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Research on molecular targeted therapy of tumors is booming, and novel targeted
therapy drugs are constantly emerging. Small molecule targeted compounds, novel
targeted therapy drugs, can be administered orally as tablets among other methods,
and do not draw upon genes, causing no immune response. It is easily structurally
modified to make it more applicable to clinical needs, and convenient to promote due to
low cost. It refers to a hotspot in the research of tumor molecular targeted therapy. In the
present study, we review the current Food and Drug Administration (FDA)-approved use
of small molecule targeted compounds in tumors, summarize the clinical drug resistance
problems and mechanisms facing the use of small molecule targeted compounds, and
predict the future directions of the evolving field.
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INTRODUCTION

The tumor is a neoplastic proliferation of the abnormal cells of the body formed. Usually, it is
abnormal tissue mass on parts of the body. It refers to a new organism generated by abnormal
proliferation and the differentiating process of body cells based on a range of initiating and
promoting elements. If new organisms develop, they continue to proliferate since the restraints
are eliminated. Its growth accepts no normal physiological regulation, while damaging normal
tissues and organs. From the perspective of the progression of tumor occurrence and development,
the difficulties of the tumor treating process are elucidated below. (1) The etiology of primary
tumors remains unclear, and tumors are unlikely to be cured completely. (2) Specific to one
group of uncontrolled, infinitely proliferating cells, during their proliferation, the structure and
function of normal tissues and organs will be destroyed, and the normal physiological function of
the body will be affected. For instance, the immune function of most cases subject to malignant
tumors will be reduced to various degrees, causing the body’s immune system to be unable to
initiate the regular immune program for the tumor’s inhibiting process. (3) The treating process
of the tumor cannot be ended only by the patient’s recent recovery after his treating process,
since the tumor is significantly prone to relapse and metastasis, and an active treating process is
required during its occurrence. On the whole, the treating process of a malignant tumor consists
of the surgical treating process, chemotherapeutic process, radiotherapy, immunotherapy, etc.
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(Wyld et al., 2015; De Ruysscher et al., 2019; Heinhuis et al.,
2019; McLaughlin et al., 2020). The specific treating process plan
should be discussed under the diagnosis and treating process
mode with the participation of multiple doctors. It should be
taken and determined given the nature of the tumor, stage, and
the patient’s systemic state.

The new drug developing process shifts its focus to identify
molecules and target carcinomas. Carcinoma therapeutic process
can be targeted primarily by small molecules and antibodies
(Diesendruck and Benhar, 2017; Huck et al., 2018). Antibodies
usually exhibit high selective properties. Nevertheless, their aims
fall generally into the restriction of the cell surface and are
unable to exert drug effect in the membrane. In addition,
antibodies should be injected intravenously or subcutaneously for
their high molecular weight (e.g., molecule weight of antibody
PD-1 Pembrolizumab is 146.286 KD, molecule weight of PD-
1 inhibitor BMS-1 is 475.58) and influence of gastrointestinal
enzymes on protein digestion. As opposed to those mentioned,
small molecule targeted compounds have different selective
properties and, due to their small sizes (molecule weight
<1000), are capable of binding to various intracellular and
extracellular aims orally (Moroz et al., 2016; Wu et al.,
2016; Roskoski, 2020). Here, we selected 103 anti-cancer small
molecule targeted compounds (Table 1) from the U.S. Food and
Drug Administration (FDA) approved drugs to treat cancer1.
Many of mentioned approvals have shown advantages compared
with the cytotoxic chemotherapeutic process, with fewer side
influences from the critical treating process inside a recurrence or
metastatic environment. Moreover, there are instances regarding
small molecule targeted compounds gaining the approval to treat
residual disease or as adjuvant therapeutic processes based on
therapeutic intent. This review will review the current FDA-
approved use of small molecule targeted compounds in tumors,
summarize the clinical drug resistance problems and mechanisms
facing the use of molecular inhibitors, and predict the future
directions of the evolving field.

CLASSIFICATION OF SMALL MOLECULE
TARGETED COMPOUNDS

The principle of small molecule targeted compounds is to
target the molecular biology basis of tumorigenesis, usually to
regulate the activity of protein targets. Depending on the type
of target, small molecule targeted compounds play different
roles. At present, the protein targets of small molecule targeted
compounds mainly include enzymes, and receptors. Small
molecule targeted compounds can be divided into receptor
agonists and receptor antagonists while acting on the receptor.

Enzyme Inhibitor
Small molecules that act as inhibiting elements of enzymes
reduce their catalytic activity by binding to them. Sunitinib
and Sorafenib refer to prototypic instances of small molecule
multikinase inhibitors (Ito et al., 2019; Procopio et al., 2019;

1https://www.cancer.gov/about-cancer/treatment/drugs

Verschuur et al., 2019; Zahoor et al., 2019; Mammatas et al.,
2020; Ruanglertboon et al., 2020). Consistent with most agents
pertaining to the mentioned class, these two drugs suppress
PDGFR-α, KIT, VEGFR2, and VEGFR1 in various targets.
Sunitinib is a multi-target RTK inhibitor, targeting VEGFR2,
and PDGFRβ, which also inhibits c-Kit (Mendel et al., 2003).
Sunitinib is approved to treat adults with gastrointestinal
stromal tumor, pancreatic neuroendocrine tumor and renal
cell carcinoma (RCC). A multinational, randomized, double-
blind, placebo-controlled phase 3 trial evaluated the clinical
effect of Sunitinib in patients with advanced, well-differentiated
pancreatic neuroendocrine tumors. The median progression-
free survival (mPFS) was 11.4 months in the Sunitinib group
versus 5.5 months in the placebo group. The objective response
rate was 9.3% of the Sunitinib group and 0% of the placebo
group. Clinical trial results show that Sunitinib improves the
mPES and objective remission rate (ORR) of patients with
pancreatic neuroendocrine tumors. Clinical trial results show
that Sunitinib improves the mPES and ORR of patients with
pancreatic neuroendocrine tumors. The adverse reactions caused
by Sunitinib in the experiment were diarrhea, nausea, vomiting,
weakness, and fatigue (Raymond et al., 2011).

