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Abstract

The mechanisms and design principles of regulatory systems establishing stable polarized

protein patterns within cells are well studied. However, cells can also dynamically control

their cell polarity. Here, we ask how an upstream signaling system can switch the orientation

of a polarized pattern. We use a mathematical model of a core polarity system based on

three proteins as the basis to study different mechanisms of signal-induced polarity switch-

ing. The analysis of this model reveals four general classes of switching mechanisms with

qualitatively distinct behaviors: the transient oscillator switch, the reset switch, the prime-

release switch, and the push switch. Each of these regulatory mechanisms effectively imple-

ments the function of a spatial toggle switch, however with different characteristics in their

nonlinear and stochastic dynamics. We identify these characteristics and also discuss

experimental signatures of each type of switching mechanism.

Author summary

Cell polarity is key to processes such as cell growth, division, differentiation, and motility.

Polarity arises from asymmetric distributions of proteins in the cell. How asymmetric pat-

terns develop from uniform protein distributions, has been studied extensively. However,

it is less clear how cells can switch such protein patterns in response to a signal. Here, we

identify four qualitatively different mechanisms for how a polar protein pattern can be

reversed. For each mechanism, we describe experimental signatures permitting their iden-

tification in natural systems. By providing possible regulatory circuits for these mecha-

nisms, we also offer blueprints for synthetic implementations of switchable cell polarity,

in artificial or engineered cells.

Introduction

Cell polarity is manifested in molecular and morphological asymmetries of the cell. From bac-

terial to mammalian cells, cell polarity is essential in a multitude of functional contexts,
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including cell migration, cell division and differentiation, cell-cell signaling, development and

tissue homeostasis [1, 2]. One fundamental question related to cell polarity is how an initially

symmetrical cell can establish a polarized state and subsequently maintain it [3]. However,

cells are also known to dynamically change their polarity, e.g. reversing polarity in response to

external or internal signals to control motility [4–6]. This raises a second fundamental ques-

tion: Which mechanisms permit reliable switching of cell polarity?

The first question, about establishing and maintaining cell polarity, is well studied, both on

the conceptual level with theoretical approaches and on the experimental level by characteriz-

ing model systems. The polarization of an initially nonpolarized cell is a symmetry breaking

phenomenon: In the case of essentially isotropic cells, e.g. budding yeast or epithelial cells [3],

the continuous angular symmetry is broken by polarization, whereas discrete symmetry break-

ing occurs for rod-shaped bacterial cells [7]. Symmetry breaking can occur spontaneously [8],

but is often controlled by upstream guiding cues [9], and noise can play an important role [10,

11]. While the detailed molecular mechanisms underlying cell polarization differ between

organisms, they often incorporate conserved G-protein based signaling systems that use multi-

ple feedback interactions to generate asymmetric distributions on the cell membrane via a

Turing instability [12]. A class of simple networks that can achieve cell polarization was

explored in a synthetic biology study [13], which first showed computationally that all such

networks feature one or more of the three minimal motifs ‘positive feedback’, ‘mutual inhibi-

tion’, or ‘inhibition with positive feedback’, and that combinations of these motifs generally

polarize more reliably. The study also corroborated the latter finding experimentally, recapitu-

lating the basic principles underlying the establishment and maintenance of cell polarization

in engineered systems. Taken together, these and other results address many aspects of the

first question raised above. By comparison, significantly less is known about the second ques-

tion on the dynamical control of cell polarity.

Dynamically changing cell polarity is widely observed and studied in eukaryotic model sys-

tems such as migrating neutrophils [14] and amoebae [5], as well as melanoma cells [15].

Depending on the system, its genetic makeup, and the environment, cells display a variety of

dynamical patterns. For instance, melanoma cells either randomly polarize into frequently

changing directions, or reverse cell polarity in an oscillatory fashion, or they persistently main-

tain cell polarity [15]. The dynamical control of cell polarity involves signaling. For instance,

cell polarity changes can be coupled to internal signals, as in the case of yeast, where the

dynamics of cell polarity is co-regulated by the cell cycle [16]. Often, cells get a directional cue

from the environment governing the direction of their response [5]. However, cells can also

respond to non-directional cues. For instance, a temporally decreasing chemoattractant signal

triggers reversals of cell polarity in neutrophils, even in the absence of a spatial concentration

gradient [14]. Which mechanisms permit such reversals induced by a non-directional signal?

Rod-shaped bacteria display much of the eukaryotic phenomenology and serve as paradig-

matic model systems. For instance, the Min system, used by Escherichia coli to localize the sep-

tum prior to cell division [17], constitutes a prime example of autonomous cell polarity

oscillations. Its underlying molecular network, based on three Min proteins, was successfully

reconstituted in vitro [18]. On a conceptual level, the cell polarity oscillations of the Min sys-

tem are analogous to those of the melanoma cells, also with respect to the basic regulatory

scheme, whereby a bistable system can be turned into an oscillator via slow negative feedback

[15, 19]. For signal-induced (rather than autonomous) polarity reversal, the Mgl/Rom system

of Myxococcus xanthus constitutes a prime example. Here the cell polarity, marked by MglA,

undergoes intermittent reversals triggered by the upstream Frz signaling system [6, 20]. The

cell polarity reversals are accompanied by reversals in the direction of cell motion, enabling

motility patterns that are crucial for predatory behavior and fruiting body formation [21, 22].
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Recently, Guzzo et al [23] identified the response regulator FrzX as a mediator of the Frz

reversal signal to the Mgl system, and proposed a mechanism for how FrzX can interact with

the three core polarity proteins to trigger polarity reversals. Here, we take this study as a start-

ing point to explore the question of signal-induced polarity switching on a more general level.

Rather than focusing on one particular mechanism, we aim to identify the distinct classes of

switching mechanisms and their underlying working principles. We find four distinct classes

of mechanisms that can occur for different signaling regimes. We demonstrate that some are

sensitive to the amplitude and duration of the input signal but relatively robust to intrinsic

molecular noise, while others are less sensitive to signal variability but more susceptible to

noise. These and other features allow us to identify experimental signatures that can be used to

discriminate between the four classes of mechanisms in vivo.

Results

We consider a cell polarity defined by an asymmetric distribution of a certain ‘polarity marker’

A. The polarity marker has the regulatory role to direct the spatial localization or activity of

downstream processes. For instance, MglA in M. xanthus is a polarity marker that localizes at

one of the cell poles and activates the motility machinery to determine the direction of cell

motion [20]. Similarly, Cdc42 is a polarity marker in yeast and other eukaryotic cells [24]. A

module consisting of the polarity marker and other regulatory proteins has the ability to estab-

lish and maintain a polarized distribution of A. This module, which we refer to as the ‘core

polarity system’, receives input from a signaling pathway via a signaling protein X. We stipu-

late that the ‘full polarity system’ consisting of X and the core system can implement the func-

tion of signal-induced polarity switching (Fig 1).

