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In this perspective article, we briefly review tools for stable gain-of-function expression
to explore key fate determinants in embryonic brain development. As the piggyBac
transposon system has the highest insert size, a seamless integration of the transposed
sequence into the host genome, and can be delivered by transfection avoiding viral
vectors causing an immune response, we explored its use in the murine developing
forebrain. The original piggyBac transposase PBase or the mouse codon-optimized
version mPB and the construct to insert, contained in the piggyBac transposon, were
introduced by in utero electroporation at embryonic day 13 into radial glia, the neural
stem cells, in the developing dorsal telencephalon, and analyzed 3 or 5 days later. When
using PBase, we observed an increase in basal progenitor cells, often accompanied
by folding aberrations. These effects were considerably ameliorated when using the
piggyBac plasmid together with mPB. While size and strength of the electroporated
region was not correlated to the aberrations, integration was essential and the positive
correlation to the insert size implicates the frequency of transposition as a possible
mechanism. We discuss this in light of the increase in transposing endogenous viral
vectors during mammalian phylogeny and their role in neurogenesis and radial glial cells.
Most importantly, we aim to alert the users of this system to the phenotypes caused by
non-codon optimized PBase application in vivo.
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INTRODUCTION

Much has been learnt about fate determinants in development during neurogenesis and gliogenesis
from candidate approaches, natural gene mutations and genome-wide expression analyses. To
elucidate their function, and subsequently use them e.g., for direct neuronal reprogramming or
therapeutic approaches, we need reliable tools for the long-term manipulation of gene expression,
e.g., by seamless genomic integration. Tools for this are still relatively limited and mostly rely
on viral vectors. The piggyBac transposon system allows genomic integration and long-term
expression of genes of interest, providing a viable alternative as described below. These approaches
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are now timely to review and consider for specific pitfalls, due
to the immense power of their potential for therapeutic use, e.g.,
by direct neuronal reprogramming in vivo (Götz and Bocchi,
2021). This applies especially as the CRISPR/Cas technology
now facilitates multiplexing, targeting double-digit numbers
of genes without problem (Breunig et al., 2018, 2021). This
will help understanding the role of transcriptional networks in
development, or to manipulate cell fate in a fine-tuned manner—
e.g., to achieve correct subtype specification of glia or neurons in
reprogramming—but needs to be delivered and integrated in a
safe, yet reliable manner.

An important consideration in the use of integrating
constructs is the similarity to endogenous transposable elements
(TE), which play an important role in development. In humans,
these make up the majority of the genome, with up to
69% suggested to be TE (de Koning et al., 2011; Ferrari
et al., 2021). In the developing brain, the mobilization and
(re-)integration of TE, especially of the endogenous retroviral
LINE-1 elements, is linked to the development of neuronal
subtype diversity and genomic mosaicism, and dysregulation may
lead to developmental abnormalities (see e.g., Bodea et al., 2018;
Misiak et al., 2019).

We will therefore review specific approaches to genome
editing with an emphasis on gain-of-function and highlight a not
yet reported and hitherto not yet fully explained artifact using the
piggyBac transposon system in vivo.

TOOLS FOR STABLE EXPRESSION OF
GENES OF INTEREST

Viral Vectors for Long-Term Gene
Expression
Viral vectors are a classical tool for the long-term manipulation
of gene expression. Especially Retrovirus (RV) and Lentivirus
(LV) are often used both in vitro and in vivo, e.g., to
elucidate the function of candidate genes in embryonic
development (Artegiani and Calegari, 2013), or in direct neuronal
reprogramming approaches (Gascón et al., 2016; Herrero-
Navarro et al., 2021; Russo et al., 2021). A big advantage of
viral vectors is the ability to target specific cell types of the
brain by pseudotyping the capsid (Buffo et al., 2008; Mattugini
et al., 2019). Both virus types achieve long-term gene expression
by integrating their reverse-transcribed RNA genome into the
host genome as DNA (Figure 1A) at semi-random sites, LV
preferring active transcription units, while RV favor enhancers
and regulatory sites (Schröder et al., 2002). This semi-random
integration has the disadvantage of potential off-target effects and
the introduction of mutations. While expression systems have
been optimized to avoid gene silencing (Pfeifer et al., 2002) and
reduce the immune response (Piras et al., 2017; Russo et al., 2021),
the limited packaging capacity and the immune reactions still
elicited by these viral vectors and their pseudotypes (Mattugini
et al., 2019) remain disadvantageous.