Sorafenib is applied in renal cell cancer, hepatocellular
carcinoma and thyroid cancer, based on FDA approval. Sorafenib
is a multikinase inhibitor of Raf-1, B-Raf, and VEGFR (Wilhelm
et al., 2004). In addition to inhibiting the RAF/MEK/ERK
signaling pathway, Sorafenib tosylate significantly inhibits the
phosphorylation of eIF4E and down-regulates the level of Mcl-1
in liver cancer (HCC) cells in a MEK/ERK-dependent manner,
and induces significant apoptosis (Liu et al., 2006). Due to
factors such as hepatitis B virus infection, the incidence of liver
cancer remains high in the Asia-Pacific region (Petrick et al.,
2016). The application of Sorafenib in liver cancer is prevalent.
Therefore, the clinical effect of Sorafenib in patients in the Asia-
Pacific region is an important issue. A phase III randomized,
double-blind, placebo-controlled trial in patients of the Asia-
Pacific region with advanced hepatocellular carcinoma evaluated
the efficacy and safety of Sorafenib. A total of 271 patients from
China, South Korea, and Taiwan was enrolled in the study.
Finally, the median overall survival (MOS) of the sorafenib
treatment group was 6.5 months, and that of the placebo group
was 4.2 months. The median time to progression was 2.8 months
in the Sorafenib group and 1.4 months in the placebo group. The
most common grade 3/4 drug-related adverse events were hand-
foot skin reactions (10.7%), diarrhea (6.0%), and fatigue (3.4%),
and these adverse events rarely lead to discontinuation (Cheng
et al., 2009). Dose-restricting toxic influences are consistent
in such a drug class and receive the predominant motivation
through the VEGFR inhibiting process. One subset of carcinomas
is significantly addicted to one oncogene or certain molecular
defects capable of exploiting channels selectively (e.g., those
impacting DNA repairing or apoptotic process). Selection-related
small molecule targeted compounds are capable of effectively
antagonizing the expected aim and eliminating the off-aim
inhibiting process, probably causing dose decrease or reduction
of intolerable side-influences. EGFR inhibitors (e.g., Gefitinib
and Erlotinib) received the initial development with no single
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TABLE 1 | The application of small molecule targeted compounds in tumors.

Compound name Indication of tumor type Target

Erdafitinib Urothelial carcinoma FGFR

Everolimus Breast cancer, Pancreatic cancer, gastrointestinal cancer,
gastrointestinal cancer, and lung cancer, Subependymal giant
cell astrocytoma, Renal Cell Cancer

mTOR

Abemaciclib Breast cancer CDK4/6

Alpelisib Breast cancer PI3Kα

Anastrozole Breast cancer Aromatase

Exemestane Breast cancer Aromatase

Toremifene Breast cancer Estrogen receptor

Fulvestrant Breast cancer Estrogen receptor

Letrozole Breast cancer Estrogen receptor

Palbociclib Breast cancer CDK4/6

Ribociclib Breast cancer CDK4/6

Lapatinib ditosylate Breast cancer EGFR,ErbB2,ErbB4

Olaparib Breast cancer, ovarian cancer, Ovarian epithelial, fallopian tube,
or primary peritoneal cancer, Pancreatic cancer, Prostate
cancer

PARP1/2

Megestrol acetate Breast cancer, Endometrial cancer progestogen Receptor, Androgen Receptor

Neratinib maleate Breast cancer HER2, EGFR

Tamoxifen citrate Breast cancer, Ductal carcinoma in situ Estrogen receptor

Talazoparib tosylate Breast cancer PARP1

Tucatinib Breast cancer HER2, ErbB2

Goserelin acetate Breast cancer, prostate cancer LHRH agonist

Topotecan Hydrochloride Cervical cancer, Ovarian cancer, Ovarian cancer Topoisomerase I

Irinotecan Hydrochloride Colorectal cancer, Rectal Cancer Topoisomerase I

Regorafenib Colorectal cancer, Gastrointestinal stromal tumor,
Hepatocellular carcinoma, Rectal Cancer

Ret, Raf-1,VEGFR2

Ziv-Aflibercept Colorectal cancer, Rectal Cancer KIT, PDGFRβ, RAF, RET, VEGFR1/2/3

Lenvatinib mesylate Endometrial carcinoma, Hepatocellular carcinoma, Renal cell
carcinoma, Thyroid cancer

VEGFR1/2/3, c-RET

Avapritinib Gastrointestinal stromal tumor PDGFRα, c-Kit

Imatinib mesylate Acute lymphoblastic leukemia, Chronic eosinophilic leukemia or
hypereosinophilic syndrome, Chronic myelogenous leukemia,
Dermatofibrosarcoma protuberans, Gastrointestinal stromal
tumor, Myelodysplastic/myeloproliferative neoplasms, Systemic
mastocytosis

v-Abl,c-Kit, PDGFR

Ripretinib Gastrointestinal stromal tumor c-Kit,PDGFRα

Sunitinib malate Gastrointestinal stromal tumor, Pancreatic cancer, Renal cell
carcinoma

VEGFR2, PDGFRβ, c-kit

Axitinib Renal Cell Cancer VEGFR1/2/3,PDGFRβ,c-Kit

Tivozanib Hydrochloride Renal Cell Cancer VEGFR1/2/3

Sorafenib tosylate Renal Cell Cancer, Hepatocellular carcinoma, Thyroid cancer Raf-1, VEGFR2, B-Raf

Pazopanib Hydrochloride Renal Cell Cancer VEGFR1/2/3

Temsirolimus Renal Cell Cancer mTOR

Dasatinib Acute Lymphoblastic Leukemia (ALL), Chronic myelogenous
leukemia (CML)

Abl, Src, c-Kit

Ponatinib Hydrochloride Acute lymphoblastic leukemia, Chronic myelogenous leukemia
(CML)

Abl,PDGFRα,VEGFR2,FGFR1, Src

Enasidenib mesylate Acute myeloid leukemia (AML) IDH2

Gilteritinib fumarate Acute myeloid leukemia (AML) FLT3/AXL

Glasdegib maleate Acute myeloid leukemia Smoothened (Smo)

Ivosidenib Acute myeloid leukemia (AML) IDH1

Midostaurin Acute myeloid leukemia (AML), mast cell leukemia PKCα/β/γ, Syk, Flk-1

Mitoxantrone Hydrochloride Acute non-lymphocytic leukemia, Acute non-lymphocytic
leukemia, Prostate cancer

Topoisomerase II, PKC

(Continued)
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TABLE 1 | Continued

Compound name Indication of tumor type Target

Venetoclax Acute myeloid leukemia, Chronic lymphocytic leukemia (CLL) or
small lymphocytic lymphoma (SLL)

Bcl-2

Acalabrutinib Chronic lymphocytic leukemia or small lymphocytic lymphoma,
Mantle cell lymphoma

BTK

Duvelisib Chronic lymphocytic leukemia or small lymphocytic lymphoma,
Follicular lymphoma

PI3K δ/γ

Ibrutinib Chronic lymphocytic leukemia and small lymphocytic
lymphoma, Mantle cell lymphoma, Mantle cell lymphoma,
Waldenström macroglobulinemia