To explore mechanisms for signal-induced polarity switching, we consider a symmetric cell

with a polarity marker that localizes only at its two cell poles ‘1’ and ‘2’ (Fig 1A), while it rapidly

Fig 1. Signal-induced polarity switching. A Schematic representation of a rod-shaped cell with polarity marker A
shown in yellow. Proteins can either be bound to the poles or diffuse in the cytoplasm. The abundances of the polarity

marker at the two poles are denoted by A1 and A2. The release of a signal protein X in the cytoplasm, shown in purple,

can lead to a polarity reversal, such that the polarity marker switches from pole 1 to pole 2. B Schematic representation

of the molecular interactions of the polarity model. The polarity marker A and its antagonist B inhibit each others

binding to the pole. B can cooperatively recruit itself to the pole and promotes binding of the recruitment factor R,

which in turn recruits A. Dashed lines indicate exemplary hypothetical interactions of the signal protein X with the

polarity proteins. C The switching signal is implemented as a pulse in the total amount of X, parameterized by the

signal duration τ and signal amplitude Xmax.

https://doi.org/10.1371/journal.pcbi.1008587.g001
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diffuses in the cytoplasm. This simplest scenario is a good approximation for the M. xanthus
polarity system [23] and suffices to reveal general principles of signal-induced polarity switch-

ing, as we will see below. The distribution of A is then characterized by quantifying its abun-

dance at pole ‘1’ and ‘2’, as well as in the cytoplasm, and the time-dependent cell polarity can

be defined as

oAðtÞ ¼
A1ðtÞ � A2ðtÞ
A1ðtÞ þ A2ðtÞ

; ð1Þ

where A1(t) and A2(t) are the time-dependent abundances of A at the poles. Hence, ωA> 0

corresponds to a higher abundance of A at pole 1 than at pole 2, and vice versa for ωA< 0,

such that a reversal of cell polarity is marked by a change of sign in ωA(t).

Model for a switchable polarity system

To obtain our working model, we generalize the recently proposed model of the M. xanthus
polarity system [23]. This model, consisting of three compartments (pole 1, pole 2, and cyto-

plasm), involves the ‘antagonist’ B to the polarity marker A, as well as a third protein species,

the ‘recruitment factor’ R (representing MglB and RomR, respectively). The network of inter-

actions between A, B, and R is shown in Fig 1B. Besides the mutual inhibition between A and

B, it involves self-recruitment of B, as well as indirect recruitment of A by B via R. The full

dynamics of the interactions between A, B, and R at the poles is described by [23]

dAi

dt
¼ krAð1 � A1 � A2ÞRi � kaAi � kbaAiB2

i

dRi

dt
¼ ð1 � R1 � R2ÞðkR þ kbRBiÞ � krRi

dBi

dt
¼ ð1 � B1 � B2ÞðkB þ kbBBiÞ � kb

kM
Bi þ kM

Bi

� kabAiB2
i ;

ð2Þ

using the same convention for B and R as for A, i.e. Bi and Ri denote the abundances at the

poles (i = 1,2). Eq 2 assume that the total abundances of A, B, and R in the cell are approxi-

mately constant, at least on the relevant timescale of polarity reversals. These total values are

set to one by choosing appropriate units for the abundances. The dynamics in the cytoplasm is

then obtained from the dynamics of the polar abundances, e.g. the cytoplasmic abundance of

A is 1−A1−A2. In total, the interactions between A, B, and R are specified by 10 rate constants

and one saturation parameter. R binds to the cell poles with rate kR where it locally recruits A
with rate krA. B binds at the intrinsic rate kB to the poles, where it recruits both itself, at rate

kbB, and R at rate kbR. At the same time, A can displace B from the pole and vice versa with a

rate kab and kba, respectively. All three proteins can also spontaneously unbind from the poles,

with the corresponding rates ka, kr, and kb, but the unbinding of B is slowed in presence of

more B (with the saturation parameter kM determining the characteristic abundance for this

feedback effect).

The positive feedback from B onto its own localization together with the mutual inhibition

of A and B allow this model to spontaneously generate a stable asymmetry in the protein abun-

dances at the two poles. Polarity schemes based on mutual antagonism also play a role in polar-

ity establishment of the PAR system [25] determining the anterior-posterior axis in C. elegans,
and the Rac-Rho system regulating front-rear polarity in mammalian cells [15]. Here, we use
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Eq 2 to describe the deterministic dynamics of the core polarity system. To explore noise

effects due to the relatively low copy numbers of regulatory proteins within cells, we also

devised a stochastic model based on stochastic differential equations, see Eq 6 in ‘Methods’.

These equations take the same form as Eq 2, but with an added noise term in each equation

that depends on the state of the system. The noise strength in this model is determined by an

effective “copy number” parameter N, with N!1 recovering the deterministic dynamics

and noise strength increasing with decreasing N.

The signaling protein X mediates a non-directional signal that interacts with the core polar-

ity system (Fig 1B) to induce polarity switching (in M. xanthus, X corresponds to phosphory-

lated FrzX [23]). We assume the total amount Xt of X to have a step-like pulse form (Fig 1C),

parameterized by an amplitude Xmax and duration τ. While step-like pulses are a reasonable

assumption, given that signals change via (rapid) protein modifications rather than (slow)

changes in protein levels, we will also study the effect of more gradual changes further below.

In the model of [23], cytoplasmic X is recruited to the poles by the antagonist B with rate kX
and spontaneously unbinds with rate kx, such that its polar abundances change according to

dXi

dt
¼ kXðXt � X1 � X2ÞBi � kxXi : ð3Þ

In order to systematically explore the possible mechanisms by which polar X may interact

with the core polarity system, we allowed X to regulate each one of the 11 parameters in Eq 2.

We allowed for both positive and negative regulation, thus obtaining 22 different candidate

models for a switchable polarity system. In each case, one parameter, denoted kj, depends on

Xi while the others are not affected (the index j in kj specifies which of the 11 parameters in Eq

2 is regulated). For a positive regulation, we have

kjðXiÞ ¼ kjð1þ XiÞ ; ð4Þ

and for a negative

kjðXiÞ ¼ kjð1 � XiÞ : ð5Þ

Hence, a candidate signaling scenario is parameterized by (i) which parameter kj is regu-

lated by X, (ii) whether the regulation is enhancing or repressive, and (iii) the amplitude and

duration of the pulse, as illustrated in Fig 2A.

Identifying functional switching scenarios

To test a candidate signaling scenario for its ability to induce polarity switching, we simulate

the dynamics (both deterministic and stochastic) of the model. The output of a simulation is a

set of time-dependent abundances of the four proteins A, B, R, and X at the two poles (Fig 2B).

Each simulation run has three phases. First, we simulate the polarity model, Eq 2, in the

absence of signaling input (Xt = 0). In this condition, the system reaches a stable polarized con-

figuration. At t = 0, we then switch to Xt = Xmax for a duration τ, after which the simulation is

continued with Xt set to zero again. We then compare the polarization of the cell at the time

when the signal is initiated (t = 0) with a time point after the removal of the signal (tend = 30

was chosen to allow for the system to fully relax back to a polarized steady state). The candidate

signaling scenario is considered to generate a successful switch if the signs of ωA(0) and

ωA(tend) were different (i.e., the initial and final polarity states were different), and unsuccessful

otherwise (Fig 2C). For the stochastic dynamics, we estimated the switching probability from

100 simulation runs (Fig 2B and 2C). We repeated this procedure for each signaling scenario
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with a range of Xmax and τ values, generating deterministic and stochastic phase diagrams

delineating the functional regimes in (τ, Xmax)-space (Fig 2D).