For translational therapeutic approaches, adeno-associated
virus (AAV) is better suited due to the limited immune response

(see e.g., Mattugini et al., 2019; Rittiner et al., 2020). A multitude
of serotypes allow targeting specific cell types even via non-
invasive, e.g., intravenous, application routes (Haggerty et al.,
2020; Nectow and Nestler, 2020; Rittiner et al., 2020). While
allowing long-term stable gene expression depending on the
cell type, these vectors stay episomal, i.e., do not integrate into
the host genome, but may be used to deliver constructs that
are themselves able to integrate (such as transposon systems)
or to permanently edit the host genome (e.g., CRISPR/Cas9).
However, their biggest disadvantage is the small packaging size
of less than 5 kBp (Rittiner et al., 2020), and although it can
be overcome by splitting some proteins, e.g., Cas9, into two
parts (Truong et al., 2015), it generally limits the applicability
of these vectors.

Transposable Elements for Widespread
Genomic Integration
The piggyBac system has been discovered as a transposable
element decades ago, initially in insect cells (Cary et al., 1989),
and was used to generate transgenic vertebrate models with
stable inheritance (Ding et al., 2005). A huge advantage is the
ability to accommodate large constructs, with sequences of 100
kBp reported to successfully integrate in the genome (Li et al.,
2011). There seems to be no bias for integration into specific
chromosomes, but a strong preference to integrate into accessible
chromatin and highly transcribed genes (Elick et al., 1996; Ding
et al., 2005; Wang et al., 2008; Li et al., 2013; Yoshida et al., 2017).

The piggyBac transposon is characterized by terminal repeats
ending in TTAA that are necessary for successful transposition
(Figure 1B; Cary et al., 1989; Li et al., 2005). The construct to
insert, i.e., the transposon, by itself shows little integration, but
when paired with its specific transposase even in low amounts,
integration is very efficient (Ding et al., 2005; Cadinanos and
Bradley, 2007; Wang et al., 2008). In mammalian cells, as in its
native system, the piggyBac transposon integrates into the host
genome exclusively at TTAA sites (Figure 1B), with the specific
transposase enzyme nicking the DNA and inducing transient
double strand breaks which are repaired not by DNA synthesis,
but rather ligation of the ends. This leads to seamless integration
and traceless excision of the transposon (Mitra et al., 2008;
Chen et al., 2020).

Due to efficient cloning strategies, the piggyBac system has
readily lent itself for screenings in vivo (Xu et al., 2017), and
the possibility of removing the transgene without a footprint by
transposase-mediated excision (Woltjen et al., 2009; Behringer
et al., 2017) is promising for translational approaches. The
application of the piggyBac transposon for in vivo studies
has been further encouraged by the development of improved
transposase enzymes that, based on the original PBase, have
been optimized for their use e.g., in mammalian systems.
A mouse-codon optimized version of the enzyme, mPB, has
been shown to elicit a 20-fold higher transposition activity
in mouse ES cells as compared to the non-optimized PBase,
likely due to higher expression levels following the facilitation
of the translation process (Cadinanos and Bradley, 2007).
Further optimization yielded an even more efficient enzyme, the
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FIGURE 1 | Common methods of genome editing in neural stem cells in vivo. (A) Retro- or lentiviral transduction. The virus is introduced by receptor-mediated
endocytosis depending on the pseudotype of the capsid, which is then degraded to uncoat the viral genome. This is retrotranscribed from ssRNA to dsDNA,
transported to the cell’s nucleus and integrated into the genome, with preferred integration sites dependent on the type of virus. (B) Integration of the piggyBac
transposon. In the presence of its specific transposase, the piggyBac transposon can be integrated to the genome in a “cut-and-paste” manner. TTAA motifs in the
terminal repeats (TR) regions are recognized by the transposase which excises and mobilizes the transposon. The genomic DNA is cut at TTAA sites and the
transposon is integrated by ligation. In the same way, the transposon can be re-excised, with a seamless re-ligation repairing the host’s donor site.

hyperactive transposase hyPBase, by introducing point mutations
in the sequence of mPB (Yusa et al., 2011).

THE USE OF PIGGYBAC TRANSPOSON
IN THE DEVELOPING BRAIN IN VIVO—A
CALL FOR CODON OPTIMIZATION

Given the advantages of the piggyBac transposon system, we
tested different transposases for gene manipulation in the
developing cortex. For plasmid DNA, such as the piggyBac
transposon, a favored delivery method is in utero electroporation
(IUE), often performed during mid-gestation between E12 and
E15 (Saito, 2006; Meyer-Dilhet and Courchet, 2020).