BTK, Bmx, CSK, FGR, BRK

Idelalisib Chronic lymphocytic leukemia (CLL), Non-Hodgkin lymphoma
(NHL), Follicular B-cell non-Hodgkin lymphoma, Small
lymphocytic lymphoma

p110δ

Bosutinib Chronic myelogenous leukemia (CML) Src/Abl

Nilotinib Chronic myelogenous leukemia (CML) BCR-ABL

Cabozantinib-S-Malate Hepatocellular carcinoma, Medullary thyroid cancer, Renal cell
carcinoma

VEGFR2, c-Met, c-RET, c-Kit

Pemigatinib Cholangiocarcinoma FGFR

Afatinib dimaleate Non-small cell lung cancer (NSCLC) EGFR, HER2

Alectinib Non-small cell lung cancer ALK

Brigatinib Non-small cell lung cancer ALK,IGF-1R,FLT3,FLT3, EGFR

Capmatinib Hydrochloride Non-small cell lung cancer c-Met

Ceritinib Non-small cell lung cancer ALK

Crizotinib Anaplastic large cell lymphoma, Non-small cell lung cancer ROS1, c-Met, ALK

Dabrafenib mesylate Anaplastic thyroid cancer, Melanoma, Non-small cell lung
cancer

B-Raf

Dacomitinib Non-small cell lung cancer EGFR, ErbB2, ErbB4

Entrectinib Non-small cell lung cancer, Solid tumors TrkA/B/C,ROS1, ALK

Erlotinib Hydrochloride Non-small cell lung cancer, Pancreatic cancer EGFR

Pralsetinib Medullary thyroid cancer, Non-small cell lung cancer, Thyroid
cancer

RET

Gefitinib Non-small cell lung cancer EGFR

Lorlatinib Non-small cell lung cancer ALK, ROS1

Trametinib dimethyl sulfoxide Anaplastic thyroid cancer, Melanoma, Non-small cell lung
cancer

MEK

Osimertinib mesylate Non-small cell lung cancer EGFR

Selpercatinib Medullary thyroid cancer, Non-small cell lung cancer, Thyroid
cancer

c-RET

Tepotinib Hydrochloride Non-small cell lung cancer c-Met

Binimetinib Melanoma MEK

Encorafenib Colorectal cancer, Melanoma RAF

Vemurafenib Melanoma B-RafV600E

Plerixafor Multiple myeloma, Non-Hodgkin lymphoma (NHL) CXCR4, CXCL12

Panobinostat lactate Multiple myeloma HDAC

Selinexor Diffuse large B-cell lymphoma, Multiple myeloma CRM1

Fedratinib Hydrochloride Myelofibrosis JAK2

Ruxolitinib phosphate Myelofibrosis, Polycythemia vera JAK1/2

Copanlisib Hydrochloride) Follicular lymphoma PI3Kα/β/γ/δ

Belinostat Peripheral T-cell lymphoma HDAC

Zanubrutinib Mantle cell lymphoma BTK

Romidepsin Cutaneous T-cell lymphoma, Peripheral T-cell lymphoma HDAC1, HDAC2

Tazemetostat Hydrobromide Epithelioid sarcoma, Follicular lymphoma EZH2

Umbralisib tosylate Marginal zone lymphoma, Follicular lymphoma PI3Kδ

Vorinostat Cutaneous T-cell lymphoma HDAC

Rucaparib camsylate Ovarian epithelial, fallopian tube, or primary peritoneal cancer,
Prostate cancer

PARP1

(Continued)
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TABLE 1 | Continued

Compound name Indication of tumor type Target

Niraparib tosylate monohydrate Ovarian epithelial, fallopian tube, or primary peritoneal cancer PARP1/PARP2

Propranolol hydrochloride Infantile hemangioma β-Adrenoceptor

Apalutamide Prostate cancer androgen receptor

Bicalutamide Prostate cancer Androgen Receptor

Darolutamide Prostate cancer androgen receptor

Degarelix Prostate cancer GnRH receptor

Leuprolide acetate Prostate cancer GnRHR agonist

Enzalutamide Prostate cancer androgen-receptor

Flutamide Prostate cancer androgen-receptor

Nilutamide Prostate cancer androgen-receptor

Relugolix Prostate cancer GnRHR

Vismodegib Basal cell carcinoma Hedgehog

Sonidegib Basal cell carcinoma Smo

Cobimetinib Melanoma MEK

Larotrectinib sulfate Solid tumors TRK

Imiquimod Basal cell carcinoma TLR7

Vandetanib Medullary thyroid cancer VEGFR2

Abiraterone acetate Prostate cancer CYP17

Tretinoin Acute promyelocytic leukemia Retinoic acid receptor, Retinoid X receptor

Sotorasib Non-small cell lung cancer K-Ras (G12C)

case selecting method and exhibited appropriate efficacy in
cases subjected to non-small-cell lung carcinoma undergoing the
pretreating process using the normal cytotoxic chemotherapeutic
process (Shepherd et al., 2005; Kim et al., 2008).

Receptor Antagonist
In normal scenarios, the receptor is activated after binding to its
ligand (signal), and the signal is transmitted down, producing
certain biological phenomena. Some compounds can bind to
the receptor, act in the identical role as the ligand and activate
the receptor. Such compounds are receptor agonists. In the
presence of an agonist, an antagonist antagonizes the agonistic
effect of the agonist on the receptor, and the antagonist alone
exerts no effect on the receptor (Pease, 2017; Arena et al.,
2018). Prostate carcinoma is the most common carcinoma among
aged males in western countries and more aggressive and lethal
castration-resistant prostate carcinoma (CRPC) often occurs
after the androgen deprivation therapeutic process (ADT). The
high expression of androgens and androgen receptors (AR) is
closely related to prostate carcinoma. Efficient AR antagonists,
such as Enzalutamide and ARN-509, could be employed as
potent anti-prostate carcinoma agents (Ge et al., 2018). Selinexor,
combined with Dexamethasone, has gained approval for patients
with Penta-refractory multiple myeloma (MM) by FDA. As we
all know, transcription takes place in the nucleus, separated
from the translation of cytoplasm. Nuclear pore complex
(NPC) assures adequate cell function of transmission of genetic
information, acting as a connection bridge. Large molecule
(40 kDa) cargo requires a specific transport receptor protein to
pass through NPC, such as chromosome region maintenance-
1 (CRM-1) which is the target site to selinexor. Selinexor