Characterizing functional switching scenarios

Fig 3 shows the resulting phase diagrams, each representing regulation via one of the 11 model

parameters and including both enhancing and repressive regulatory effects. Here, the deter-

ministic regimes of successful polarity reversals (solid black lines) are superimposed with the

stochastic switching probabilities (green shading). We identified at least one range of signal

parameters with successful polarity reversals in each of the phase diagrams. That is, it is possi-

ble for X to induce reversals by regulating any of the interactions of the polarity proteins,

Fig 2. Schematic representation of the workflow. A Switching signals are parameterized by the choice of i) a reaction rate it acts on, ii) an inhibitory or enhancing

effect and iii) the amplitude Xmax and duration τ of the transient signal. X can act on any of the 11 parameters of the polarity model. B Example of a deterministic and

stochastic simulation before, during and after the signal. The signal is applied between t = 0 and t = 3. Thick lines indicate the concentrations of A (yellow), B (red), R
(green) and X (purple) at pole 1, and thin lines at pole 2. C Switching is evaluated by comparing the signs of the asymmetry ωA(t) in A before and after the switch. For

the stochastic simulation a switching probability is calculated from 100 trajectories. D Switching regimes are plotted in phase space as a function of Xmax and τ for the

modification of each model parameter. For the deterministic model, successful switches are shown by the gray regions with a black outline, for the stochastic model

switching probabilities are shown in green. E The state of the system during the signal is identified by simulating the deterministic model with the signal applied for the

duration of the simulations. The dynamics is classified into three states: symmetric (blue), oscillatory (orange) and polarized (yellow).

https://doi.org/10.1371/journal.pcbi.1008587.g002
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provided that the profile of the signal pulse Xt is chosen appropriately. Surprisingly, in most

cases reversals can be observed when X acts either positively or negatively. For example, rever-

sals can be induced by X either enhancing or repressing the strength of B self-recruitment via

the parameter kbB.

Polarity is highly sensitive to regulation of some parameters (e.g. kbB, kba), with switching

occurring for most signal profiles. These parameters tend to be those involved in the key inter-

actions of Fig 1B, including the nonlinear feedbacks in B recruitment, A recruitment by R, and

A-B mutual antagonism, which together are crucial for the establishment and maintenance of

polarity. For parameters that are more peripheral to the interaction network, in particular the

spontaneous binding and dissociation rates (e.g. kR, kB), switching occurs only in small regions

of high-amplitude signals.

Fig 3 reveals two qualitatively different patterns in the signaling regimes generating switch-

ing: solid regions, in which switching is insensitive to Xmax and τ provided these exceed a

threshold; and alternating bands of successful and unsuccessful switching regions, in which

the system remains sensitive to the values of Xmax and τ. We repeated the analysis for two

other parameter sets which were randomly chosen (by multiplying each of the original param-

eter values kj by a random number between 0.5 and 1.5). The qualitative patterns remain as

Fig 3. Switching regimes for each of the model parameters. Regions in which the deterministic model shows switches are indicated by thick black outlines. The

green shading shows the switching probability of the stochastic model with N = 103.75. The upper half of the phase diagram shows results for a signal that enhances the

reaction rate, and the lower half for a repression of the rate. The colored bars to the right of each panel indicate the class of dynamics when the corresponding

amplitude of signal is applied, with yellow for polarized, orange for oscillatory and blue for symmetric polar distribution of A. The red symbols indicate the signal

amplitude and duration of the trajectories shown in Fig 4.

https://doi.org/10.1371/journal.pcbi.1008587.g003
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shown in S1 and S2 Figs. Intuitively, alternating bands would be expected to occur, if the sys-

tem dynamics become oscillatory in presence of the signal, since Fig 3 only compares the initial

and final state, such that for instance it does not discriminate between trajectories in which

polarity is never reversed, and those in which polarity reverses twice.

To investigate the switching mechanism in the successful parameter regimes, we examined

trajectories of the system for different signals. For a trajectory within a banded region (plus

symbol in Fig 3), we see that once the signal is applied, A rapidly relocates to the opposite pole,

followed by B and on a slower timescale R (Fig 4A, solid lines). If a signal with the same ampli-

tude Xmax is applied for a longer time (open triangle in Fig 3), a second switch takes place (Fig

4A, dashed lines). Hence the width of the bands is determined by the timescale of R reorienta-

tion. This particular case, where X enhances kab, is precisely the relaxation oscillator dynamics

reported in [23].

For a trajectory in the non-band signal regime (star symbol in Fig 3), the system rapidly

reaches a new steady state (with the same polarity) when the signal is applied (Fig 4B). The

polarity reversal occurs after, and appears to be initiated by, the removal of the signal. To con-

firm that there are no longer-period oscillations during the signal period, we examined the

dynamics with a signal of the same amplitude for a long duration (τ = 100). The system

remained stably polarized throughout this duration. Thus, this switching mechanism is quali-

tatively different from the relaxation oscillator reported previously. Switching is insensitive to

the signal duration τ, provided that it is above a threshold value. We interpret this threshold as

Fig 4. Trajectories of the model during switches, classified as four different switching classes. Signal parameters

Xmax and τ and the parameter modified are indicated by the corresponding symbols in Fig 3. Vertical dashed lines

indicate the period during which the signal is present. A Relaxation oscillator. For a short signal (plus-symbol), the

polarity switches during the applied signal as shown by the solid lines. For a longer signal (open triangle), the system

switches a second time as shown by the dashed lines. B Prime-release switch. During the signal the polarity is

unchanged, but switches after the signal is released. C Reset switch. During the signal, the system relaxes to a

symmetric distribution of the polarity marker and establishes a reversed polarity after the signal is removed. D Push

switch. The system switches while the signal is applied and does not switch back when the signal is applied longer.

https://doi.org/10.1371/journal.pcbi.1008587.g004
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meaning that the signal must be present for long enough to prime the system to switch, and

refer to this mechanism as a “prime-release” switch.

We then examined trajectories over the entire signal space and determined the order in

which the polarity of A, B and R reversed, defined by the times at which their asymmetry ω
becomes zero. For almost all regimes with reversals the same order was observed (S3 Fig): first

A, then B, and finally R. This suggests that the underlying dynamics of the trajectory between

the two polarity states is similar in different switching regimes. In some limited regimes, for

particularly high-amplitude signals, reversal of first B and then A was observed. However,

these reversals were almost simultaneous. In some regimes reversals of A and B but not R
occurred. In these cases, the polarity oscillations of A and B were so fast that a second reversal

was initiated before the much slower dynamics of R could catch up to the new polarity state.

