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and collision during direct reprogramming
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Abstract

Despite the therapeutic promise of direct reprogramming, basic
principles concerning fate erasure and the mechanisms to resolve
cell identity conflicts remain unclear. To tackle these fundamental
questions, we established a single-cell protocol for the simultane-
ous analysis of multiple cell fate conversion events based on com-
binatorial and traceable reprogramming factor expression: Collide-
seq. Collide-seq revealed the lack of a common mechanism
through which fibroblast-specific gene expression loss is initiated.
Moreover, we found that the transcriptome of converting cells
abruptly changes when a critical level of each reprogramming fac-
tor is attained, with higher or lower levels not contributing to
major changes. By simultaneously inducing multiple competing
reprogramming factors, we also found a deterministic system, in
which titration of fates against each other yields dominant or col-
liding fates. By investigating one collision in detail, we show that
reprogramming factors can disturb cell identity programs indepen-
dent of their ability to bind their target genes. Taken together,
Collide-seq has shed light on several fundamental principles of fate
conversion that may aid in improving current reprogramming
paradigms.
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Introduction

Mammalian development, through a complex set of intrinsic and

extrinsic signals, leads to a plethora of functionally distinct cell

types characterized by gene regulatory networks that are stable

under physiological conditions (Vickaryous & Hall, 2006; Enver et

al, 2009; Graf & Enver, 2009). Surprisingly, forced expression of key

fate-determining transcription factors is not only sufficient to per-

turb these networks, but also to successfully convert one cell type

into the other, a process referred to as transdifferentiation or direct

reprogramming (Fig 1A; Iwafuchi-Doi & Zaret, 2014; Morris, 2016).

Direct reprogramming was first described when fibroblasts were

transdifferentiated into contracting muscle cells (Davis et al, 1987;

Weintraub et al, 1989) and was later extended to other paradigms,

including the direct conversion of ectoderm-derived glia into neu-

rons (Heins et al, 2002). Since then, reprogramming has been estab-

lished for many cell types and even across germ layers, such as the

conversion of fibroblasts into neurons, hepatocytes, and most strik-

ingly, induced pluripotent stem cells (Takahashi & Yamanaka, 2006;

Vierbuchen et al, 2010; Huang et al, 2011).

The current wealth of different reprogramming paradigms sug-

gests that virtually any cell might be converted into any other cell

type. However, despite the variety of available reprogramming para-

digms and efforts to investigate the underlying molecular mecha-

nisms (Buganim et al, 2012; Chronis et al, 2017; Fu et al, 2018;

Dall’Agnese et al, 2019; Velychko et al, 2019; Cates et al, 2021;

Kempf et al, 2021; Yagi et al, 2021) several fundamental questions

remain unanswered. For example, it is currently unknown whether

different fate conversions share similar principles, i.e., whether gen-

eral mechanisms to achieve the loss of starter cell identity exist.

Similarly, it is also unclear to which extent the expression levels of
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reprogramming factors influence both loss and gain of cell identity

during reprogramming. For instance, do transcriptomic changes

scale with reprogramming factor expression levels and, as a result,

fate conversion occurs in a gradual manner, or do critical thresholds

exist instead? This distinction would be particularly relevant for

members of larger transcription factor families, such as basic helix

loop–helix (bHLH) proteins, which share low-affinity sites and are

consequently subject to binding site competition (Long et al, 2016).

Finally, another widely overlooked aspect of cell fate conversion is

that it always entails a cell identity conflict, i.e., the existing cell

identity gets challenged by a reprogramming transcription factor

attempting to induce a conflicting program. We know, however,

very little about the molecular basis of cell identity conflicts, partic-

ularly on which molecular level they collide and how cells resolve
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such conflicts. For example, can mismatched transcriptional pro-

grams be present simultaneously for a significant amount of time or

does competition for co-factors and/or DNA binding interfere with

the full implementation of programs? Major obstacles to address

these questions from publicly available data are the lack of system-

atic side-by-side experiments and the widespread use of optimized

medium conditions during different reprogramming protocols,

imposing a strong bias on gene expression (Chen et al, 2014; Kim et

al, 2015; Kleijkers et al, 2015; Ledur et al, 2017). Hence, no direct

comparisons of the impact various fate-instructing reprogramming

factors have on starter cell identity have been performed to date.

Similarly, addressing whether expression levels of reprogramming

factors are significant for converting the cellular transcriptome has

also not been systematically evaluated so far. Finally, although com-

binations of compatible factors have been used to obtain specific

cell types of interest (Takahashi & Yamanaka, 2006; Vierbuchen et

al, 2010; Huang et al, 2011; Sekiya & Suzuki, 2011) it is unclear

how cells respond to conflicting fates being imposed on the cell at

the same time.

To explore cell identity hierarchies and mechanisms of fate colli-

sion, we developed Collide-seq, implementing novel experimental

approaches and analysis tools to quantify reprogramming factor

levels and investigate, on a single cell level, how fibroblasts convert

into lineages of different germ layers and how cell identity conflicts

are resolved.

Results

A multiplexed strategy for the comparison and collision of cell
fate conversions

In order to gain a mechanistic insight into cell fate conversion, we

chose experimental conditions that allowed a systematic compar-

ison of the impact different reprogramming factors have on the

transcriptome. This included the choice of a versatile starter cell,

mouse embryonic fibroblasts (MEFs), which have been extensively

used in numerous reprogramming paradigms (Davis et al, 1987;

Takahashi & Yamanaka, 2006; Vierbuchen et al, 2010; Caiazzo et

al, 2011; Huang et al, 2011; Li et al, 2011; Nemajerova et al, 2012;

Ring et al, 2012; Chanda et al, 2014; Colasante et al, 2015; Lim et

al, 2016; Guo et al, 2017; Xiao et al, 2018). Furthermore, we

focused our analysis on an early time point (72 h) to study the

primary events of cell fate conversion and opted for a neutral cell

culture medium, devoid of strong signaling molecules that would

favor certain lineages over others and thereby alter the transcrip-

tome independently of reprogramming factor function. Next, we

selected a diverse panel of reprogramming factors: Ascl1, MyoD1,

FoxA2, Sox2, and Pou5f1 (hereafter referred to as Oct4), which rep-

resent well-known master regulators of different cellular identities

belonging to distinct germ layers (Fig 1A and B; i.e., neuronal,

myogenic, hepatogenic, multipotent and pluripotent, Table 1; Davis

et al, 1987; Takahashi & Yamanaka, 2006; Grinnell et al, 2007;

Vierbuchen et al, 2010; Chen et al, 2011; Huang et al, 2011; Li et

al, 2011; Tsai et al, 2011; Wu et al, 2011; Ring et al, 2012; Chanda

et al, 2014; Lim et al, 2016; Nakamori et al, 2017). Although the

somatic reprogramming factors (Ascl1, MyoD1, FoxA2, and Sox2)

are often used in combination with complementary factors, they

are considered key drivers of conversion within their lineage and,

under defined media conditions, are capable of achieving repro-

gramming on their own (Davis et al, 1987; Ring et al, 2012;

Chanda et al, 2014; Guo et al, 2017). Additionally, the inclusion of

both Sox2 and Oct4 allowed us to further investigate whether

pluripotency factors act as general enablers of cell fate changes as

recently suggested (Deleidi et al, 2011; Kim et al, 2011; Peskova et

al, 2019; Sharma et al, 2019).