is a slow reversible, oral and selective Inhibitor of Nuclear
Export compound, binding covalently to cysteine 528 in the
cargo-binding nuclear export slot of CRM-1 and forcing the
nuclear to retain and activate tsp, GR and IkBa; as well as
a nuclear-cytoplasmic export limitation and mRNA translation
of eIF4E-bound oncoprotein (Sun et al., 2013; Neggers et al.,
2015). Consequently, Selinexor triggers cell cycle arrest and
apoptosis in the solid and hematologic tumor cells. The part
II of phase 2b Selinexor Treatment of Refractory Myeloma
(STORM) trial (NCT02336815, part II) enrolled 122 heavily
pretreated patients with TCR/Penta- exposed MM. ORR was
observed in 26.2% of patients; ORR was observed in 25.3%
of the five refractory patients. The clinical benefit rate (CBR)
was 39%, the median remission period was 4.4 months, and
the most prolonged remission periods exceeded 18 months.
mPFS was 3.7 months for all patients, and 2.1 months for non-
responders. MOS was 8.6 months for all patients, and 1.9 months
for non-responders (Chari et al., 2019; Podar et al., 2020).
Lenvatinib inhibits vascular endothelial growth factor receptor 1–
3, fibroblast growth factor receptor 1–4, platelet-derived growth
factor receptorα, and KIT, approved for Endometrial carcinoma,
hepatocellular carcinoma, RCC, thyroid cancer (Matsui et al.,
2008). In hepatocellular carcinoma, it is used as a first-line
treatment for patients whose disease cannot be removed by
surgery. Kudo et al. (2018) concluded that the overall survival
rate of Lenvatinib is not inferior to Sorafenib in untreated
advanced hepatocellular carcinoma through an open, phase 3,
multi-center, non-inferior quality trial. In the study, 954 qualified
patients were randomly assigned to Lenvatinib group (n = 478)
or sorafenib group (n = 476). The median survival time of
Lenvatinib is 13.6 months and not less than the median survival
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time of Sorafenib 12.3 months, which meets the criteria of non-
inferiority. The most common adverse events of any grade in the
Lenvatinib group were hypertension [201 cases (42%)], diarrhea
[184 cases (39%)], loss of appetite [162 cases (34%)], weight loss
[147 cases (31%)]. Palmar and plantar red sensory disturbances
[249 cases (52%)], diarrhea [220 cases (46%)], hypertension [144
cases (30%)], and decreased appetite [127 cases (27%)] in the
Sorafenib group. These results show that Lenvatinib has a better
clinical benefit than Sorafenib (Al-Salama et al., 2019).

Receptor Agonist
Although enzyme inhibitors and receptor antagonists show
superior clinical efficacy of various cancers in small molecule
targeted compounds, receptor agonists exert a specific effect in
cancer endocrine therapy. Androgen deprivation therapy is an
essential treatment of advanced and metastatic prostate cancer,
including surgical castration and medical castration (Singer
et al., 2008) [e.g., Bicalutamide and Nilutamide, Ketoconazole,
or Corticosteroids (Teo et al., 2019)], and its purpose is to
remove the role of nutrition androgen for prostate cancer.
Luteinizing hormone-releasing hormone (LHRH) agonists are
a type of androgen deprivation therapy. Goserelin acetate and
Leuprolide acetate are LHRH agonists, continuous application
can down-regulate the LHRH receptor and cause desensitization
of the gonadotropin cell receptor after a short period of high
stimulation, resulting in the obstruction of the secretion of
testosterone in the testicular stromal cells (Stojilkovic et al., 1994;
Shim et al., 2019). Compared with LHRH agonists, anti-androgen
drugs show poor survival results, so LHRH agonists have a
more comprehensive range of applications in the treatment
of prostate cancer (Seidenfeld et al., 2000). A retrospective
study showed that, unlike single antiandrogen therapy, LHRH
agonist monotherapy provides long-term and durable control of
localized prostate cancer. For those anti-androgen monotherapy
ineffective patients, LHRH agonist is also an effective treatment
option (Raina et al., 2007). In addition to prostate cancer, LHRH
agonist Goserelin Acetate is also approved by FDA for the
treatment of breast cancer.

THE APPLICATION OF SMALL
MOLECULE TARGETED COMPOUNDS
IN CANCERS

In this review, we classify the existing small molecule targeted
compounds for the carcinoma therapeutic process into the
following four categories according to the different channels
targeted. We have screened out 103 small molecule targeted
compounds for cancer treatment from the drugs approved by
the FDA. Specific targets and detailed information are shown in
Table 1.

Targeting DNA Damage/Repair Channel
DNA undergoes continuous exposure to various damages of
endogenous and exogenous elements. Their repairing process
is critical to maintain genomic integrity for a long, safe life.
An incomplete or unsuccessful DNA repairing process causes

genomic instability and cellular transforming process. The DNA
damage response (DDR) is a complex cellular network activated
by DNA damage with the final aim to repair the DNA damage
and restore genomic integrity, through the involvement of many
intracellular channels (Ciccia and Elledge, 2010; O’Connor,
2015). DDR is vital for maintaining genomic integrity, as
suggested by the fact that germline mutations in DDR genes
are associated with an increased risk of tumors (Klinakis et al.,
2020). Given its effect on DDR and DNA repairing, DNA-
dependent protein kinase (DNA-PK) inhibitors are expedited to
be developed. According to Figure 1, several potential modes of
small molecular parts pertaining to DNA helicases are presented.
Olaparib refers to one potent poly adenosine diphosphate ribose
polymerase (PARP) inhibitor, inducing synthetic lethality in
BRCA1/2-lacking tumor cells. In December 2014, Olaparib
gained approval from the European Medicines Agency for its
application in the therapeutic maintenance process of cases
under the effect of BRCA1/2-mutated ovarian carcinomas (OC)
in respondence to platinum-related chemotherapeutic process.
Moreover, in the US, Olaparib gained expedited approval from
the US FDA as a monotherapy agent for cases subjected to
deleterious or suspected deleterious germline BRCA-mutated
advanced OC and those administrated using three or more prior
lines of chemotherapeutic process (Musella et al., 2015). Moore
et al. (2018) have completed a phase III trial that was random and,
double-blind to assess the Olaparib efficacy in patients of newly
diagnosed advanced ovarian cancer primary peritoneal cancer, or
fallopian tube cancer (or a combination thereof) with a mutation
in BRCA1, BRCA2, or both (BRCA1/2). Of the 391 randomized
patients, 260 were assigned to receive Olaparib treatment and
131 accepted placebo treatment. A total of 388 patients have
concentratedly confirmed germline BRCA1/2 mutations, and
two patients have concentratedly confirmed systemic BRCA1/2
mutations. After a median follow-up of 41 months, disease
progression or death risk Olaparib lower than placebo 70%
(Kaplan Meier estimated 3-year probability of freedom from
disease progression and death was 60% vs. 27%). Specific to phase
II clinical trials, covering cases subjected to advanced CRPC,
Olaparib seems to be efficacious and well-tolerated (De Felice
et al., 2017). And de Bono et al. (2020) finished a randomized,
open-label, phase III trial, evaluating Olaparib in metastatic
CRPC patients who had disease progression after receiving a
novel hormonal drug. In cohort A of at least one alteration
in BRCA1, BRCA2, or ATM, the imaging-based progression-
free survival of the Olaparib group was significantly longer
than that of the control group (median, 7.4 vs. 3.6 months),
objective response rate and the time to pain progression were
confirmed to obtained a significant benefit. In cohort A, the
MOS of the Olaparib group and the control group were 18.5
and 15.1 months, respectively, and 81% of progressing patients
switched to Olaparib treatment. The overall population of cohort
A and cohort B acquired an apparent benefit of Olaparib for
imaging-based progression-free survival.