Classification of switching mechanisms

We next examined the dynamics during persistent signals for all regulations and signal ampli-

tudes (Fig 2E). We identified three classes of behavior (S4 Fig), reflecting qualitatively different

topologies of the model’s state space as shown in Fig 5. These are (i) static asymmetrically

polarized protein distributions, corresponding to bistable state space with the two stable states

representing the two possible orientations of polarization; (ii) oscillatory protein dynamics,

corresponding to a stable limit cycle in state space; and (iii) symmetric protein distributions,

corresponding to a single stable fixed point in state space. The extent of these different regimes

are indicated by the colored bars adjacent to each panel in Fig 3.

This analysis confirmed that band structures in Fig 3 correspond largely to oscillatory

dynamics in the presence of the X signal, while solid regions correspond to regimes where the

system remains bistable when the signal is applied. However, we also identified regimes pre-

senting two additional types of switches.

For large-amplitude signals, the system can transition from an oscillatory to a monostable

regime. In this scenario, while the signal is applied the system gradually relaxes towards a

Fig 5. In the presence of the signal, the polarity system can display three qualitatively different phase space topologies, here

denoted as ‘polarized’, ‘oscillatory’, and ‘symmetric’. A For each case, the dynamics of the system is shown in the three-

dimensional space (A1 − A2, B1 − B2, R1 − R2), in which the origin corresponds to a completely symmetric protein distribution. A In

a polarized state, the system is bistable, with two stable fixed points, marked grey and blue, which correspond to the two polarities of

the cell. Depending on the initial condition, the system approaches one or the other stable fixed point, as illustrated by the shown

trajectories. B In an oscillatory state, all trajectories of the system run into a stable limit cycle, marked in black. C In a symmetric

state, the system is monostable, with a single stable fixed point at the origin, corresponding to an unpolarized cell.

https://doi.org/10.1371/journal.pcbi.1008587.g005
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symmetric configuration (Fig 4C). Once the signal is removed, the system once again becomes

polarized, but settles in the opposite polarization state from that in which it was initially. Effec-

tively, the initial state of the system is erased and a new polarity state is chosen when the signal

is removed. We therefore refer to this mechanism as a “reset” switch.

Finally, we found that as the oscillatory regime is approached, the onset of switching does

not always coincide with the onset of oscillations. In the intervening region, the system still

remains bistable. Examining the system trajectories, we observed qualitatively different behav-

ior from Fig 4B. Instead of switching once the signal is removed, the system begins to switch

immediately when the signal is applied, and subsequently remains stably polarized in the

opposite orientation (Fig 4D). We refer to this mechanism as a “push” switch.

We have thus identified four distinct classes of switching dynamics, corresponding to four

qualitatively different trajectories (Fig 4). To understand these different mechanisms from a

more general nonlinear dynamics perspective, we next ask how the topology of the phase

space changes in each case. Prior to the application of the signal, the system is in a bistable con-

figuration with two stable fixed points corresponding to the two possible polarity orientations

(Fig 5A). The subsequent behavior differs for each mechanism, as shown in Fig 6 and

described in the following.

Transient oscillator switch

In this class of switching, the system becomes oscillatory when the signal is applied, following

the prescribed path of the limit cycle in state space. Upon removal of the signal, the phase

space reverts to being bistable. The system then relaxes to one of the polarized fixed points.

Which fixed point is chosen depends on the state at the end of the signal period, and in partic-

ular on which side of the separatrix (the division between the basins of attraction of the two

fixed points) the state lies, as shown in Fig 6A. The duration of the signal relative to the oscilla-

tion period determines the phase at the time of signal removal and hence the final polarity

state. How sensitive an oscillatory switch is to the signal duration varies dramatically between

different regulations in our model, being relatively high for kb and kab, but low for kbR and kr
among others.

Reset switch

Instead of following a limit cycle during the signal period, the reset switch gradually relaxes

(usually along a spiraling trajectory) towards a single stable fixed point (Fig 6B). Once again,

the choice of polarity state upon removal of the signal depends only on which side of the separ-

atrix the system is once the signal is removed. In the deterministic model, the choice of final

polarity state is reliable even with a small remnant of asymmetry at the time of signal removal.

However, this mechanism will be susceptible to noise in the protein dynamics that can over-

whelm memory of the previous state (see below).

Prime-release switch

This type of switch occurs when the model remains bistable even in the presence of the signal,

and for parameter changes opposite to those that induce oscillations. The application of the

signal does not cause a change in the topology of the state space, but does change the position

of the fixed points and separatrix. If the signal is sufficiently strong, it may be that the new

fixed points lie on the opposite side of the previous separatrix (Fig 6C). However, since the cur-

rent state remains on the same side of the new separatrix, the system simply relaxes to the new

fixed point with the same polarity orientation (the “prime” phase). Only upon removal of the
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signal (the “release” phase) does the system find itself in the basin of attraction of the opposite

polarity state.

This picture allows us to rationalize various observations about this switching mechanism.

The amplitude of the signal must be sufficiently large that the new fixed point lies on the oppo-

site side of the old separatrix, leading to a threshold in Xmax. The duration of the signal must

be sufficiently long for the state of the system to move across the old separatrix, leading to a

Fig 6. Nonlinear dynamical behavior of the four different mechanisms of signal-induced polarity switching. In each case, the system dynamics are shown both

during (red) and after (black) a signal pulse, with projections onto the (A1 − A2, R1 − R2)-plane, the (B1 − B2, R1 − R2)-plane, and the (A1 − A2, B1 − B2)-plane. A

Transient oscillator switch. B Reset switch. C Prime-release switch. D Push switch.

https://doi.org/10.1371/journal.pcbi.1008587.g006
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threshold in τ. Once these criteria are met, switching is insensitive to the signal amplitude and

duration since the system can remain at the new polarized fixed point indefinitely.

Push switch

The mechanism of the push switch is similar to that of the prime-release switch, but effectively

with the order of events reversed. The application of the signal (“push”) again leads to a shift in

the positions of the bistable fixed points and separatrix, but in the opposite direction (Fig 6D).

The system in its initial polarized state now finds itself on the opposite side of the new separa-

trix, from where it relaxes to the oppositely polarized fixed point. Upon removal of the signal,

the system relaxes to the new slightly shifted fixed point but retains the same polarization. This

mechanism is again largely robust to changes in the signal duration (after a threshold time

needed for the initial relaxation phase), but occurs only for very small ranges of signal ampli-

tudes in our model.

Signals with slow edges

Both the prime-release and push switches described above rely on the fact that the signal

appears and disappears very quickly, which causes a correspondingly fast change in the phase

space. We expected that if the onset and removal of the signal were slower than the relaxation

of the system, then the state of the system would be able to track the fixed points as they move

gradually from their old to their new positions and no switching would occur. To test this pre-

diction we computed the dynamics with the X signal increasing and decreasing gradually

according to Xt(t) = Xmax(1 − e−λt) for 0� t< τ and Xt(t) = Xmax(1 − e−λτ)e−λ(t−τ) for t� τ (S5

Fig). We saw that for large λ� 1, the dynamics was similar to a step signal and switching con-

tinued to occur (S6 Fig). However for slow signals with λ≲ 1, switching in bistable regimes

was abolished (S7 and S8 Figs). This was specific to the prime-release and push mechanisms

since switching in oscillatory regimes continued to occur, with slight shifts to band boundaries

reflecting the effects of the gradual signal on the oscillation phase (S9, S10, and S11 Figs).

