),
indicating early exhaustion of repair and regeneration capacities.
The risk for long-term effects is furthermore mitigated by
the affection of central processes such as cell cycle regulation,
i.e., upregulation of P21 by hyperoxia exposure together with
decreased histone deacetylase activity (81). The studied effects
of excessive oxygen exposure on DNA methylation further
contribute to the picture of accumulating damage in the
face of reduced compensatory mechanisms in the immature
lung (82).

The outlined injury effects ultimately result in the impairment
of lung growth based on significantly imbalanced growth
factor signaling. Orchestrating the interaction of the epithelial,
mesenchymal, and endothelial cell compartment during the fine-
tuned development of the gas exchange area, Notch andWingless
Int-1 (Wnt), the fibroblast and platelet derived growth factor
(FGF, PDGF) as well as the BMP and the vascular endothelial
growth factor (VEGF) play a critical role (83–89).

Morphogenetic Changes to the Pulmonary
Cellular and Extracellular Matrix
The release of cytokines such as the transforming growth factor
(TGF) –β, tumor necrosis factor (TNF) alpha and interleukins,
e.g., IL-1beta in response to lung inflammation and subsequent
events such as ECM remodeling and cellular injury significantly
contributes to the imbalance in growth factor signaling and
leads to the activation of different transcription factors enhancing
apoptosis in numerous cell types (90–92). The interference with
these transcription factors disrupts normal lung morphogenesis
(67) and drives the onset of chronic bronchial inflammation
and subsequent pulmonary emphysema in the adult organ (93).
In the developing organ, the altered regulation of transcription
leads to long-term effects such as the impairment in alveolar and
vascular development resulting from nuclear factor kappa B (NF-
kB) suppression (66, 68, 94), unequivocally linking key processes
in BPD development such as infection and inflammation with
altered growth factor signaling and transcriptional regulation.
The characteristic co-existence of defective alveolar and capillary
formation is determined by impaired angiogenic growth factor
signaling (67) and ultimately results in sustained vascular disease,
inmany cases presenting as PAH and/or impaired lung lymphatic
drainage (95, 96). The typical reduction in pulmonary expression
levels of VEGF and its receptors (97–99), accompanied by
diminished endothelial nitric oxide synthase (eNOS) and soluble
guanylate cyclase (sGC) in lung blood vessels and airways (100,
101) reflects the expression pattern observed in aged mice (102)
and likely contributes to the reduced plasticity of lung capillaries
(103). Treatment with recombinant human VEGF during or after
hyperoxia exposure improved not only vessel growth but also
alveolarization in the lungs of newborn rats (104).

Both direct effects of shear stress, oxygen toxicity,
inflammation, and hormonal regulation as well as subsequent
impairment of growth factor signaling alters critical events
in endoderm to mesoderm transition and myofibroblast
proliferation and leads to severe alterations of the pulmonary
scaffold (105, 106). Increased matrix remodeling characterized
by the greater abundance and abnormal distribution of
elastin together with the deformation of collagen scaffolding
has been demonstrated in humans and animal models
(107–109). The degradation of lung elastin is indicated by
e.g., increased urinary excretion of desmosine, preceded,
and paralleled by increased elastase activity (110–112).
Desmosine, a breakdown product of the mature elastic
fiber was found to predict disease severity and outcome
in adult patients with acute respiratory distress syndrome
(ARDS) (113), indicating the importance of the delicate
balance of proteases and their inhibitors. Complicating the
definition of friend or foe in the developing organ, the
presence of elastases including metalloproteinase activity
is crucial as evidenced by studies showing that complete
matrix-metalloproteinase deficiency promotes lung remodeling
resembling BPD (114).

The significant changes to the structural integrity of the ECM
not only affect its function as a scaffold for the formation of
alveoli and capillaries but as well-reveal a significant memory
function through defining the fate of cells populating the
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developing organ (115, 116). The sustained and irreversible
reorganization will furthermore result in long term effects with
regard to the lung’s repair and regeneration capacity, its potential
for immune cell interaction, thereby determining its coping with
environmental challenges, exacerbation episodes and physiologic
aging (117, 118).

Short and Long-Term Pulmonary Function
in Preterm Infants With BPD
With increasing survival of infants with BPD, attempts to
minimize long-term pulmonary impairment (and associated
neurologic complications) has become the main focus of
perinatal care (119, 120). Nonetheless, respiratory symptom
presentation and suboptimal lung function are manifesting in
adult life, and where detected, can be misclassified as more
common respiratory diagnoses such as asthma or COPD,
particularly if the early life events are not known or asked about
(121, 122). In many cases, respiratory disease is not detected until
acute presentation or much later in life. As respiratory function
serves as a good predictor of later morbidity and mortality (123),
knowledge about early changes seems crucial.

After birth, early pulmonary dysfunction is characterized by
diminished lung compliance, tachypnea, and increased minute
ventilation resulting in increased work of breathing with or
without subsequent oxygen dependency. This clinical picture can
be accompanied by an increase in lung microvascular filtration
pressure that may lead to interstitial pulmonary edema as
shown in animal experiments (124). The increased lung vascular
resistance, typically associated with impaired responsiveness to
inhaled nitric oxide and other vasodilators, can progress to
reversible or sustained PAH and right heart failure (95, 96). Early
measurement of lung function provides prognostic information
and has shown that postnatal development of severe lung disease
more likely develops into chronic disease at term (125). At this
time point BPD infants present with increased respiratory tract
resistance and hyper-reactive airways (126), subsequently leading
to frequent episodes of bronchoconstriction and cyanosis after
discharge often resulting in hospital readmission. The proportion
of underlying vascular disease playing a role in these clinical
manifestations beyond the effects caused by the Euler-Liljestrand
mechanism (hypoxic pulmonary vasoconstriction) often remains
unclear as sensitive diagnostic tools are missing (127).