With the aim of later activating endogenous gene expression,
we first administered the original transposase enzyme PBase
(Supplementary Figures 1A,B) and a piggyBac transposon
containing a fusion protein of enzymatically deactivated Cas9
and GFP (dCas9-GFP, Supplementary Figure 1B) into radial glia
by IUE during mid-neurogenesis at E13 (Figure 2A). After 3
days, all of the brains showed ectopia of cells expressing the stem
cell marker PAX6 and the basal progenitor (BP) marker TBR2
(Figure 2C). These markers are normally found in a distinctive
band in the ventricular and subventricular zone, respectively
(Götz et al., 1998; Englund et al., 2005).

To test if the observed phenotype may be caused by the
expression of the foreign protein dCas9, we repeated the
experiment with a simpler piggyBac transposon containing only
a GFP reporter (Supplementary Figure 1B). We again observed
developmental abnormalities in the electroporated brains after
3 days (Figures 2B,C). However, the variability here was much
higher, ranging from some brains exhibiting no abnormalities,
over the previously observed PAX6+/TBR2+ ectopia, to one
embryo exhibiting severe malformations, where the cortex
showed several sulcus-like indentations. We noted also a non-
cell autonomous phenotype, as the folds were found not
only at the electroporation site, but also at more distant
positions (Figure 2D).

We then introduced a plasmid only carrying the GFP reporter,
lacking the terminal repeats recognized by the transposase
enzyme and thus without the possibility to integrate genomically
(pCAG-IRES-GFP, Supplementary Figure 1B). In this case, no
aberrant phenotype was observed (Figure 2C); a significant
difference from the effects elicited by both piggyBac constructs
(padj = 0.026 for piggyBac-GFP and padj = 0.005 for piggyBac-
dCas9-GFP; Supplementary Table 1). Thus, the observed
aberrations are dependent on the integration and transposition
activity of the piggyBac system.

To determine if the phenotypes may be transient, we examined
the brains later at E18, 5 days after IUE. Now all PBase-expressing
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FIGURE 2 | Unexpected abnormalities in cortex development upon electroporation of PBase, but not mPB. (A) Experimental schedule. piggyBac transposon
plasmids as indicated in Supplementary Figure 1 were delivered into the cortex by IUE at E13 and brains were analyzed at E16 or E18. (B) At E16 (3 days
post-IUE), transposition of piggyBac-GFP by the original piggyBac transposase PBase leads to different phenotypes, such as an accumulation of ectopic
PAX6+/TBR2+ cells in the intermediate zone of the cerebral cortex (VZ = ventricular zone, CP = cortical plate; scale bar: 50 µm). (C) Quantification of the different
phenotypes at time points indicated in the graphs. mPB leads to a lower penetrance and milder phenotypes, while PBase causes strong developmental aberrations
depending on the co-electroporated transposon. Shorter transposons lead to an exacerbated effect, no abnormalities develop in the absence of a transposon.
n = 6 for PBase/no transposon (E16), PBase + dCas9-GFP (E16), and PBase + GFP (E16); n = 7 for mPB + GFP (E16), PBase + GFP (E18), and mPB + GFP (E18); n = 4

(Continued)

Frontiers in Cell and Developmental Biology | www.frontiersin.org 4 August 2021 | Volume 9 | Article 698002

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-698002 July 28, 2021 Time: 13:37 # 5

Vierl et al. PiggyBac Transposon Application in Developing Brain

FIGURE 2 | Continued
for mPB + dCas9-VPR-ntgRNA (E18). (D) Example of severe developmental aberration caused by PBase transposition at E16, here leading to the formation of
sulcus-like structures at and further away from the electroporation site (Scale bar: 50 µm). (E) At E18 (5 days post-IUE), the phenotype of PBase-mediated
transposition of piggyBac-GFP is exacerbated, with severe malformation mostly manifesting in folding of the cortex at and further away from the electroporation site
(Scale bar: 500 µm). (F) Another example of severe malformation by PBase IUE is lack of the medial region (the septum) normally separating the lateral ventricles
(Scale bar: 500 µm). (G) At E16, IUE of mPB mostly led to a normal phenotype with no ectopic cells (Scale bar: 50 µm). (H) Some animals showed developmental
abnormalities at E18 after mPB IUE, e.g., local hyperplasia with increased cortical thickness at the electroporation site (Scale bar: 500 µm). (I) With mPB-mediated
integration of the largest transposon (piggyBac-dCas9-VPR-ntgRNA), no phenotypes were observed (Scale bar: 500 µm).

brains showed an aberrant and in most cases exacerbated
phenotype with anatomical malformations (Figure 2C). These
could be distinguished into two levels of severity, with some
cortices only showing localized hyperplasia at the electroporation
site, whereas others exhibited more severe and widespread
malformations, such as folded gyrus- and sulcus-like structures
(Figure 2E), and, in one case, no septum with fusion of the lateral
ventricles (Figure 2F).