Stochastic effects

As seen in Fig 3, the switching probability of the stochastic model for low to intermediate

noise levels tends to closely follow the boundaries of regions in which the deterministic model

switches (see also S12 and S13 Figs). However, switching can also occur for signal parameters

Xmax and τ for which the deterministic system does not switch. In particular, the regimes in

which switching can occur are greatly expanded by noise for prime-release and push switches,

while the transition boundaries between switching and non-switching regimes of relaxation

oscillators appear much sharper. For reset switches, switching remains relatively robust with

short signals, which are cut off before the system has fully relaxed to a symmetric state. For lon-

ger signals the switching probability approaches 0.5, as the new polarity state is chosen ran-

domly once the signal is removed.

Fig 7A shows the switching probability for the signal parameters indicated in Fig 3 for

increasing noise level. Each mechanism displays a different noise threshold at which the

switching probability departs from the deterministic result (either 0 or 1 depending on the sig-

nal parameters). This threshold is highest for the transient oscillator (+,4), and lowest for the

push (×) and prime-release switches (�). Around N� 103.5 the switching probability converges

to approximately 0.5 for all mechanisms. For higher noise levels (smaller N), all the mecha-

nisms show qualitatively similar damped oscillations around 0.5. Similar behavior is observed

in stochastic trajectories in the absence of any signal, indicating that these features are primar-

ily the result of the dynamics during the period that the signal is not present (τ� t� tend). For
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this reason we first focus on the regime N≳ 104, in which the switching behavior remains

influenced by the signal, and return to the high-noise behavior later.

Noise-induced switching errors

The switching probability, comparing only the states of the system before and after the signal

is applied, cannot distinguish between cases in which noise prevents a switch from occurring

and cases in which noise causes an extra switch to occur. We therefore examined the number

of polarity switching events, defined as times at which A1 = A2, in stochastic trajectories. The

distributions of such events are plotted for the prime-release switch in Fig 7B (see S14 Fig for

the other cases). We observe that the initial decrease in switching probability around N� 106

corresponds to the appearance of a sub-population of realizations that do not switch. A flatten-

ing out of the switching probability around N = 104, coincides with the appearance of trajecto-

ries exhibiting an extra second switch, due largely to stochastic switches during the period

when no signal is present.

Fig 7. Behavior of the model at different noise levels. A Switching probability as a function of noise strength for different

switching mechanisms. Signal parameters are indicated by the corresponding symbols in Figs 3 and 4. Each data point represents

the results of 104 stochastic realizations. B Probability of different numbers n of switching events at different noise levels for the

prime-release switch. Signal parameters are as for Fig 4B. C States of 200 stochastic realizations (N = 104) of the prime-release

switch at t = τ. Dashed line shows an estimate of the position of the separatrix in the absence of the signal (see ‘Methods’). D

States of 200 realizations of the relaxation oscillator at t = τ (N = 104). Dotted line shows the deterministic limit cycle of the

system during the signal, dashed lines indicate where the limit cycle intersects with the separatrix in the absence of signal. The

three different panels in C and D show different two-dimensional projections of the nine dimensional phase space. Point type

and color indicate whether the system switches polarity (red) or not (black).

https://doi.org/10.1371/journal.pcbi.1008587.g007
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In the prime-release mechanism, switching is triggered by the removal of the signal. In the

presence of noise, the system fluctuates around the fixed point of the dynamics, rather than

resting exactly at the fixed point. The range of these fluctuations, visualized by sampling the

states of different stochastic realizations at the end of the signal (prime) phase (Fig 7C),

expands with increasing noise strength. Importantly, when the signal is removed the states of

the system are clustered close to the new separatrix of the system, allowing them to be forced

from the basin of one fixed point to the other by noise. The same mechanism accounts for the

expansion of the range of signals for which switching can be induced in the presence of noise

beyond that in which the deterministic model will switch (Figs 3 and 7A, �). The signal is not

sufficiently strong for the deterministic fixed point with the signal applied to cross the original

separatrix. However, some fraction of the distribution of states around this fixed point will lie

close enough to the separatrix to undergo a switch when the signal is removed. Similar behav-

ior can also be observed for the push signal with respect to the distribution of states at the

onset of the signal period.

For the transient oscillator the initial deviation from the deterministic results is due to

noise-induced extra switches once the signal has been removed. Noise in the dynamics during

the signal predominantly leads to phase variability, as different realizations spread out around

the limit cycle. However, the state of the system at the removal of the signal is typically far

from the separatrix (Fig 7D) in the slow phase of the dynamics where R reacts to the new polar-

ity of A and B. Under these conditions, extremely high noise levels are required for the system

to cross into the opposite basin of attraction. Hence, oscillatory switching appears extremely

robust to noise.

Coherence resonance

Returning to the high-noise regime (N≲ 103.5), where switching in the absence of any signal

dominates, we observe that the switching probability oscillates before it saturates at 0.5 for

very high noise (Fig 7A). These oscillations are reminiscent of a so-called “coherence reso-

nance” [26]. A coherence resonance occurs when the activation timescale for noise to drive the

system across the separatrix of a bistable system becomes shorter than the relaxation timescale

to reach the vicinity of the opposite fixed point. The trajectory of such a stochastic system has a

largely oscillatory character. Indeed, the power spectrum of the dynamics changes from mono-

tonically decreasing at small noise to peaked at a finite frequency for larger noise (Fig 8A),

indicating the appearance of oscillations. Additionally, the height of this peak shows a maxi-

mum at a finite noise level (Fig 8B), confirming the coherence resonance behavior. Thus at

high noise levels, noise can drive the system between the two polarity states with a largely oscil-

latory dynamics, even in the absence of any X signal (S15 Fig).

Signal-induced stochastic switching

The application of a signal could also influence the stochastic switching rate during the period

that the signal is active. For example, a signal could lower the height of the separatrix barrier

between two fixed points, thereby increasing the chance of a stochastic switch. To study which

signals could give rise to such an increase of stochastic switching, we analyzed long trajectories

where signals with different amplitudes were applied continuously. Fig 8C shows the resulting

mean times between switching events. We observe that indeed the mean time between

switches is affected by the choice of signal. Interestingly, the mean interval between switches

decreases as the signal approaches the regime of oscillations, consistent with a reduction in the

height of the separatrix barrier as the bifurcation point is approached. Conversely, switches

become rarer when the signal varies in the opposite direction, into the prime-release regime.
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In general, however, the frequency of switching is extremely low such that the expected num-

ber of switches during one signal period approaches zero. We therefore conclude that the

effects of stochastic switching during the signal will be negligible and dominated by the

responses of the system to the transient phases of the signal.