In the later course following discharge, infants with BPD may
remain oxygen dependent for months or years, although only a
minority remains oxygen dependent beyond 2 years of age (128,
129). Oxygen dependency indicates the most severe lung disease,
as these infants require hospital readmission twice as often in
comparison to infants without home oxygen therapy. However,
even after having outgrown oxygen dependency, patients with
moderate or severe BPD still require outpatient clinic visits,
readmissions, and medication in up to 70% of the cases and
30% need three readmissions in the first 2 years of life (130).
A major predictor for readmission due to respiratory causes or
the need for subsequent mechanical ventilation is the pCO2 at
discharge (131). After the second year of life, hospitalization rates
decline (132). Related to prematurity beyond BPD status, lower

respiratory tract infections resulting from respiratory syncytial
virus remain the major cause for readmission amongst preterm
infants (133).

In the later course of disease, BPD is a significant risk factor for
persistent wheeze and the need for inhalation therapy (odds ratio
2.7 and 2.4, respectively) affecting about 20–30% of infants with
BPD at 6 and 12 months of age (134, 135). Respiratory symptoms
remain common at preschool and school age (128, 136). Up to
80% of preterm infants, particularly those who presented with
wheezing, demonstrate airway obstruction in early childhood
and adolescence, the majority of whom are symptomatic (137–
139). Important data on long-term pulmonary function in BPD
patients were generated by the EPICure study (140), showing
significantly lower peak oxygen consumption, forced expiratory
volume at 1 second (FEV1) and gas transfer for those born
extremely premature at school age when compared to age
matched controls, not considering BPD status. Mean difference
in FEV1 sum up to a total of 600ml when comparing infants with
extreme prematurity at birth and the respective healthy controls.
Significantly lower peak workload and higher respiratory rates
in combination with lower tidal volumes during peak exercise
and increased residual capacity in these infants may reflect the
effect of hyperinflation due to airway obstruction and/or altered
pulmonary chemoreceptor function, and suggest the presence
of persistent airflow limitations and reductions in alveolar
surface area.

In most severe cases symptoms either persist into adulthood
(141) or show transient “improvement” reflected by the absence
of symptoms, later resulting in the “reappearance” of disease
as a consequence of lung function decline below a clinical
(or individual) threshold when the disease associated reduction
in lung volume and function is met by aging processes or a
newly occurring mismatch of the lung-body mass ratio and/or
energy expenditure. Altered lung volumes and decreased gas
mixing efficiency in BPD has been confirmed by various studies,
reflecting abnormalities in lung growth (142, 143), resulting
in suboptimal airway function (judging from impaired FEV1
and FEV1/forced vital capacity) in young adults (144, 145),
also manifesting in suboptimal exercise capacity (145). While
a diverging path in lung growth during adolescence according
to spirometric measures was reported by one group (144),
the EPICure study revealed no catch-up of the suboptimal
lung growth from 11 to 19 years in adolescents following
extreme prematurity irrespective of BPD status and even showed
significant impairment in all lung function parameters in 19
year old patients born extremely premature (145). Meanwhile,
Vollsaeter et al. reported parallel trajectories of lung function in
early adult life (146), reflecting the overall need for more robust
and contemporaneous studies.

Taken together, the functional data available suggest that
early lung injury in preterm infants leads to abnormalities in
lung function (and immunity) in infancy and early childhood
with significant pulmonary problems persisting in the most
severely affected infants. The predisposition for lung function
decline in adult survivors of preterm birth is suggested by
data obtained in early and later adulthood with lung function
measurements in infancy being an important predictor for later
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FIGURE 1 | Overview over influencing factors and molecular mechanisms in BPD development with a focus on long-term consequences.

lung disease and the risk for (early) lung function decline. If
performed during infancy and childhood, pulmonary function
tests have the potential to identify individuals at risk of long-
term respiratory sequelae and will help to elucidate the impact
of secondary injuries, e.g., first and second hand smoke as well
as viral infections on this trajectory (147). Importantly, lung
function has to be interpreted in the context of the era in
which BPD was diagnosed, thus taking both the underlying
BPD definition as well as the standards of perinatal care into
account (2, 148, 149).

CONCLUSION

To conclude, the unique response of the developing lung to
early postnatal injury is characterized by sustained inflammatory
processes, ECM remodeling and a pronounced alteration
in growth factor signaling that ultimately results in the

characteristic histopathologic picture of impaired alveolar and
vascular development. These processes are critically determined
by the pulmonary capacity to respond to and compensate
for environmental challenges inducing oxidative stress and
imbalance in growth factor signaling (Figure 1). We now
understand that the effects provoked through early organ injury
lead to a characteristic response to challenges later in life and
an altered lung function trajectory due to differences in the
pulmonary aging process. Subsequently, treatment strategies and
life-style recommendations advocated to this patient population
need to acknowledge the pulmonary “memory” effects that
results from early injury as well as later disease characteristics and
co-morbidity development (150, 151). Therefore, pediatricians,
primary care physicians and adult pulmonologists need a close
and iterative knowledge exchange to adequately address these
topics, including the role of second and third hits in lung function
decline (152, 153).
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