We cloned these factors into a PiggyBac vector, placing their

expression under the control of a doxycycline-dependent promoter

(TRE), and added constitutively expressed fluorescent reporters

(acGFP, EBFP2, DsRed; Fig 1B and C). A major benefit of using

PiggyBacs, is the ability to obtain polyadenylated transcripts for the

reporter and the transgene, facilitating the detection and quantifica-

tion of transgene levels by scRNA-seq platforms. Furthermore,

between 1 and 10 PiggyBac vectors typically integrate, leading to a

broad range of transcript expression between different cells (Yusa et

al, 2009). By using a doxycycline-inducible promoter, we further

ensured synchronous expression and a defined experimental start-

ing point. Importantly, no protein expression was detected in the

absence of doxycycline, but a strong nuclear signal was seen 48 h

after induction, indicating tight chemical control of reprogramming

factor expression (Figs 1D and EV1A). Constitutive fluorescent

reporter expression cassettes, on the other hand, enabled the enrich-

ment and pooling of cells prior to transgene induction, i.e., initiation

of cell fate conversion and scRNA-seq.

Next, we nucleofected MEFs with constructs for the individual

factors (Ascl1, MyoD1, FoxA2, Sox2, and Oct4) and their

◀ Figure 1. A multiplexed strategy for the comparison and collision of cell fate conversions.

A Schematic depiction of Waddington’s landscape highlighting key transcription factors during development, induction of pluripotency, and direct reprogramming.
B Schematic outline describing key aspects of Collide-seq including (i) PiggyBac vectors used (top left), (ii) multiplexing of reprogramming factors (top right), (iii) selec-

tion of positive cells (bottom right) (iv) pooling of cells and transgene induction (bottom middle) and (v) scRNA-seq (bottom left).
C Overview of all experimental conditions included in the Collide-seq experiment including single, double, and triple transcription factor combinations.
D Representative immunofluorescence images of MEFs 48 h after transgene induction stained for the indicated reprogramming factors. Scale bar represents 50 μm

(n = 3 biological replicates).
E Log fluorophore expression superimposed on Uniform Manifold Approximation and Projection (UMAP) embedding of the dataset. Shown are fluorophore expression

levels (gene exp.) on a logarithmic (ln) scale.
F Log transgene expression superimposed on a UMAP embedding of the dataset. Shown are transgene expression levels (gene exp.) on a logarithmic (ln) scale.
G UMAP embedding of scRNA-seq dataset colored by technical replicate. Orange: Replicate 1, Blue: Replicate 2.
H Cell-cycle score superimposed on UMAP embedding of the dataset. See Unsupervised analysis of single-cell RNA-seq section in Materials and Methods for further

details.

Source data are available online for this figure.
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combinations. This yielded a total number of 17 different condi-

tions, including cells expressing only the fluorescent reporters as a

negative control (Fig 1C). After collecting an equal number of cells

per condition and subsequently pooling them, cells were plated in a

single well and transgene expression was induced for 72 h prior to

single-cell RNA sequencing (scRNA-seq) using the 10x Genomics

Chromium platform. In total, this returned ∼17,000 cells (Replicate

1: 8,709 cells, Replicate 2: 8,219 cells) for downstream analysis after

applying strict quality control criteria (see Materials and Methods).

As expected, nearly all cells expressed fluorescent reporters and at

least one reprogramming factor (Fig 1E and F). Moreover, the

expression of each transcription factor was localized to distinct parts

of the Uniform Manifold Approximation and Projection (UMAP;

preprint: McInnes et al, 2018) embedding, indicating that repro-

gramming factor expression and transcriptomic effects were well

correlated (Fig 1E and F). These attained cell states were overall

also highly similar between both technical replicates, demonstrating

that our method yields robust results (Fig 1G). Furthermore, repro-

gramming factor transcripts were confirmed to be mostly derived

from PiggyBacs, as a custom single nucleotide polymorphism (SNP)

based alignment strategy attributed the majority of reprogramming

factor UMIs to the transgenic allele (Fig EV1B, see Materials and

Methods). This indicated that self-reinforcement plays a minor role

at the initial stage of cell conversion. In addition, the observed cellu-

lar heterogeneity was also not a technical artifact originating from

ambient effects, as shown by applying ambient RNA correction to

this data (Young & Behjati, 2020; Fig EV1C–F, see Materials and

Methods). Finally, cell-cycle analysis indicated that most cells

expressing a reprogramming factor had exited the cell cycle after

72 h, irrespective of whether the expressed reprogramming factor

ultimately steers towards a postmitotic cell fate (Ascl1 and MyoD1)

or not (FoxA2, Oct4, and Sox2; Fig 1H). Altogether, our experimen-

tal paradigm, which we will hereafter refer to as Collide-seq,

allowed reading out the multiplexed reprogramming factor expres-

sion, which correlated well with induced transcriptomic effects, thus

making it a suitable system to explore the general principles of early

reprogramming events.

Demultiplexing combinatorial reprogramming factor expression
reveals discrete induction of distinct transcriptomic states

As we pooled cells from the different conditions to reduce batch

effects and allow a systematic analysis of each condition, we next

aimed to demultiplex the dataset into its individual conditions. Pre-

vious approaches for single-cell knock-out state inference (Dixit et

al, 2016) are liable to yield false discoveries that derive from the

knock-out state being modeled as a mixture model of gene

expression. Hence, we devised a novel computational approach to

assign cells to their maximum a posteriori fit condition, leveraging

the unique signature of transgene and fluorophore expression by

cells from each condition (Fig 2A, Appendix Fig S1A, see Materials

and Methods). Importantly, we did not use any additional transcrip-

tomic information to assign conditions, as this would possibly bias

assignment. This model was regularized by the set of conditions

defined in the experimental setup (Fig 1C) and the inferred condi-

tions mapped to distinct parts of the cell state space (Fig 2A).