As the PBase enzyme originates from insect cells (Cary
et al., 1989), the sequence and codon usage is not adapted
to the translation machinery in murine cells. The use of
rare codons may influence the ribosomal translation speed
and lead to ribosome collisions, a ribotoxic response (RTR)
(Wu et al., 2020), and subsequently an unfolded protein
stress response (UPR) (Cao and Kaufman, 2012). We thus
exchanged the transposase PBase for mPB (Supplementary
Figures 1A,B), the mouse codon optimized version of the
same enzyme (Cadinanos and Bradley, 2007). This encodes the
same amino acid sequence, generating an identical enzyme,
but has an altered nucleotide sequence better suited to the
murine translation machinery. When expressed together with
piggyBac-GFP, only few brains exhibited PAX6+/TBR2+ ectopia
at E16 and most brains did not show any abnormalities
(Figures 2C,G).

At E18, we again observed a striking difference between
the two versions of the transposase enzyme: Upon IUE of
PBase, all brains showed aberrations, in most cases severe,
while the phenotype of mPB was considerably milder and
observed less frequently (Figures 2C,H), showing a significantly
different overall phenotype severity between both enzymes
(p = 0.017, Supplementary Table 1). Indeed, a piggyBac plasmid
containing a dCas9-VPR fusion protein as well as a non-
targeted gRNA (ntgRNA) and a GFP reporter (Supplementary
Figure 1B), did not elicit any abnormalities 5 days after
IUE, when combined with mPB (Figures 2C,I). Thus, we
strongly recommend to use the codon-optimized mPB to avoid
developmental aberrations.

Exploring the Cause of Developmental
Defects Caused by PBase Application
The above results imply a striking difference between the effects
of the codon optimized and the non-codon optimized version
of the same enzyme. Both proteins have the same amino acid
sequence, but mPB has been found to enable an integration and
transposition activity up to 20 times higher than PBase, likely
due to a higher expression level in otherwise identical systems
(Cadinanos and Bradley, 2007). To test if this is also the case

in the developing cortex, we measured the size and intensity
of IUE at E18 for the mPB and PBase constructs combined
with piggyBac-GFP. There was no detectable difference in
the size (Supplementary Figure 2A) or the GFP intensity
(Supplementary Figure 2B) of the IUEs between the different
transposases, and also no correlation between larger or stronger
IUEs and phenotypic alterations.

Next, we asked if the difference in the translation of
the transposase enzymes, which is optimized for mPB and
suboptimal for PBase due to different codon usage (Cadinanos
and Bradley, 2007), may be relevant and elicit differences in
the RTR, UPR or DNA damage and double-strand breaks
(Ciccia and Elledge, 2010). To explore this, we transfected
the different transposase constructs with different piggyBac
transposons into adherent neural progenitor cells derived
from embryonic cortex (Pollard et al., 2006), but found no
upregulation in marker genes for either of these pathways
using qRT-PCR (Supplementary Figure 3). Despite PBase being
expressed under a stronger promoter (pCAG vs. pCMV for
mPB; Supplementary Figure 1B), when measuring transposase
mRNA levels, we found a considerably higher expression of
mPB than PBase (Supplementary Figure 3B) as suggested
previously for expression under the same promoters (Cadinanos
and Bradley, 2007). Thus, the promoter seems to have little effect
on expression, and despite higher expression levels, mPB causes
fewer developmental aberrations.

DISCUSSION

After reviewing different methods for stable gain-of-function
expression systems, we show here an unexpected artifact of the
piggyBac transposon system in the developing cortex. Adverse
developmental effects clearly depended on the integration of the
constructs, suggesting that integration and/or transposition is
important. In this regard it is interesting to note that there seems
to be a connection between the size of the transposon, ranging
between 3.0 and 9.6 kBp, and the severity of the phenotype,
as smaller transposons elicited a more severe phenotype than
larger ones (Figure 2C and Supplementary Figure 1B). It
has been shown that the size of the transposon influences
the rate of transposition, which starts decreasing considerably
around 9 kBp (Ding et al., 2005). This may suggest that
smaller constructs with potentially higher transposition rate are
more prone to cause the observed abnormalities. Notably, the
expression level of the transposase enzymes (Supplementary
Figure 3B) seems not to affect the phenotype severity, possibly
due to a saturated ratio of constantly expressed transposase
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enzyme to the limited number of available transposons. Once
bound to the enzyme, only the length of the transposon may
influence the speed or efficiency (and thereby the frequency) of
the transposition process.