Inhibitors of topoisomerase I (Top1) that result in stalled
Top1 cleavage complexes (Top1cc) are commonly employed
against carcinoma. Combination chemotherapeutic process with
DNA repair inhibitors can potentially improve response to
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FIGURE 1 | Small molecule targeted compounds targeting DNA damage/repair channel in cancers.

the mentioned widely used chemotherapeutics. One line of
inquiry focuses on inhibitors of tyrosyl-DNA phosphodiesterase
1 (Tdp1), a repair enzyme for Top1cc. Tdp1 catalyzes the
hydrolysis of DNA adducts covalently linked to the 3’-
phosphate of DNA, including Top1-derived peptides and 3’-
phosphoglycolates. Tdp1 inhibitors (Topotecan Hydrochloride
Irinotecan Hydrochloride) should synergize not only with Top1-
targeting drugs (Camptothecins, Indenoisoquinolines), but also
with bleomycin, topoisomerase II (Top2) inhibitors (Etoposide,
Doxorubicin) and DNA alkylating agents (Huang et al., 2011).

Targeting Endocrinology and Hormones
Channel
Inhibitors targeting estrogen and AR are of great significance for
the treating process of endocrine tumors (Figure 2). Fulvestrant,

a selective estrogen receptor down-regulator (SERD), which
blocks the proliferation of breast carcinoma cells (Wakeling
et al., 1991), is an effective endocrine treating process for women
with hormone-sensitive advanced breast carcinoma. Fulvestrant
is approved as a first-line treating process for metastatic breast
carcinoma. Still, its use in this setting may be limited to situations
where the combination with CDK4/6 inhibitors is not available.
Response to Fulvestrant was particularly durable in cases
subjected to bone-only metastatic disease (Soleja et al., 2019).
The combination of Fulvestrant with CDK4/6 inhibitors has
shown superior efficacy compared to the monotherapy process
in cases subjected to metastatic hormone receptor-positive breast
carcinoma who have progressed or relapsed on prior Tamoxifen
or Aromatase inhibitor therapeutic process (Sledge et al., 2017).
On the whole, resistance to hormonal therapy displays an
association with PIK3CA and ESR1 mutations. Alternative
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hormone resistance channels may be mediated by upregulation
of PI3K/AKT, HER2, FGFR, and IGF channels (Beeram et al.,
2007; Zhang et al., 2011). Fulvestrant regimens in combination
with emerging targeted agents are being developed to overcome
endocrine-resistant breast carcinoma. Most recently, Fulvestrant
with Alpelisib, an α-selective PI3K inhibitor, has been recently
approved for cases who have progressed on an endocrine
therapeutic process with PIK3CA mutated breast carcinoma
(Soleja et al., 2019). The FDA approval is based on a randomized,
double-blind, placebo-controlled SOLAR-1 study of Alpelisib
plus Fulvestrant and placebo plus Fulvestrant. The median PFS of
the Alperizil combined with Fulvestrant group was 11.0 months,
while the median PFS of the placebo plus Fulvestrant group was
5.7 months. The MOS of the Alpelisib plus Fulvestrant group
has not been reached, while the MOS of the Fulvestrant control
group is 26.9 months. The most common adverse reactions
are increased blood sugar, increased creatinine, decreased
lymphocyte count, increased gamma-glutamyl transferase and
other laboratory abnormalities (Narayan et al., 2021).

Androgen receptor signaling refers to one critical channel in
prostate carcinoma, and cases receive the initial administration
with ADT. Cases that stopped responding to ADT process
were recognized as having CRPC, which is still dependent on
AR signaling. Enzalutamide, an orally available AR inhibitor,
was initially approved by the US FDA for the treating process
of cases subjected to metastatic CRPC that have previously
received docetaxel. The indication was subsequently extended
to include all cases subjected to metastatic CRPC, and most
recently to include cases subjected to non-metastatic CRPC
(Sternberg, 2019).

Targeting Metabolism Channel
Inhibiting the process of metabolic channels also brings a
new dawn to the carcinoma treating process (Figure 3).
Cytochrome CYP450 cyclooxygenase catalyzes the epoxidation
of polyunsaturated fatty acids, including arachidonic acid,
eicosapentaenoic acid, and docosahexaenoic acid. The product
of arachidonic acid refers to one feasible lipid facilitating
angiogenesis and facilitates tumors developing and growing
processes. Besides, derivatives of eicosapentaenoic acid and
docosahexaenoic acid limit angiogenesis and have protecting
effects under certain pathological conditions covering carcinoma
(Sausville et al., 2019; Guengerich, 2020). Inhibitors against
the CYP450 family came into being. Since androgen signaling
critically impacts the proliferating and metastatic processes
of prostate carcinoma, ADT or castration therapeutic process
is recognized as the backbone of the treatment process for
newly diagnosed metastatic prostate carcinoma. Nevertheless,
all men experience disease progression on ADT to a state
known as metastatic castration-resistant prostate carcinoma
(mCRPC), as driven by AR signaling or intratumoral androgen
synthesis continuously. For this reason, the extragonadal ablation
of androgen synthesis from pregnane precursors holds much
promise. One inhibitor of cytochrome P450 17α-hydroxy/17,20-
lyase (CYP17) enzymes, Abiraterone Acetate, has already been
approved for men with mCRPC. Newer CYP17 inhibitors
continue to be developed, which are either more selective or have

concomitant inhibiting actions on AR signaling. The mentioned
include VT-464, Orteronel, and Galeterone (Alex et al., 2016).

Retinoids and their naturally metabolized and synthetic
products [All-trans retinoic acid (ATRA), 13-cis retinoic acid
and Bexarotene] induce differentiating processes in various cell
types. Retinoids exert their actions primarily through binding
to the nuclear retinoic acid receptors (α, β, γ), which are
transcriptional and homeostatic regulators with functions that
are often compromised early in the neoplastic transforming
process (Alvarez et al., 2007).

All-trans retinoic acid combined with chemotherapy is the
standard treatment for acute promyelocytic leukemia (APL), with
a cure rate of more than 80% (Lo-Coco et al., 2013). Tretinoin
is approved by FDA to be used with arsenic trioxide to treat
APL in patients whose cancer has a certain type of chromosome
mutation that affects the PML gene and RARA gene.