Accordingly, Louvain clustering stratified these states into distinct

clusters corresponding to Ascl1 (blue shades), MyoD1 (yellow/or-

ange shades), FoxA2 (pink/purple shades) and Sox2 (vermillion/red

shades) induced transcriptional changes (Fig 2B). The Oct4-positive

cells, however, did not separate into a distinct cluster but were

rather intermingled with the original fibroblast population (Fig 2A

and B, fibroblasts, gray shades). Furthermore, the fibroblast popula-

tion showed four clusters, three of which were close to each other,

potentially representing different cell-cycle states (Fig 1H), while

one was more separated and possibly contained damaged cells

given the relatively low gene and read count numbers (Fig 2B, left

most fibroblast cluster, Appendix Fig S1B). Most importantly, sev-

eral clusters contained cells expressing more than one factor, indi-

cating that collision between factors yields distinct cell states at 72 h

postinduction (Fig 2A and B). These collision states did not show

increased fractions of mitochondrial reads, a hallmark of cellular

stress (Ilicic et al, 2016; Luecken & Theis, 2019), implying that these

states are viable (Appendix Fig S1C). Taken together, these results

revealed distinct transcriptomic consequences induced by each fac-

tor and their combinations, which are well detected and tolerated

for at least 72 h after transgene induction, thereby validating these

single factors as sufficient to induce distinct transcriptomic changes.

Comparing principles of fate conversion between single
reprogramming factors

Having established and verified the validity of Collide-seq, we next

aimed to identify the common and unique properties of different

fate conversions. We first focused on transcriptomic changes in cells

expressing a single reprogramming factor. To this end, we fit a gen-

eralized linear model to the cellular expression vectors as a function

of transgene expression and computed the overall differential

expression magnitude for each factor across all genes (see Materials

and Methods). This can be interpreted as the deviation from the

original fibroblast identity induced by each factor and revealed a

clear hierarchy: MyoD1 had the highest magnitude while Ascl1,

FoxA2, and Sox2 had smaller but comparably strong effects (Fig 3A,

see Materials and Methods). Oct4 failed to significantly perturb cell

Table 1. Overview of different reprogramming factor and the characteristics of their target cells.

TF Target cell Germ layer Potency Cell-cycle status

Ascl1 Neuron Ectoderm Terminally differentiated Postmitotic

MyoD1 Skeletal muscle Mesoderm Terminally differentiated Postmitotic

FoxA2 Hepatocyte Endoderm Terminally differentiated Mitotic

Sox2 Neural stem cell Ectoderm Multipotent Mitotic

Oct4 Pluripotent stem cell Pre-germ layer Pluripotent Highly proliferative
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identity on its own, hence, we focused on the four somatic factors

for this part of the analysis.

A main advantage of Collide-seq is that, due to the multiplexing

of conditions in a single biological replicate, most confounding fac-

tors (i.e., culture conditions, culture media differences, etc.) are

excluded. Hence, we could separate this general differential expres-

sion magnitude (Fig 3A) into two parts: (i) gene activation events

related to fate acquisition and (ii) transcriptional repression associ-

ated with starter cell identity erasure. For fate acquisition,

demultiplexing and Louvain clustering revealed that all four factors

show a wide range of reprogramming factor expression with strong

cell-to-cell variation (Appendix Fig S2A). Nevertheless, when indi-

vidually expressed, each of them induced a distinct transcriptomic

state (Fig 2B) and their lineage changes could also be resolved

through an individual RNA velocity model (Bergen et al, 2020; Fig 3

B). Moreover, using published ChIP-seq data (Oki et al, 2018), a

substantial overlap between putative binding sites and genes

induced in our dataset, particularly for Ascl1, MyoD1 and FoxA2
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Figure 2. Demultiplexing of combinatorial reprogramming factor expression reveals discrete induction of distinct lineages.

A Visualization of condition assignment outcome (see Computational demultiplexing section in Materials and Methods for further details) superimposed on a Uniform
Manifold Approximation and Projection (UMAP) embedding of the dataset. Depicted are the total population of cells carrying one, two, or three factors (left panels,
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B Louvain clustering of the entire dataset (left panel) separated into clusters corresponding to the expression of the individual transcription factors, the ground
fibroblast state, and the collision of reprogramming factors (right panels). Clusters are labeled according to the predominant transcription factor or cell state.

� 2022 The Authors Molecular Systems Biology 18: e11129 | 2022 5 of 23

Bob A Hersbach et al Molecular Systems Biology

 17444292, 2022, 9, D
ow

nloaded from
 https://w

w
w

.em
bopress.org/doi/10.15252/m

sb.202211129 by C
ochrane G

erm
any, W

iley O
nline L

ibrary on [12/06/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



was found (Fig 3C). This indicates that, at least for fate acquisition,

a large fraction of transcriptional changes occurring at these early

experimental time points might be direct consequences of repro-

gramming factor expression (Fig 3C). Furthermore, and despite the

use of neutral culture conditions, each factor induced a distinct tran-

scriptomic signature, characterized by unique target gene expression

(Fig 3D) and gene ontology (GO) enrichments fitting to the corre-

sponding lineages (Appendix Fig S2B–E). Overall, these results con-

firmed the competence of Ascl1, MyoD1, FoxA2, and Sox2 to trigger

transcriptomic changes of cell fate conversion towards their respec-

tive lineages.

In addition to the differential expression magnitude (Fig 3A) that

indicated each factor drives the transcriptomic state away from the

original fibroblast identity, we also aimed to specifically measure

the loss of fibroblast identity induced by each factor. To this end,

we first devised a fibroblast score based on a literature-derived list

of fibroblast marker genes (Appendix Table S1, see Materials and

Methods). Applying this score to the single factor data showed that

all factors cause fibroblast identity loss after 72 h of reprogramming

factor induction, though MyoD1 was most potent in this regard

(Fig 3E). A more global analysis validated this observation, as genes

encoding for extracellular matrix and cell periphery proteins, core

parts of the fibroblast proteome, were significantly enriched among

the genes downregulated by all four factors (Appendix Figs S3A–D
and S4A–D, see Materials and Methods). Interestingly, however,

these genes were rarely shared among all factors, suggesting that

there is no common gene set or mechanism through which fibrob-

last identity is erased (Fig 3F). Notably, we did find substantial pair-

wise overlap in downregulated gene sets (i.e., 23% Sox2-FoxA2,

21% FoxA2-MyoD1, 35% Ascl1-MyoD1), suggesting similar strate-

gies for some factor pairs, while others possibly follow different

repressive schemes. In line with having the biggest impact on the

fibroblast transcriptome, MyoD1 was most potent in repressing the

fibroblast signature, reflected by the fact that most of its
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Figure 3. Comparing principles of fate conversion between distinct lineages.