Discussion

In this work we developed a classification of signal-induced polarity switching mechanisms.

Our classification of switching mechanisms is not based on the molecular interactions, but on

the qualitative dynamic behavior. Interestingly, one can obtain different switching mecha-

nisms already with the same signaling and regulation network, by changing only the signal

amplitude and duration, or the sign of the regulatory effect of the signal (Fig 3). Overall, we

found four qualitatively different switching mechanisms: (i) the transient oscillator switch, (ii)

the reset switch, (iii) the prime-release switch, and (iv) the push switch. The working principles

underlying these four mechanisms can be understood already within a schematic, two-dimen-

sional respresentation of the signal-dependent phase space structure of the system (Fig 9).

In the absence of the signal input that triggers polarity switching, the phase space structure

must be that of a bistable system, with two stable fixed points corresponding to the two polarity

states. The basins of attraction of these fixed points are separated by a boundary (separatrix).

Fig 8. Stochastic switching. A Power spectral density of A1(t)−A2(t) in the absence of any X signal for different noise

strengths. A peak in the power spectrum at high noise indicates stochastic coherence. B The maximal power density

relative to the power at zero frequency shows a non-monotonic dependence on the noise strength. C The mean time

between switching events, defined as points when A1 = A2, varies as different signals are applied, at a noise level

N = 103.75. Signals that generate deterministic oscillations have been excluded. Times between switches were extracted

from stochastic trajectories with the signal applied continuously for 50000 min.

https://doi.org/10.1371/journal.pcbi.1008587.g008
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Before the signal is applied, the system is at one of the stable fixed points (black filled circles in

Fig 9). When the signaling system is activated, it interferes with the polarity system. This tem-

porarily deforms the structure of the phase space, and causes the state of the system to move

within the phase space. The movement begins during the application of the signal (red trajec-

tories in Fig 9), but continues after the signal has disappeared and the structure of the phase

space has returned to its original state (black trajectories in Fig 9).

We found three types of phase space structure in the presence of the signal: monostable, bis-

table, and oscillatory (Fig 5). With these three structures, our analysis revealed four types of

polarity switches. All four have in common that the temporary deformation of the phase space

structure leaves the system on the other side of the separatrix when the original bistable phase

space structure is restored. The transient oscillator switch achieves this by moving the system

along a limit cycle during the signal (Fig 9A), while the reset switch moves it towards a single

stable fixed point along a curved trajectory (Fig 9B). When the system is bistable in the pres-

ence of the signal, there are two distinct types of switches: Either the signal moves the fixed

point through the original separatrix (prime-release switch, Fig 9C), or the signal pushes the

separatrix through the original fixed point (push switch, Fig 9D).

The actual phase space of the system is higher-dimensional, but the qualitative behavior is

the same as that shown in Fig 9. In principle, there could be polarity networks for which the

signaling system induces more complex types of phase space structure, e.g. higher-order multi-

stable or chaotic, albeit the functional benefits would be unclear. Assuming that the phase

space structure is either monostable, bistable, or oscillatory in the presence of the signal, the

four switching mechanisms of Fig 9 appear to exhaust the spectrum of possible behaviors. We

therefore do not expect additional classes of signal-induced polarity switches to arise in other

models of polarity systems with the above-mentioned properties. It is somewhat surprising

that the interaction scheme of the Guzzo et al [23] model for M. xanthus polarity, which we

took as the starting point for our analysis, is capable of producing all four types of switches. It

remains to be seen whether the capacity for such diverse switching phenomenology is com-

mon to other models of prokaryotic and eukaryotic cell polarity, and which features of such

models enable different switching modes. Some models, in particular those with fewer compo-

nents, are likely not able to produce all four types of switches, e.g. because they cannot generate

oscillations.

Fig 9. Illustration of the working principles underlying the four classes of switching mechanisms. A The different

nonlinear dynamical behaviors are schematically represented in a two-dimensional phase space. Red/black symbols

indicate the state space and dynamics when the signal is present/absent. Transient oscillator switch. B Reset switch. C

Prime-release switch. D Push switch.

https://doi.org/10.1371/journal.pcbi.1008587.g009
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We also showed how the different switching mechanisms respond to signal variability and

internal molecular noise. For instance, while the transient oscillator switch is most sensitive

to signal variability it is least sensitive to molecular noise. By contrast, the prime-release

switch is least sensitive to signal variability, but very sensitive to molecular noise. These dif-

ferences in behavior will be useful as signatures to identify the actual switching mechanisms

in biological systems. In addition, these properties will be relevant for the design of synthetic

systems.

Currently, the M. xanthus system is perhaps the best studied system for polarity switching,

but even there the question of the mechanism is not resolved. Guzzo et al [23] showed that the

transient oscillator switch is a possible mechanism for the observed polarity switching, but

other possible mechanisms are currently not excluded. Furthermore, important new compo-

nents of this system continue to be found [27] and the precise interactions between the known

components continue to be investigated [28]. The situation is even less clear for other experi-

mentally studied examples of polarity switching such as neutrophils [14]. Given this state of

research, it is of practical significance to know which types of mechanisms are in principle

available, and what the properties of these mechanisms are.

To clearly distinguish between these mechanisms, it would be particularly useful to have

experimental control over the input signal that triggers polarity switching. For the prime-

release switch, the polarity reversal can only occur after the signal is removed. Hence, if the

reversal is observed while the signal is still present, the prime-release switch can be excluded.

The reset switch displays a loss of polarity during a long signal, which constitutes a unique sig-

nature of this mechanism. The transient oscillator switch is best detected by varying the dura-

tion of the signal. Finally, the push switch should switch only once during a long signal. Note,

however, that such experiments will give insight only into the type of switch and not into the

detailed interaction between the signaling protein and the polarity proteins, since the same

qualitative dynamics can be generated by different modes of action of the signal. Our analysis

of the systems’ dynamics also revealed that, while the timing with respect to the input signal is

different for the different mechanisms, the order in which the proteins of the core polarity sys-

tem switch poles is almost always the same. This indicates that we cannot infer the interaction

of the signaling protein X from looking at the order in which the polarity proteins switch

poles, but that the order of switching is rather a characteristic of the interactions between dif-

ferent polarity proteins.

By analogy with the paradigmatic genetic toggle switch [29], the functionality analyzed here

can be regarded as a ‘spatial toggle switch’. The core of the genetic toggle switch is a circuit of

two mutually repressing genes, conceptually similar to the mutual inhibition between the

polarity marker A and its antagonist B. Some of the behavior is also analogous, e.g. molecular

noise can cause the genetic toggle switch to flip spontaneously [30], just as it does for the polar-

ity system. However, while the genetic toggle switch is a well-mixed bistable system, the core

polarity system is a spatially extended bistable system that forms asymmetric patterns. The spa-

tial extension of the polarity system allows a global signal (Xt) to be converted into a local sig-

nal (differential activity of X at the two poles), in a way that would be impossible in a well-

mixed system. This permits the polarity system to function as a true toggle switch, i.e. the same

signal causes switching in both directions, in contrast to the original genetic toggle switch,

where different signals “set” and “reset” the switch [29]. The true toggle (or “push-on push-

off”) functionality in genetic switches requires more elaborate regulatory circuitry that manip-

ulates the bistable system as a function of input signals to achieve control of the system [31–

34].