Besides, the retinoids have been investigated broadly for
carcinoma prevention and treatment, primarily attributed to
their capacity for inducing cellular differentiating process and
arrest proliferating process. RA-regulated tumor suppressor
genes, when expressed, can inhibit tumor growth (Houle et al.,
1993). Among the three RARs, RARβ has been well known for
its tumor suppressive effects in epithelial cells (Tang and Gudas,
2011). It is also becoming increasingly clear that RARβ expression
is lost early in carcinogenesis or is epigenetically silenced in
many solid tumors (Sirchia et al., 2000), providing an opportunity
for emerging treating strategic processes to be investigated with
the use of retinoids as well as epigenetically-related modifying
elements promoting silenced genes to be re-expressed.

As revealed from Ai et al. (2018) the proliferating and
migrating processes were inhibited and the apoptosis of Non-
small cell lung cancer (NSCLC) cells was accelerated by
Bexarotene (Retinoic acid). Moreover, overexpressed slc10a2 in
NSCLC cells can more significantly limit the proliferating and
migrating processes, and promote apoptosis under the treating
process of bexarotene. As opposed to those mentioned, the
opposite results were obtained after the slc10a2 gene was silenced
in NSCLC cells administrated with Bexarotene. Furthermore,
TSC2, LKB1, P53, P21, PTEN, caspase 7, caspase 3 expressing
states were increased and the expression of Bcl-2, cyclin D1,
c-FLIP were declined in NSCLC cells and slc10a2 overexpressed
NSCLC cells with the treating process of Bexarotene. The
opposite situations were seen after the slc10a2 gene was
silenced in NSCLC cells. Further studies revealed the increased
expression of slc10a2 activated the expression of peroxisome. The
mentioned results suggest that Bexarotene inhibits the viability of
lung carcinoma cells via slc10a2/PPARγ/PTEN/mTOR signaling
channel (Sirchia et al., 2000).

Targeted Angiogenesis Channel
Angiogenesis is considered the forming process of novel blood
vessels from vessels that exist in advance. It refers to one
complicated multiple-step process, showing tight regulation
under a delicate balance between inducers and inhibitors that
act together to maintain physiological homeostasis (Hanahan
and Folkman, 1996). Nevertheless, tumor under proliferation
will activate angiogenesis through the shift of the balance of
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FIGURE 2 | Small molecule targeted compounds targeting endocrinology and hormones channel in cancers.

inducers and inhibitors to one pro-angiogenic result, to fulfill its
increased demand of oxygen and nutrients (Carmeliet, 2005).
Environmental hypoxia in tumors appears as one primary
element that turns on an ‘angiogenic switch’ by enhancing
expression and activation of transcription element hypoxia-
inducible-element-1 (HIF-1) channel or HIF-1-independent
channels, and it induces the expression of multiple genes

contributing to the angiogenic process (Pugh and Ratcliffe,
2003). In Folkman (1972) proposed anti-angiogenesis as a
new anticarcinomaous strategy initially. Seventeen years later,
vascular endothelial growth element A’s (VEGFA) isolation
and cloning became one landmark to clarify angiogenic
mechanism (Keck et al., 1989), and underpinned the emerging
field of research into anti-angiogenic treating processes for
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FIGURE 3 | Small molecule targeted compounds targeting metabolism channel in cancers.

carcinoma. The active relevant studies resulted in FDA approval
of Bevacizumab (a monoclonal antibody for VEGFA) as the
initial anti-angiogenic drug for colorectal carcinoma in 2004
(Hurwitz et al., 2004). Over the last decade, numerous potential
anti-angiogenic targets have been identified in sequence,
covering cell adhesion molecule, tumor-associated stromal
cell, matrix metalloproteinase, and fibroblast growth element.
To be specific, VEGFs and their receptors (VEGF receptor-1,
VEGF receptor-2, and VEGF receptor-3), exhibiting tyrosine
kinase activity, play critical roles in angiogenesis (Ferrara
et al., 2003). Therefore, most of the angiogenesis inhibitors are
developed targeting VEGFs or their receptors. To date, a large
number of angiogenesis inhibitors have been discovered and
developed, ranging from monoclonal antibodies, endogenous
angiogenesis peptide inhibitors, to small molecule drugs

(Figure 4). In the past few years, many emerging small molecule
inhibitors have been synthesized, covering phosphatidylinositol
3-kinase, benzoxazines targeting receptor tyrosine kinase,
6-(pyrimidine-r-acyloxy)-naphthalene-1-carboxamides, and
indoline-2-one group and noreremophilane-based inhibitors,
respectively (Al-Rawi et al., 2015; Muthukumarasamy et al.,
2016). The mentioned emerging series of compounds showed
potential for treating solid tumors in pre-clinical experiments.
Furthermore, natural products from marine, bacteria, or
herb received the development and demonstration of anti-
angiogenic properties (Wang and Miao, 2013; Ehlers et al.,
2016). Advanced RCC is usually treated with targeted drugs
that block blood vessels. Sorafenib and Axitinib are two
commonly used drugs. The mechanism of action of Sorafenib
has been described above. Axitinib is an inhibitor of VEGFR-1,

Frontiers in Cell and Developmental Biology | www.frontiersin.org 10 September 2021 | Volume 9 | Article 694363

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-694363 September 1, 2021 Time: 12:13 # 11

Sun et al. Small Molecular Compounds in Cancer

VEGFR-2, VEGFR-3, PDGFR-β, and c-KIT. Axitinib can block
the autophosphorylation of VEGFR, endothelial cell viability
regulated by VEGF, microtubule formation, and downstream
signals (Rössler et al., 2011). There are related studies on the
comparison of the effects and safety of these two drugs. Brian
I Rini et al. (2011) conducted a randomized phase 3 study to
compare the clinical efficacy and safety of Axitinib and Sorafenib
as a second-line treatment for patients with metastatic RCC.
Among the 723 patients enrolled, they were randomly divided
into the Axitinib group (361 cases) and the Sorafenib group
(362 cases). The result was that the mPES with Axitinib was
6.7 months, and the mPES with Sorafenib was 4.7 months. In
terms of safety, 14 of 359 patients (4%) who received Axitinib
and 29 (8%) of 355 patients who received Sorafenib stopped
treatment due to side effects. The most common adverse
events were diarrhea, hypertension, and fatigue of Axitinib
group, and diarrhoea, palmar-plantar erythrodysesthesia, and
alopecia of sorafenib group. Therefore, Axinitinib shows better
clinical benefit in the treatment of advanced renal cancer
compared with Sorafenib.