A Bar plot of transgene-wise coefficient vector magnitude as a measure of induced transcriptomic changes by individual reprogramming transcription factors (see Dif-
ferential expression analysis section in Materials and Methods for further details, A = Ascl1, M = MyoD1, F = FoxA2, S = Sox2, O = Oct4).

B Latent pseudotime (lineage progression) superimposed on a Uniform Manifold Approximation and Projection (UMAP) of the dataset computed with scVelo (Bergen
et al, 2020; see RNA velocity and CellRank analysis section in Materials and Methods for further details).

C Heatmap showing the intersection of upregulated genes in individual factor conditions (y-axis) vs. putative binding sites derived from a publicly available ChIP
dataset for MyoD1 (M), Ascl1 (A), FoxA2 (F), and Sox2 (S) (x-axis; Oki et al, 2018).

D Matrixplot showing the relative mean expression of key target genes related to the different lineages for the indicated single factor conditions and control vector
expressing fibroblasts (Fib.).

E Fibroblast score (see Unsupervised analysis of single-cell RNA-seq data in Materials and Methods and Appendix Table S1 for further details) for single factor condi-
tions compared with fibroblasts expressing only control vectors (Fib. = Fibroblasts). The number of data points per violin plot is the number of cells per matched con-
dition shown in Fig 2A. For each violin, the center dot represents the median, the centerline defines the range and the solid box marks the interquartile range (IQR).

F Venn diagram of downregulated gene overlap between single factor conditions. Downregulated genes were determined by performing differential expression between
each condition and the control vector carrying fibroblasts (See Differential expression section in Materials and Methods for further details).

6 of 23 Molecular Systems Biology 18: e11129 | 2022 � 2022 The Authors

Molecular Systems Biology Bob A Hersbach et al

 17444292, 2022, 9, D
ow

nloaded from
 https://w

w
w

.em
bopress.org/doi/10.15252/m

sb.202211129 by C
ochrane G

erm
any, W

iley O
nline L

ibrary on [12/06/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



downregulated genes were not shared with the other factors (Fig 3

F). Overall, this analysis revealed that few similarities exist between

different reprogramming factors when it comes to achieving fibrob-

last identity repression.

Collision of multiple reprogramming factors reveals mostly
antagonistic effects

Building on the single factor data for the removal of starter cell iden-

tity, we next asked whether multiple factors synergize or antagonize

in fate erasure. Using the same fibroblast score as above, factor col-

lisions were shown to have intricate effects on switching off fibrob-

last identity (Fig 4A). For instance, the combination of Ascl1 and

Sox2 repressed fibroblast identity more efficiently than either Ascl1

or Sox2 alone (Fig 4A). By contrast, cells expressing both Ascl1 and

MyoD1 maintained a much higher fibroblast score than those

expressing MyoD1 alone, while neither Sox2 nor FoxA2 had such a

negative impact on MyoD1 (Fig 4A). Furthermore, the addition of

Sox2 and Oct4 did not improve identity loss for any of the other fac-

tors, suggesting that these pluripotency genes do not act as general

enablers by facilitating starter cell identity removal, as has been sug-

gested before (Deleidi et al, 2011; Kim et al, 2011; Peskova et

al, 2019; Sharma et al, 2019). This reinforces the concept that differ-

ent molecular mechanisms for cell identity removal exist and

demonstrates that these mechanisms can act synergistically in some

instances, yet antagonistic or neutral outcomes are more common

(Figs 4A and EV2A).

We then analyzed how transcriptomic changes caused by one

reprogramming factor are perturbed by other factors. For this, we

first collapsed the cells within each condition to their mean, forming

pseudobulk samples, and performed hierarchical clustering (Fig

EV2B). Next, we performed a principal component analysis of these

pseudobulk samples and overlaid it with the hierarchical cluster

labels (Figs 4B and EV2B, see Materials and Methods). This

revealed that no factor was clearly dominant over all other factors,

although in some of the combinations one reprogramming factor

had significant dominance over the other (Fig 4B). Strikingly,

MyoD1 only expressing cells were significantly different from all

other conditions (Figs 4B, and EV2B and C). This unique transcrip-

tional identity of the MyoD1 pseudobulk sample supports our find-

ings on its differential expression magnitude (Fig 3A) and its

striking potency in erasing fibroblast identity (Fig 3E), indicating

MyoD1 is the putative most potent reprogramming factor in our set-

ting. Nevertheless, the striking dissimilarity between the MyoD1-

only condition and double/triple factor combinations containing

MyoD1 indicated that the other factors can perturb the myogenic

trajectory significantly (Fig 4B).

Following up on this, we next quantified the degree of syner-

gism and antagonism in collisions by analyzing pairwise interac-

tions between factors in a linear model of cellular expression

vectors. The interaction coefficients in this model can be inter-

preted as positive (synergistic) or negative (antagonistic) effects

that are evoked by the collision on the expression vector of the

single factor conditions. We correlated the coefficient vectors of

each term in the linear model to understand their relative effect on

gene expression (Fig 4C). For the individual reprogramming fac-

tors, mostly positive correlation coefficients were found, indicating

a sign change in a similar direction (Fig 4C), likely caused by simi-

larities in fibroblast identity removal. By contrast, the effects

observed upon the co-expression of two or more reprogramming

factors produced a generally negative or neutral correlation, thus

indicating an antagonistic or nonsubstantial change (Fig 4C). This

demonstrated that fate collisions are often detrimental to the indi-

vidual fate, as conversions are partially undone by the collision.

▸Figure 4. Factor collision reveals antagonistic effects of a deterministic system.

A Fibroblast score (see Unsupervised analysis of single-cell RNA-seq data section in Materials and Methods for further details) for single and double factor conditions
in comparison to control vector carrying fibroblasts. The number of data points per violin plot is the number of cells per matched condition shown in Fig 2A. For
each violin, the center dot represents the median, the centerline defines the range and the solid box marks the interquartile range (IQR).