In comparison with genetic systems, the control of pattern forming systems is only begin-

ning to be explored, opening interesting directions for future research. Here, we used a
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simplified treatment for the pattern formation process, with the cell divided into only three

regions, the two poles and the cytoplasm. The underlying assumption is time-scale separation

between the diffusive transport and the relevant biochemical processes. Given typical cell

lengths, e.g. L* 6μm for M. xanthus, and diffusion coefficients D* 10μm2/s for small cyto-

plasmic proteins [35], the mixing timescale L2/(2D) over which cytoplasmic proteins explore

the bulk of the cell is less than 2 seconds. In contrast, the observed timescale of the actual

switching process, during which the abundances of the polarity system proteins decrease at

one pole and increase at the opposite pole, is on the order of 30 seconds for M. xanthus [23],

suggesting that the assumption is reasonable. However, it will be interesting to explore the

dynamics also under conditions where this assumption does not hold, using full spatial

models.

Methods

Deterministic dynamics

Reaction rates kj were chosen as in [23], with the rate kab = 15 min−1. The deterministic

dynamics was computed with Mathematica (Wolfram Research Inc.) using the function

NDSolve separately in each domain (before, during and after the signal), with initial condi-

tions set according to the protein abundances at the end of the previous segment.

Stochastic model

For the stochastic version of the model we used a Langevin extension of Eq 2, adding a noise

term to each equation,

dAi

dt
¼ krAð1 � A1 � A2ÞRi � kaAi � kbaAiB2

i þ fA;iðxÞ
1=2
ZA;iðtÞ

dRi

dt
¼ ð1 � R1 � R2ÞðkR þ kbRBiÞ � krRi þ fR;iðxÞ

1=2
ZR;iðtÞ

dBi

dt
¼ ð1 � B1 � B2ÞðkB þ kbBBiÞ � kb

kM
Bi þ kM

Bi

� kabAiB2
i þ fB;iðxÞ

1=2
ZB;iðtÞ

dXi

dt
¼ kXðXt � X1 � X2ÞBi � kxXi þ fX;iðxÞ

1=2
ZX;iðtÞ

ð6Þ

where x = (A1, A2, R1, . . ., X2) is the state vector, and the η�,i are independent Gaussian random

variables, hη�,i(t)i = 0 and hηp, i(t)ηq, j(t0)i = N−1 δp, q δi, j δ(t−t0). We have introduced N as a

parameter to tune the magnitude of the noise, with the deterministic model being recovered as

N!1. We chose to make the noise multiplicative by having the strengths f�,i(x) depend on
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the current state of the system, x. Specifically,

fA;iðxÞ ¼ krAð1 � A1 � A2ÞRi þ kaAi þ kbaAiB2
i

fR;iðxÞ ¼ ð1 � R1 � R2ÞðkR þ kbRBiÞ þ krRi

fB;iðxÞ ¼ ð1 � B1 � B2ÞðkB þ kbBBiÞ þ kb
kM

Bi þ kM
Bi

þ kabAiB2
i

fX;iðxÞ ¼ kXðXt � X1 � X2ÞBi þ kxXi

ð7Þ

We emphasize here that these noise terms were chosen simply as one plausible generaliza-

tion of Eq 2. While they resemble those that might be obtained from a system-size expansion

of a full Master equation for the reactions underlying Eq 2 [36, 37], we note that since the orig-

inal model is defined only in terms of the rate equations and not in terms of the underlying

molecular reactions, no such systematic derivation of the noise is possible. We verified that the

particular choice of the form of the noise did not affect our conclusions, and found qualita-

tively similar results when white noise was used (implemented by fixing x = (1/3, 1/3, . . ., 1/3,

Xt/3, Xt/3) in Eq 7), see S16 and S17 Figs.

Simulations of the stochastic model were performed by directly integrating Eq 6 using an

update rule of the form

xðt þ dtÞ ¼ xðtÞ þ dt dðxÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
dt
N
fðxÞ

r

ξ; ð8Þ

where d(x) represents the deterministic part of Eq 6, f(x) = (fA,1, fA,2, fR,1, . . ., fX,2) is a vector of

noise strengths, ξ is a vector of independent samples from a normal distribution, and multipli-

cation of f1/2 and ξ is performed elementwise. A time step dt = 10−4 min was used throughout.

After each update step, all protein abundances were corrected such that none were negative or

exceeded the total protein numbers (i.e. ensuring A1+ A2� 1, and similarly for each other pro-

tein). The simulation code (implemented in C++) is available at github.com/gerland-group/

langevin_switching.

Estimation of separatrices

The separatrix lines in Fig 7C,D were estimated as follows. For the prime-release switch (Fig

7C), we first estimated the state space around the fixed point in the presence of the signal by

simulating 10000 stochastic trajectories with N = 103 until t = τ. For each of these points, we

determined on which side of the separatrix they fell in the absence of signal, by taking these as

the initial conditions for deterministic simulations over the period τ� t< tend. The projec-

tions of the separatrix in the planes shown were then estimated by using a linear discriminant

classifier to determine, for each of the two-dimensional projections of the data in turn, the

decision boundary between the sets of states that belong to each of the basins of attraction.

This analysis was performed using the ‘LinearDiscriminantAnalysis’ class from scikit-learn

[38] with default parameters. For the relaxation oscillator (Fig 7D), we identified the path of

the limit cycle from the trajectory of the deterministic model. The intersection points with the

separatrix were then estimated by initializing simulations with the signal removed at different

points along the limit cycle.
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Power spectra

Power spectral densities were estimated from trajectories sampled every 0.01 min for 50000

min by Welch’s method of averaged periodograms from overlapping segments of the trajec-

tory [39] using the MATLAB (Mathworks) function pwelch with segments of length 216

samples.

Supporting information

S1 Fig. Switching regimes, with the signal acting on each of the model parameters as in Fig

8 of the main text, but with a different basal parameter set that was randomly chosen (by

multiplying each of the original basal parameter values by a random number between 0.5

and 1.5). In the shown example, these values were krA = 400 � 1.01, ka = 2 � 1.38, kba = 400 �

0.95, kB = 2 � 1.15, kbB = 30 � 0.54, kb = 2.8 � 0.96, kM = 0.3 � 1.36, kab = 0.5 � 30 � 0.59, kR = 0.1 �

1.49, kbR = 1.5 � 0.75, kr = 0.4 � 0.98, kX = 20 � 1.16, and kx = 3 � 0.61. Here, the deterministic

switching regimes shift only slightly in the space of signal amplitude and duration, but the sen-

sitivity to noise becomes significantly stronger. However, the qualitative behavior remains the

same as in Fig 8 of the main text, with alternating bands and solid regions that show robust

deterministic switching as long as the signal amplitude and duration exceed a threshold.