Targeted Immune Checkpoint Blockers
Since the FDA approved Ipilimumab which is a human CTLA-
4 blocking antibody and alters the adaptive immune system
(Carreau and Pavlick, 2019) for the treatment of melanoma
in 2011, cancer immunotherapy has become an epoch-making
achievement and has achieved some exciting clinical applications.
Tumor evolution is to avoid immune attack. The tumor
microenvironment is immunosuppressive and can be suppressed
by immune checkpoints (Baumeister et al., 2016; Hoos, 2016).
Immunotherapy aims at reactivating repressive immune cells
of cancer patients and acquires exciting results, especially for
immune checkpoint blockers of immune monoclonal antibodies,
such as PD-1 antibody, PD-L1 antibody, as well as CTLA-4
antibody (Carbone et al., 2017). The most significant benefit of
immune checkpoint inhibitor therapy is to restore the function
of the immune system, use immune function to clear the
specificity of the tumor, and form a lasting memory similar to the
antigen. In addition to mentioned agents, molecule inhibitors of
immunity are gradually becoming the focus of immunotherapy
due to the advantages that they can be absorbed orally, have
a small molecular weight and can penetrate cell membranes
to act in cells. PD-1, PD-L1, and CTLA-4 are the three most
popular immune targets. PD-1 is a member of the CD28 family
and is an inhibitory receptor expressed on activated T cells,
B cells, macrophages, regulatory T cells (Tregs) and natural
killer (NK) cells. It has two binding ligands PD-L1 and PD-
L2 (B7 family) expressed on normal cells. The combination
of PD-1 with either ligand can inhibit T cell activity, induce
T cell tolerance, and inhibit Proliferate, reduce the immune
response of T cells and induce cell death, thereby preventing
immune cell activation and killing normal cells, and inhibiting
the proliferation, differentiation and secretion of antibodies of
B cells. CTLA-4 has the same ligand as CD28, but CTLA-
4 transmits inhibitory signals. The affinity of CTLA-4 to the
ligand is significantly higher than CD28 (Greaves and Gribben,
2013; Kuzume et al., 2020). Some tumor cells will use this

mechanism to secrete a large amount of PD-L1/L2 to reduce T cell
activation and antigen-specific T cell response, result in evading
immune surveillance (Zou et al., 2016). Although no related small
molecule targeted compounds have been approved for marketing,
some drugs have shown certain therapeutic prospects. In 2016,
CA170 was the first to obtain a new drug research application
for small molecule immune checkpoint inhibitors. CA-170 is the
only small molecule modulator that can be taken orally for PD-L1
and VISTA proteins in clinical trials, and is an essential immune
activation negative checkpoint modulator. According to reports,
the treatment results are similar to FDA-approved monoclonal
antibodies to a specific extent, and overcome the latter’s high
production cost and side effects (Musielak et al., 2019). In 2016,
CA-170 became the first small molecule immunotherapy to enter
the Phase I clinical trial of advanced solid tumors and lymphomas
(Shaabani et al., 2018). Stimulator of interferon genes (STING) is
an immunostimulatory small molecule target, mainly distributed
in immune-related tissue cells, such as thymus, spleen, and
peripheral blood leukocytes. STING activation leads to nuclear
translocation of transcription factors, induces the expression of
interferon (INF) and cytokines, promotes the aggregation and
activation of T cells, and then kills tumor cells. Zaidi et al.
(2021) evaluated ADU-S100 anticarcinoma effect on esophageal
adenocarcinoma, which is a STING agonist. The tumor volume in
the ADU-S100 and ADU-S100 plus irradiation groups decreased
by 30.1 and 50.8%, respectively, and the tumor volume in the
placebo group and placebo plus irradiation group increased by
76.7 and 152.4%, respectively. INFβ tumor necrosis factor-α IL-6
and CCL-2 were significantly upregulated in the treatment group
compared with placebo. Currently, ADU-S100 is being evaluated
in clinical trials (NCT03172936) (Zaidi et al., 2021).

Others
In recent years, small molecule targeted compounds have targeted
drug-resistant mutation sites to solve the drug-resistant problem
of targeted drugs. NSCLC is the focus of targeted therapy with
small molecule inhibitors, but the problem of drug resistance
is a complex problem to solve. KRAS p.G12C mutation occurs
in 13% of NSCLC and 1 to 3% colorectal cancer and other
cancers. Sotorasib is a selective and irreversible KRASG12C
targeted small molecule, and has exciting effects. Hong et al.
(2020) conducted a phase 1 trial of Sotorasib in patients of
advanced solid tumors with KRAS p.G12C mutations. In the
subgroup of patients with NSCLC, 32.2% (19 patients) had a
clear objective response (complete or partial response), and 88.1%
(52 patients) had disease control (objective response or stable
disease); The mPES time was 6.3 months. In the colorectal cancer
subgroup, 7.1% (3 patients) received a confirmed response,
73.8% (31 patients) received disease control, and the mPES
was 4.0 months. Reactions have also been observed in patients
with pancreatic cancer, endometrial cancer, appendix cancer,
and melanoma. And in the CodeBreak 100 phase II trial,
Sotorasib elicited a response in more than one-third of patients
and resulted in a mPES of nearly 7 months. Amgen has
submitted an application for approval of the drug to the
FDA and the European Medicines Agency (No author list,
2021). On May 29, 2021, the FDA announced the accelerated
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FIGURE 4 | Small molecule targeted compounds targeting angiogenesis channel in cancers.

approval of Sotorasib (Lumakras) for the treatment of NSCLC
patients with KRAS G12C mutations. These patients receive
at least one pre-systemic treatment. Sotorasib is the world’s
first anti-tumor drug targeting mutant KRAS protein. T790M
mutation and MET mutation are the secondary drug resistance
mutations of EGFR in lung cancer patients after receiving
EGFR inhibitor treatment (Suda et al., 2017). Small molecule
targeting compounds that target T790M, such as Osimertinib,
have been approved for marketing and have achieved better
efficacy than chemotherapeutic drugs (Mok et al., 2017). Until
the revolutionary anti-cancer drug Tepotinib was approved for
the market, the gap that there was no small molecule drug for
MET mutations was broken. In an open-label phase 2 study,
Tepotinib was used in advanced NSCLC patients with skipping
mutations in exon 14 of MET, and about half of the patients
had an objective response. Peripheral edema was the main toxic
reaction of grade 3 and above (Paik et al., 2020). The FDA
has approved Tivozanib of VEGFR inhibitor for the treatment
of adult patients with relapsed or refractory advanced RCC
who have received two or more systemic therapies. Tivozanib
has become the first therapy approved for this indication.
ATP-binding cassette (ABC) transporter can mediate multidrug
resistance of tumor cells. Yang et al. (2014) reported that

Tivozanib had the activity of reversing multidrug resistance
mediated by ABCB1 and ABCG2 transporters. Therefore,
Tivozanib has revolutionized the treatment of kidney cancer.
A phase 3, multicenter, randomized, controlled, open-label study
compared Tivozanib and Sorafenib in the treatment of advanced
renal cell carcinoma (TiVo-3). The results of the study show
that Tivozanib as a third-line or fourth-line treatment can
improve the progression-free survival rate of patients with
metastatic kidney cancer, and it is better tolerated than Sorafenib
(Rini et al., 2020).