“Locus hopping” in the continued presence of the transposase
enzyme may cause problems due to its preference for
transcriptionally active sites (Ding et al., 2005; Li et al.,
2013), which may disrupt their expression and alter transcription
networks, the likelihood of which increases with the transposition
activity and each excision and re-integration event. We would
therefore suggest to develop mPB constructs that self-inactivate
after integration of the transposon has been achieved, to
avoid continued transposition events. Additionally, the link to
endogenous transposition events has to be considered: While it
has been shown that piggyBac transposase is unable to mobilize
endogenous, PB-like transposons in mouse or human cells (Yusa
et al., 2011; Saha et al., 2015), an endogenous human transposase
highly expressed in neurons, PGDB5, has been suggested to
potentially mobilize piggyBac transposons (Henssen et al., 2015).

It is intriguing that specifically the generation of PAX6+

and/or TBR2+ BPs and folding of the brain were affected,
as these cells comprise an important glial subtype, the basal
radial glial cells, and are particularly frequent in species with
folded cortices (Borrell and Götz, 2014). Interestingly, in the
developing gyrified cortex, they occur in a blockwise manner,
with folds formed at the sites of expanded basal subventricular
zone where basal radial glial cells are most frequent (Borrell
and Götz, 2014). This organization can be mimicked even in
the normally smooth murine cortex e.g., by locally lowering the
levels of TRNP1, a protein involved in nuclear phase transition
(Esgleas et al., 2020). Depletion of the protein, which in murine
cortex is normally expressed in a salt-and-pepper fashion, in a
specific region by IUE artificially causes blockwise expression,
generating a region of expanded subventricular zone and basal
radial glial cells, and accordingly induces cortical folding (Stahl
et al., 2013; Borrell and Götz, 2014). We do not know if the
ectopic BPs and folding that we observed upon PBase-mediated
transposition after IUE activate a natural endogenous program,
but it is intriguing to see how readily BP number and position
may be influenced.

As noted above, the phenotype we observed was not
strictly cell autonomous, as was also the case in the TRNP1
manipulations (Stahl et al., 2013; Esgleas et al., 2020) and other
means to expand BP numbers (Rash et al., 2013; Xie et al., 2019).
It will thus be very important to understand, if—and which—
cell surface molecules or secreted signals may be regulated by
these manipulations. Given the important communication via
secreted vesicles in the cerebrospinal fluid (Marzesco et al., 2005;
Morton and Feliciano, 2016), these may be involved in non-cell
autonomous communication within the cortex tissue.

While the human cortex is naturally gyrified, the
developmental disorder polymicrogyria (PMG) is characterized
by the generation of additional, aberrant gyri in the neocortex.
While PMG is commonly considered a neuronal migration
disorder (Romero et al., 2018), several studies have also
suggested causative progenitor and proliferation aberrations.
Mutations in cyclin D2 were linked to a cortical malformation

syndrome including PMG in patients, and IUE of these mutated
genes caused an increased proliferation of progenitors and
impaired cell-cycle exit in the developing mouse cortex (Mirzaa
et al., 2014). In addition, PMG patients with mutations in the
Pax6 as well as Tbr2 genes have been identified (Mitchell et al.,
2003; Baala et al., 2007), which may relate to the data presented
here with ectopic PAX6+ or TBR2+ cells and additional
folds in this study.

While it is not immediately evident why the transposition
would cause an increase in BPs, it is intriguing to consider
that the naturally occurring transposition by recently integrated
endogenous retroviruses (ERVs) may play a similar role, as their
proportion hugely increases in the mammalian and especially
the primate genome, correlating to cortex size and gyrification
(Linker et al., 2017). Indeed, ERVs can regulate the expression
of neighboring genes (Fasching et al., 2015; Brattas et al., 2017;
Jonsson et al., 2019, 2020; Petri et al., 2019) and may thus
have evolved as a novel gene regulatory machinery involved in
enlarging and folding brain regions (Ferrari et al., 2021).

It may thus be interesting to follow up the artifact caused by
the piggyBac transposon system mechanistically, by controlling
transposition events and the generation of BPs. For the use of
the piggyBac transposon system it is important to use codon
optimized mPB and develop transposase removal strategies
to minimize transposition after initial integration. Foremost,
however, it is important to be aware of this pitfall, which has
so far not been reported, and how to optimize the system
as detailed here.
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