B PCA scatter plot of first (PC1, vertical) and second (PC2, horizontal) loading of the different conditions after collapsing into pseudobulk samples. Colored rectangles
correspond to clusters defined in Fig EV2B. CV: Control vector expressing fibroblasts.

C Correlation matrix of linear model effects for single (left panel) and double factor (right panel) collisions. Color defines direction of correlation of gene-wise coeffi-
cient vectors (negative = blue, positive = red) and color tone depicts size of correlation. See Differential expression analysis section in Materials and Methods for
further details.

D Stacked violin plots showing the standardized median expression of several lineage marker genes for single factor conditions (bold) and upon collision with the
indicated factors (A = Ascl1, M = MyoD1, F = FoxA2, S = Sox2).

E Conceptual summary of fate titration analysis (upper left panel) and data-derived examples for the indicated combinations of factors. Shown are the Louvain clus-
ter assignments for the indicated collisions (upper panels) and the decision boundaries for indicated intermediate fates according to transcription factor levels
(lower panels). Transcription factor levels shown on the x- and y-axis are log-normalized expression values scaled into the dynamic range of the single-positive con-
dition. Cells are colored according to their Louvain cluster identity. See Fate titration section in Materials and Methods for further details.

F, G Predictive performance for a linear model of the categorical condition variable (L-C: Linear condition.), a linear model of the log of the transgene expression (L-E:
Linear expression), and a nonlinear model of the log of the transgene expression (NL-E: Nonlinear expression) in randomly held-out test cells (n = 1,184 cells). For
the task of Louvain cluster assignment prediction (F), shown are the area under the receiver–operator characteristic curve (ROC AUC), top 3 accuracy (Top 3 Acc.),
Accuracy (Acc.), and class-balanced accuracy (Bal. Acc.). For the task of prediction of log-normalized expression values of highly variable genes (G), shown is the cell-
wise R2 (G). See Supervised modeling section in Materials and Methods for further details. For each box in G, the centerline defines the median, the height of the
box is given by the interquartile range (IQR), the whiskers are given by 1.5 * IQR, and the outliers are given as points beyond the minimum or maximum whisker.

H, I Predictive performance on held-out reprogramming conditions for models and metrics as described in (H), with the exception of the baseline model, which is a lin-
ear model of binary transgene presence (L-B: Linear binary). The hold-out task in (H) is a particular triple-positive condition as indicated in the legend (N = 4). The
hold-out task in (I) is the set of all triple-positive conditions and models are either trained on single-positive conditions only or on single- and double-positive con-
ditions (N = 4). See Supervised modeling section in Materials and Methods for further details. For each box, the centerline defines the median, the height of the
box is given by the interquartile range (IQR), the whiskers are given by 1.5 * IQR, and the outliers are given as points beyond the minimum or maximum whisker.
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Notably, we again found no indication that pluripotency factors

Oct4 and Sox2 further enhance cellular conversion in any of the

combinations at this early time point. In terms of strength, the

negative correlation for the collision between MyoD1 and Ascl1

was strongest. As single factors, their effects showed a high corre-

lation coefficient (Fig 4C, intersection of MyoD1 and Ascl1 and

vice versa) confirming commonalities in their induced programs,

which have been reported previously (Lee et al, 2020). However,

their co-expression did not result in synergism, as might be

expected, but rather displayed a very strong antagonistic effect

(Fig 4C, intersection of MyoD1, and Ascl1 and MyoD1). Although

perturbations could be seen for many other factors as well, they

were clearly most prominent for the MyoD1 program. This pro-

nounced sensitivity of the MyoD1 induced program was also seen

when myogenic genes were examined, as the expression of several

known MyoD1 targets was strongly perturbed by the other factors

(Fig 4D). By contrast, Ascl1, Sox2, and FoxA2 retained the potency

to express marker genes of their respective linage during fate colli-

sion better (Fig 4D).

Fate titration analysis reveals determinism of cell states driven
by reprogramming factor levels

In relation to the collision effects described above, we speculated

that under competitive conditions the relative expression levels of

the transcription factors may influence the degree of perturbation.

Thus, we devised “fate titration analysis” (FTA) to attribute tran-

scriptomic states to reprogramming factor levels, modeling each cell

as its own perturbation experiment with unique reprogramming fac-

tor expression levels and cell state readout (see Materials and Meth-

ods). Transcriptomic states were represented by a clustering label

and this grouping was used to assign cells to either of the two

opposing fates (Fig 4E). Strikingly, when applying FTA to collisions

including our most potent single factor, MyoD1, we consistently

found that only cells expressing very low levels of the perturbing

factor converted to the MyoD1 transcriptional program (Fig 4E).

However, even at relatively low levels of expression, the perturbing

factor redirected the transcriptome to a collision state that was

markedly different from the two individual fates and, in some cases,

H

I

A B C

D E

F

G

Figure 4.
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cells were even directed to the state of the perturbing factor (Fig 4

E). This response seemed to be relatively independent of MyoD1

expression levels, as it occurred over the entire spectrum of MyoD1

expression (Fig 4E). Overall, these results indicated that the poten-

tial of reprogramming factors to induce global transcriptomic

changes might be uncoupled from their sensitivity to perturbation.

The above FTA results also suggested that there may be deter-

minism in gene expression states driven by reprogramming factor

expression levels. One can think of determinism in the context of

Waddington’s landscape, describing not only the range of possible

cell states but also their relative stability as a function of reprogram-

ming factor expression levels. We characterized the degree to which

cell states can be predicted in our data with classification models of

cell states, such as logistic regression of cluster assignments (see

Materials and Methods). Indeed, cluster assignment could be fit

with 0.70 accuracy (0.96 ROC AUC, Fig 4F), showing that we could

predict the general transcriptomic state of a cell based on its repro-

gramming factor expression levels, thereby demonstrating determin-

ism in the system at the level of cluster identities A stronger

demonstration of determinism is the ability of a mathematical model

to extrapolate transcriptomic states to unseen conditions. We per-

formed this extrapolation on the cell-wise RNA vectors and were

able to explain more variance with a nonlinear model than with a

linear model (R2 of 0.61 vs. 0.65, Fig 4G). Hence, outcome cell

states are nonlinear functions of reprogramming factor expression

levels. This notion fits well to the above-described fate collisions,

which yield cell states in combinatorial reprogramming that are not

simply the sum of the induced fates. We further hypothesized that

the transcription factor combinations did not only yield a pre-

dictable cell state for a given transgene expression level but also

resulted in predictable cell state stability. Here, stability can be mea-

sured as gene expression variance where a low variance implies that

a given transgene configuration instructs a very stable cell state.