MECHANISM OF RESISTANCE OF
SMALL MOLECULE INHIBITORS

Drug resistance is a common phenomenon in the treatment of
cancer, which is divided into acquired resistance and natural
resistance. In cancer chemotherapy, many cancer patients
begin to be sensitive to chemotherapeutic drugs. As the
treatment progresses, cancer cells will develop resistance through
some mechanisms, leading to treatment failure, and the same
phenomenon will occur with small molecule inhibitors. Drug
resistance includes drug inactivation, drug target alteration,
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drug efflux, DNA damage repair and epithelial-mesenchymal
transition (EMT). The development of drug resistance in
the treatment of acute myeloid leukemia with cytarabine is
an example of drug inactivation. Cytarabine is activated by
multiple phosphorylation, mutation or down-regulation of the
phosphorylation pathway will inactivate cytarabine and cause
drug resistance (Sampath et al., 2006). Small molecule inhibitors
for the treatment of signal kinases will cause changes in drug
targets, for example, certain lung cancer patients with EGFR
mutations developed resistance to EGFR inhibitors within one
year, and EGFR-T790M gatekeeper mutation was reported in half
of the cases (Bell et al., 2005). Drug efflux is a most interesting
mechanism for researchers to study, involving the enhanced
efflux to reduce drug content. ABC transporter is not only a
normal physiological phenomenon, but also a mechanism of
cancer cell resistance. Multidrug resistance protein 1 (MDR1)
is a transporter with extensive substrate specificity and the
ability to excrete many exogenous substances from the cell,
including Vinblastine, podophyllotoxin, Anthracycline, Taxanes,
and kinase inhibitors (Gottesman et al., 2002; Szakács et al., 2004).
Hence, MDR1 protects cancer cells from drugs.

DNA damage response plays a vital role in resisting drugs
that induce DNA damage to kill cancer cells. Though PARP
inhibitors target DDR to prevent DNA repair and display a
predominant effect with chemotherapy, other DDR mechanisms
can be adjusted up to compensate for dysfunctional pathways
(Housman et al., 2014). In addition to EMT being an essential
mechanism of solid tumor metastasis, EMT is also the cause of
drug resistance. It is reported that in head and neck squamous cell
carcinoma (HNSCC) cells, the NGF/TrkA axis confers resistance
to the EGFR inhibitor Erlotinib through the EMT process.
In vitro and in vivo models, blocking TrkA signaling significantly
reverses EMT and makes HNSCC cells sensitive to Erlotinib
(Lin et al., 2020). There are still many questions about the drug
resistance mechanism of inhibitors, which urgently need to be
studied and elucidated, so that the clinical application of the
drug can be better.

THE COMBINED THERAPY OF SMALL
MOLECULE TARGETED COMPOUNDS

The purpose of combination therapy is to overcome and reverse
the drug resistance of inhibitors, reduce side effects and achieve
better therapeutic results through the combination of multiple
pathway inhibitors. Single-use of small molecule inhibitors to
treat cancer often has mutation sites that affect drug treatment.
Although few inhibitor combinations are approved by FDA,
the combination of inhibitors can solve this problem. MEK
inhibitor AZD6244 inhibits the activation of ERK of colon
cancer cells, while AZD6244 promotes JAK2-STAT3 signaling
activation which induces colon cancer cell resistance to inhibitor.
Jin et al. (2019) have shown that the combined effect of
MEK inhibitor AZD6244 and JAK2-STA T3 inhibitor AG490
can significantly inhibit cell viability, induce cell apoptosis,
and ultimately inhibit the activation of ERK and JAK2-STAT3
signals. The combination of AZD6244 and AG490 has shown

better effects than single drugs in vivo and in vitro. Bruton’s
tyrosine kinase (BTK) inhibitor Ibrutinib and Acalabrutinib
appear to be highly effective. However, BTK inhibition enhances
the reliance of mitochondria on BCL-2 without significantly
changing the overall activation of mitochondria. The selective
BCL-2 inhibitor Venotclax treatment improves the overall
mitochondrial activation without increasing dependence on
BCL-2. Therefore, BCL-2 inhibitor and BTK inhibitor have
synergistic and complementary therapeutic effects (Deng et al.,
2017). Toxicity and side effects, including fatigue, skin, mucous
membrane, and gastrointestinal adverse reactions, limit the use
of different drug dosages and treatment schedules. In some
combinations of inhibitors, the combination group shows lower
side effects and better therapeutic effects than the single-use
group. The phase III clinical trial of patients with metastatic
melanoma with BRAF V600E or V600K mutations completed
by Robert et al. (2015) confirmed that the combination of the
BRAF inhibitor Dabrafenib/Vemurafenib and the MEK inhibitor
Trametinib has a better therapeutic effect and Unelevated overall
toxicity. The 12-month overall survival rate in the combined
treatment group was 72%, and the overall survival rate in the
Vemurafenib group was 65%. The mPES was 11.4 months
in the combined treatment group, and 7.3 months in the
Vemurafenib group. The objective effective rate was 64% in
the combined group and 51% in the Vemurafenib group. The
rates of serious adverse events and drug discontinuation were
similar in the two groups. Cutaneous squamous cell carcinoma
and keratoacanthomas were 1% and 18% in the combination
treatment group and Vemurafenib group, respectively.

CONCLUSION AND PERSPECTIVES

Small molecule targeted compounds have been developed in
clinical medicine for decades, prolonging the survival time of
cases subjected to advanced or refractory tumors. However, there
are still insufficient approved drugs for practical use for several
reasons. Even if a variety of enzymes are identified, inhibitors
only target specific kinase targets for EGFRs, FGFRs, VEGFRs,
JAK, PI3K, and CDK and other new drugs, resulting in most
of the drugs studied having similar structures and mechanisms
compared with the inhibitors used. Our detailed use of new
gene-editing techniques to construct more comprehensive and
effective protein kinase gene knockout libraries and to screen new
key kinase targets involved in tumor development could provide
new strategies for the developmental process pertaining to
small targeted molecule inhibitors. While scientists are working
on the next generation of drugs to overcome resistance, they
cannot declare their frustration with targeted drugs. As opposed
to those mentioned, resistance will promote better inhibitor
synthesis. Desirable properties for further development of next-
generation compounds include better safety indicators, improved
pharmacologic indicators, access to brain metastases or other
shelters, and reversal of primary tumors. We expect small
molecule targeted compounds to bring good news to cases
subjected to advanced carcinoma and open a bright way to
solve carcinoma.
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