(PDF)

S2 Fig. Switching regimes, with the signal acting on each of the model parameters as in Fig

8 of the main text, but with a different basal parameter set that was randomly chosen (by

multiplying each of the original basal parameter values by a random number between 0.5

and 1.5). In the shown example, these values were krA = 400 � 1.1, ka = 2 � 0.58, kba = 400 � 1.38,

kB = 2 � 0.81, kbB = 30 � 1.31, kb = 2.8 � 0.69, kM = 0.3 � 1.02, kab = 0.5 � 30 � 1.04, kR = 0.1 � 1.37,

kbR = 1.5 � 1.05, kr = 0.4 � 1.46, kX = 20 � 1.08, and kx = 3 � 1.35. Here, the deterministic switch-

ing regimes shift significantly in the space of signal amplitude and duration, and the sensitivity

to noise becomes significantly weaker. However, the qualitative behavior remains the same as

in Fig 8 of the main text, with alternating bands and solid regions that show robust determin-

istic switching as long as the signal amplitude and duration exceed a threshold.

(PDF)

S3 Fig. Order of switching. Switching trajectories are obtained from the deterministic model.

Black solid lines in the phase diagrams show switching regimes as in Fig 8. The colors indicate

in which order A, B and R switch polarity. In the regimes where the system switches polarity

multiple times (due to the transient oscillator switch), the switching order represents the order

of the first switch.

(PDF)

S4 Fig. Trajectories of the system during the signal for A the transient oscillator switch, B the

prime-release switch, C the Reset switch and D the push switch. The symbols next to the panel

labels indicate the signal parameter Xmax as indicated in Fig 8. The signal is applied for the

duration of the simulation. During the transient oscillator switch (A) the polarity of the system

oscillates, while during the reset switch (C) there is no polarity, i.e. the distribution of the pro-

teins at pole 1 and pole 2 is symmetric. During the prime-release and push switch (B and D)

the system is polarized during the switch.

(PDF)

S5 Fig. Example of a gradually increasing and decreasing signal. The total amount of X,

Xt, increases according to Xt(t) = Xmax(1 − e−λt) for 0< t< τ and decreases according to
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Xt(t) = Xmax(1 − e−λτ)e−λ(t − τ) for t> τ. The dashed line indicates the step-like signal.

(PDF)

S6 Fig. Trajectories for a gradually increasing and decreasing signal with λ = 4. Signal

amplitude Xmax and duration τ are chosen the same as in Fig 4, where in A the solid line corre-

sponds to the short signal (plus-symbol) and the dashed line to the long signal (open triangle).

The system shows qualitatively the same behavior as for the step-like signal.

(PDF)

S7 Fig. Trajectories for a gradually increasing and decreasing signal with λ = 2. Signal

amplitude Xmax and duration τ are chosen the same as in Fig 4, where in A the solid line corre-

sponds to the short signal (plus-symbol) and the dashed line to the long signal (open triangle).

For these gradual signals, the transient oscillator switch (A), the reset switch (C) and the push

switch (D) switch qualitatively the same as for a step-like signal, while the prime-release switch

(B) does not respond to the gradual signal.

(PDF)

S8 Fig. Trajectories for a gradually increasing and decreasing signal with λ = 1. For these

gradual signals, the prime-release (B) and push switch (D) do not respond to the signal, while

the transient oscillator (A) and reset switch (C) do.

(PDF)

S9 Fig. Switching regimes for a gradually increasing and decreasing signal with λ = 4.

Regions in which the deterministic model shows switches are indicated by thick black outlines.

The green shading shows the switching probability of the stochastic model with N = 103.75.

The upper half of the phase diagram shows results for a signal that enhances the reaction rate,

and the lower half for a repression of the rate. The colored bars to the right of each panel indi-

cate the class of dynamics when the corresponding amplitude of signal is applied, with yellow

for polarized, orange for oscillatory and blue for symmetric polar distribution of A, for a grad-

ually increasing and decreasing signal. The switching regimes are similar to the regimes for a

step-like signal as shown in Fig 8.

(PDF)

S10 Fig. Switching regimes for each of the model parameters for a gradually increasing

and decreasing signal with λ = 2. The regimes where the prime-release switch acts to switch

the polarity, for example via repression of the parameter kab or krA, have become smaller.

(PDF)

S11 Fig. Switching regimes for each of the model parameters for a gradually increasing

and decreasing signal with λ = 1. The regimes where the prime-release switch acts to switch

the polarity becomes smaller, for example by enhancing kB, or completely vanishes, for exam-

ple via repression of the parameters kab or krA. In addition, the regimes where the push switch

acts vanishes, for example via a slight enhancement of the parameter krA.

(PDF)

S12 Fig. Switching regimes for each of the model parameters with a step-like increasing

and decreasing signal. The green shading shows the switching probability of the stochastic

model with N = 103.5. The stochastic switching probability, outside of the deterministic switch-

ing regimes (solid black lines), is higher as compared to a noise level of N = 103.75 as shown in

Fig 8, while the switching probability in the deterministic regimes is smaller.

(PDF)
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S13 Fig. Switching regimes for each of the model parameters with a step-like increasing

and decreasing signal. The green shading shows the switching probability of the stochastic

model with N = 104. The stochastic switching probability, outside of the deterministic switch-

ing regimes (solid black lines), is smaller as compared to a noise level of N = 103.75 as shown in

Fig 8, while the switching probability in the deterministic regimes is higher.

(PDF)

S14 Fig. Probability of different numbers of switching for different noise levels. Symbols

next to the panel labels A-E correspond to the signal amplitude and duration as shown in Fig

8. F shown the probability of different numbers of switches without a signal.

(PDF)

S15 Fig. Polarity switching of the stochastic model without a signal. A for low noise levels

(N = 103.5) the system does not switch for the duration of the simulation. B for high noise levels

(N = 102) the polarity switches several times without applying a signal.

(PDF)

S16 Fig. Switching regimes for each of the model parameters with a step-like increasing

and decreasing signal. The green shading shows the switching probability of the stochastic

model with white noise and with N = 104. The switching regimes are qualitatively similar to

the switching regimes in Fig 3.

(PDF)

S17 Fig. Switching probability of the stochastic model with white noise. The signal parame-

ters are indicated by the corresponding symbols in Figs 8 and 4. Results are qualitatively simi-

lar to the results presented in Fig 6A.

(PDF)
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formation in cell polarity establishment. Nat Phys. 2019; 15(3):293–300. https://doi.org/10.1038/

s41567-018-0358-7 PMID: 31327978

10. Chou CS, Bardwell L, Nie Q, Yi TM. Noise filtering tradeoffs in spatial gradient sensing and cell polariza-

tion response. BMC Syst Biol. 2011; 5:196. https://doi.org/10.1186/1752-0509-5-196 PMID: 22166067

11. Lawson MJ, Drawert B, Khammash M, Petzold L, Yi TM. Spatial stochastic dynamics enable robust cell

polarization. PLoS Comput Biol. 2013; 9(7):e1003139. https://doi.org/10.1371/journal.pcbi.1003139

PMID: 23935469
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