Indeed, we were able to correlate the modeled gene-wise variance

with prediction errors showing that variance estimation is possible

here (R2 = 0.90; Fig EV2D). When employing this, we found that

variance does not increase with transgene levels, revealing that

indeed each factor induces a stable transcriptomic program rather

than a stochastic gene expression pattern (Fig EV2E–G). Lastly, we

evaluated the ability of the identified rules of determinism to predict

transcriptomic states in unseen genetic conditions (out-of-domain

generalization). Expecting the generalizability of the fate decision-

making rules learned by this model to increase with the complexity

of the training data, we first predicted cell states in unseen triple-

transgene conditions at an R2 of 0.63 (Fig 4H). Indeed, the predic-

tive performance on all models was increased on triple-positive con-

dition holdouts if the training data consisted of single- and double-

positive conditions rather than single-positive conditions only (Fig 4

I). Overall, this analysis suggested that the cell-wise gene expression

distribution is globally deterministic in Collide-seq. The genetic cir-

cuits underlying fate decision-making can be abstracted with super-

vised machine learning models as nonlinear effects that reflect

synergism and antagonism of factors. Taken together, the factor col-

lisions shown here demonstrated that all tested somatic reprogram-

ming factors possessed the potency to perturb the others, with no

truly dominant factor. Furthermore, this disturbance was highly

deterministic, as generalizable gene expression patterns could be

learned with supervised machine learning models, indicating that

model-aided design of reprogramming conditions for desired out-

come fates is possible if enough gene expression data are provided.

Fate competition between the bHLH factors MyoD1 and Ascl1

Although each collision state is potentially different, we deemed fol-

lowing up the strong antagonistic interaction between MyoD1 and

Ascl1 to be particularly interesting for several reasons. First, Ascl1

and MyoD1 are both bHLH factors that share several binding sites

and interactors (Lee et al, 2020; de Martin et al, 2021). Second, our

data indicated that Ascl1 does not only perturb the myogenic pro-

gram induced by MyoD1, but also impairs fibroblast identity loss by

the myogenic factor (Fig 4A). We thus set out to study their compe-

tition in more detail by setting up a second Collide-seq experiment

(Fig EV3A). For this experiment, we included a 24 and 48 h time

point, in addition to our original 72 h time point, to get more insight

into the temporal dynamics of fate collision. Furthermore, we chose

to use Oct4 and Hnf1a, a fate determinant in liver development (Lau

et al, 2018), over FoxA2 and Sox2 as they were expected to be less

potent transcription factors, allowing us to investigate with little

confounding how a third fate factor would influence Ascl1 and

MyoD1 competition. Applying the same computational approach as

above demultiplexed the data into the different experimental condi-

tions (Fig EV3B) and Louvain clustering stratified the different tran-

scriptomic states (Fig 5A). Distinct transcriptomic states for Ascl1,

MyoD1, and Hnf1a only expressing cells could be detected and fur-

ther confirmed by condition-wise RNA velocity analysis (Figs 5A

and EV3C). Moreover, a strong positive correlation between the

velocity-based pseudotime and the time these three reprogramming

factors were expressed demonstrated that duration of expression,

rather than expression levels, moves fate conversions forward (Fig

EV3D). Concentrating our analysis on Ascl1 and MyoD1 only

expressing cells, these cells were found in two separate groups of

adjacent clusters, referred to as Ascl1 and MyoD1 clusters, respec-

tively (Fig 5A). Cells expressing Ascl1, together with either Hnf1a or

Oct4, were mostly found in one of the Ascl1 clusters (78% Ascl1

and Hnf1a, 84% Ascl1 and Oct4), while those that were positive for

MyoD1 and either Hnf1a or Oct4 mostly resided in the MyoD1 clus-

ters (75% MyoD1 and Hnf1a, 84% MyoD1 and Oct4; Figs 5A and

EV3B). Cells expressing both Hnf1a and Oct4 mimicked the position

of the Hnf1a single positives (Figs 5A and EV3B). This indicated a

clear hierarchy between these four factors with Ascl1 and MyoD1

being most dominant, followed by Hnf1a and Oct4.

To better understand the collision of the two most dominant fac-

tors, Ascl1 and MyoD1, we next computed lineage endpoints using

the previously calculated RNA velocity vectors in combination with

CellRank (Lange et al, 2022, see Materials and Methods), grouping

cells to shared fates in an unbiased manner. For Ascl1 and MyoD1

only expressing cells, a single unique lineage endpoint was found

(Fig 5B). Using a large number of cells within the Ascl1 and MyoD1

lineages, together with the increased temporal resolution obtained

by sampling at different time points (24, 48, and 72 h), we were able

to stratify the previously identified collision states into two Louvain

clusters (Fig 5B). Importantly, these transcriptomic states did not

occur in the single transgene conditions and the predicted lineage

endpoints were distinct from the single-positive Ascl1 and MyoD1

endpoints (Fig 5B). Furthermore, in silico doublet simulation

showed such cells would occupy very different transcriptomic
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states, suggesting that this collision state is not merely the average

of the individual fates (Fig EV3E and F). We also confirmed that the

occurrence of collision states between Ascl1 and MyoD1 is robust,

as similar endpoints in a biological replicate dataset at 48 h were

found (Fig EV4A–C). Importantly, these collision endpoints were

dominant over the endpoints for both individual factors, abolishing

the purely Ascl1 attractor and only leaving few cells at the purely

MyoD1 attractor (Fig 5B). Furthermore, based on their overall simi-

larity to the respective single factor lineages, one collision state was

found to be more similar to the Ascl1 program, while the other was

more similar to the MyoD1 program (Ascl1-like intermediate,

MyoD1-like intermediate, Fig EV3G). Finally, overlapping our data

with published ChIP-seq data (Lee et al, 2020) confirmed that the

co-expression of Ascl1 and MyoD1 results almost exclusively in

antagonistic or neutral effects concerning target gene expression, in

accordance with our above findings on factor collision and despite

using a different computational approach (Figs 4C and 5C).

Importantly, the better temporal resolution and improved sam-

pling of the entire transgene expression spectrum in our second

Collide-seq experiment also allowed us to determine the relationship

between reprogramming factor expression levels and the transcrip-

tomic induction of new lineages. To this end, we first looked at gen-

eral target fate regulation, determining the general correlation

between transgene and target gene expression levels by binning

cells according to their Ascl1 or MyoD1 expression levels and exam-

ining the target gene expression for each bin (Fig 5D). Strikingly, a

clear gene expression threshold at which both Ascl1 and MyoD1

either induced or repressed the expression of their target genes was

found (Fig 5D). Hence, both the activation and repression of target

genes seems to behave in a binary fashion, rather than a linear or

exponential manner. Consequently, above this threshold,

transcriptomic states were similar between cells within a single con-

dition and changed little with additional increases in the bHLH

reprogramming factor level (Fig 5D).

Building on this, we probed how expression levels of Ascl1 and

MyoD1 influence the decision between collision states, again using

FTA (see Materials and Methods). This showed that only cells with

very high MyoD1 expression moved towards the more MyoD1-like

collision state or the MyoD1-only state (Fig 5E). At comparable

levels of the respective transcription factors, cells mostly shifted into

the Ascl1-like collision state (Fig 5E). We quantified the degree of

separation of both states with a linear classifier and were indeed

able to distinguish cells from both states with high accuracy (0.72,

Materials and Methods). This analysis illustrated the close call of

fate competition by these very potent fate inducers: MyoD1 is domi-

nant over Ascl1 at very high concentrations, but even low Ascl1

levels redirected a large proportion of cells to a more Ascl1-like

state. This balanced cell fate competition is particularly intriguing,

given that neurons are developmentally more distant from fibrob-

lasts, while muscle cells derive from the same germ layer.

Phenotypic analysis reveals DNA binding independence of the
colliding factor

In the above-described results, we restricted our analysis to tran-

scriptomic data on fate collisions. However, important readouts in

reprogramming include changes in cellular morphology and func-

tion. For example, a major event in myogenesis is the fusion of

newly formed myoblasts, giving rise to multinucleated myotubes

(Sampath et al, 2018). To investigate whether the collision between

Ascl1 and MyoD1 affected such functional aspects of reprogram-

ming, we nucleofected MEFs with either Ascl1, MyoD1, or their

▸Figure 5. Fate competition between the bHLH factors MyoD1 and Ascl1.

A Louvain clustering superimposed on a Uniform Manifold Approximation and Projection (UMAP) embedding of the second Collide-seq experiment. Clusters are labeled
according to the predominant transcription factor or cell state.

B Condition-based RNA velocity and CellRank for the indicated conditions. Shown are UMAP embeddings of all cells in the dataset (gray) with cells positive for the indi-
cated transcription factor(s) colored by the terminal fate assigned by CellRank to indicate lineage endpoints (Bergen et al, 2020). See RNA velocity and CellRank analy-
sis section of Materials and Methods for further details.

C Intersections of genes bound by Ascl1 and/or MyoD1 based on ChIP-seq data (Lee et al, 2020; see ChIP-seq data analysis and synergism and antagonism annotation
sections in Materials and Methods for further details) with gene sets that correspond to synergistic and antagonistic up- and downregulation. We defined synergism
and antagonism based on differential expression analysis (See Differential expression analysis section in Materials and Methods for further details). Genes were con-
sidered synergistic or antagonistic when their expression in double-positive conditions was higher (synergism) or lower (antagonism) than expected by adding their
expression in the single factor conditions together. Shown is the size of the intersection (number of genes) and the relative size of this intersection with respect to
the respective differentially expressed gene sets as defined by the column.

D Log-normalized expression z-score of genes up- (top panels) and downregulated (bottom panels) by Ascl1 (left, blue violins) and MyoD1 (right, yellow violins) vs. their
scaled expression levels (x-axis) binned into 10% intervals. For each violin, the center dot represents the median, the centerline defines the range and the solid box
marks the interquartile range (IQR).

E Fate titration plot of Ascl1 and MyoD1 double-positive cells (see Fate titration section in Materials and Methods for further details). Shown are decision boundaries
for indicated fates according to transcription factor levels. MyoD1 and Ascl1 expressions shown on the x- and y-axis are log-normalized expression values scaled into
the dynamic range of the single-positive condition (see Fate titration analysis section in Materials and Methods for further details). Cells are colored according to their
lineage endpoint as determined by CellRank.

F Representative immunofluorescence images of cells 3 days after transgene induction. Cells were stained for the fluorescent reporter present on the PiggyBac
construct of the reprogramming factor. Arrows indicate multinucleated cells. Scale bar represents 50 μm. mutAscl1 = mutant Ascl1.

G Quantification of the percentage of cells with more than one nucleus among all transfected cells within a given condition. Data points represent biological replicates
(n = 4). For each box, the centerline defines the median, the height of the box is given by the interquartile range (IQR), the whiskers are given by 1.5 * IQR, and the
outliers are given as points beyond the minimum or maximum whisker. Pairwise comparisons were performed with the Mann–Whitney U test and correction for
multiple testing performed with Benjamini–Hochberg correction. *P < 0.05 (MyoD1 vs. Ascl1: P = 0.03, MyoD1 vs. mutAscl1: P = 0.03, MyoD1 vs. Ascl1 and MyoD1:
P = 0.03, MyoD1 vs. mutAscl1 and MyoD1: P = 0.03, Ascl1 vs. Ascl1 and MyoD1: P = 0.03, Ascl1 vs. mutAscl1 and MyoD1: P = 0.03, mutAscl1 vs. Ascl1 and MyoD1:
P = 0.03, mutAscl1 vs. mutAscl1 and MyoD1: P = 0.03).

Source data are available online for this figure.
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combination and performed immunocytochemistry at 3 days post-

transgene induction (Fig 5F). Indeed, induction of MyoD1 resulted

in the generation of a substantial amount of multinucleated cells

with myotube-like morphology (Fig 5F and G). By contrast, the

addition of Ascl1 resulted in a significant reduction of multinucle-

ated muscle-like cell numbers (Fig 5F and G) and a marked decrease

in the protein expression of muscle marker Desmin (Fig EV3I and

J). To test whether this Ascl1-mediated perturbation of the myo-

genic program is a consequence of the collision of the two

transcriptional programs, or rather reflects competition between the

two proteins themselves, we employed a mutant version of Ascl1

(mutAscl1) carrying two mutations in its basic domain: E131R132 to

A131Q132 (see Materials and Methods). These residues are highly

conserved in bHLH proteins and critical to DNA binding (Turner &

Weintraub, 1994; Farah et al, 2000). Consequently, mutAscl1 dis-

played a strongly reduced ability to activate the expression of direct

Ascl1 targets (Fig EV3H). However, using mutAscl1 for fate collision

with MyoD1 showed that it was as capable as wild-type Ascl1 in
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reducing both the number of multinucleated cells as well as Desmin

expression levels (Figs 5F and G, and EV3I and J). Overall, these

results indicated that phenotypic perturbations observed upon the

collision of Ascl1 and MyoD1 seem to be independent of Ascl1 DNA

binding.

Competitive inhibition between Ascl1 and MyoD1 impairs
pioneer factor activity

To further examine how Ascl1 and mutAscl1 perturb MyoD1 func-

tion, we set up a third Collide-seq experiment including only Ascl1,

mutAscl1, and MyoD1 (Figs 6A and EV5A) and performed joined

single-cell profiling of gene expression and chromatin accessibility

(see Materials and Methods). As before, we first confirmed the

detection of transgene expression and demultiplexed the dataset into

its individual conditions (Figs 6B and F, and EV5B and C). In agree-

ment with the cell reprogramming assays (Fig 5F), collision with

either Ascl1 or mutAscl1 caused a marked decrease in myogenic

gene expression (Fig 6C and D). Supporting this notion, only very

few colliding cells were found in the MyoD1 cluster (Fig 6E). These

transcriptomic states were paralleled by condition-specific chro-

matin states, which also showed a disruption in double positives

(Fig 6F). To further investigate whether this effect on cell fate colli-

sion is directly due to a disturbance of MyoD1 binding to its targets,

we profiled DNA binding for MyoD1 using cleavage under targets

and release using nuclease (CUT&RUN; Skene & Henikoff, 2017;

Fig 6A). CUT&RUN for MyoD1 revealed an average of 7,290 binding

sites (Figs 6G and EV5D). Fitting to the role of a developmental tran-

scription factor, most of these binding sites were localized to gene

regulatory elements, such as putative enhancer elements and gene
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promoters (Fig 6H). Strikingly, although the nature of bindings sites

remained unchanged in collision conditions, a vast reduction in

DNA binding was observed when MyoD1 collided with either wild-

type or mutAscl1 (Figs 6G and H, and EV5D). Indeed, coverage in

the proximity of critical target genes revealed markedly reduced

binding of MyoD1 upon collision with both Ascl1 and mutAscl1

(Fig 6I). As both Ascl1 and MyoD1 have been reported to act as

pioneer transcription factors (Wapinski et al, 2017, Wapinski et

al, 2013; Casey et al, 2018; Dall’Agnese et al, 2019), we hypothe-

sized that Ascl1 might hamper the pioneer activity of MyoD1. Over-

lapping our CUT&RUN data with our scATAC-seq and scRNA-seq

data for these factors showed a near-perfect coverage of CUT&RUN

peaks by cumulative scATAC-seq peaks, confirming that the binding

sites map to chromatin that is at least transiently open during the

process (Figs 6J and EV5E). Since the presence of both Ascl1 and

mutAscl1 significantly decreased the general capability of MyoD1 to

bind to and open chromatin (Figs 6G and EV5F), which included

several key myogenic lineage genes, we concluded that they impact

MyoD1’s ability to act as a pioneer factor (Fig 6K). Taken together,

these results demonstrate that Ascl1 drives MyoD1 away from its

binding sites and makes it unable to induce the expression of myo-

genic target genes, thus resulting in a fate collision state.

Discussion

Here, we have simultaneously compared and collided different cell

fate conversions using Collide-seq (Fig 7A). To our knowledge, a

comparison of different reprogramming factors has, so far, only

been performed with the aim of finding optimal conditions to drive

cells towards a single given fate (Protze et al, 2012; Yang et

al, 2019; Luginb€uhl et al, 2021). However, to what extent different

factors achieve cell conversion through similar or different

mechanisms has received little attention. Collide-seq allowed

exploring this question and revealed that there is a substantial dif-

ference in how different reprogramming factors erase the original

identity (Fig 3F). This is interesting because it indicates that,

although stable under physiological conditions, several different

entry points exist to erase cell identity and characterizing and

manipulating them might provide much-needed strategies to

improve existing reprogramming paradigms. Furthermore, fate era-

sure correlated well with factor potency overall, here quantified as

perturbation magnitude in gene expression space with a linear

model (Fig 3A). Strikingly, we found that the mesodermal factor

MyoD1 was most potent in imposing its fate and repressing the orig-

inal mesodermal fibroblast identity. This might seem surprising

since not only MyoD1 but also Ascl1, FoxA2, Sox2, and Oct4 have

been attributed pioneer factor activity and are all considered key

drivers of their respective reprogramming paradigms (Iwafuchi-Doi

& Zaret, 2014; Zaret & Mango, 2016; Zaret, 2020; Sunkel & Stan-

ton, 2021). Indeed, Ascl1 and MyoD1 are, on their own, sufficient to

reprogram MEFs into induced neurons and muscles, respectively

(Davis et al, 1987; Chanda et al, 2014). Additionally, Sox2 and Oct4

have been reported to individually reprogram MEFs into neural pro-

genitor cells and IPSCs as well, albeit under specialized media con-

ditions (Li et al, 2011; Ring et al, 2012). As such, we expected a

similar ability between these factors to regulate their primary tar-

gets. Moreover, we predicted that nonmesodermal factors would

silence more fibroblast genes due to larger differences in the active

gene regulatory networks between starter and target cells. Instead,

we find that nonmesodermal factors downregulate fewer genes as

compared to the mesodermal factor MyoD1, suggesting that a spe-

cial relationship between starter cells and reprogramming factors

exists, possibly related to germ layer identity. In line with this

notion is MyoD1’s inefficiency to transdifferentiate cells into

myocytes when a starter cell of nonmesodermal origin is used,

◀ Figure 6. Competitive inhibition between Ascl1 and MyoD1 impairs pioneer factor activity.

A Schematic overview of third Collide-seq experiment.
B Visualization of assignment outcome (see Computational demultiplexing section in Materials and Methods for further details) for individual cells superimposed on

Uniform Manifold Approximation and Projection (UMAP) embedding of the scRNA-seq part of the experiment. Depicted are cells positive for the indicated conditions
using all cells (top panels) and the top 500 highest transgene expressing cells (bottom panels). Bottom right panel depicts grouped Louvain clustering based on the
factors present. MyoD1 = MyoD1 only, Collision = Ascl1 & MyoD1 and mAscl1 & MyoD1, Control = control vector carrying fibroblasts.

C Matrixplot showing the relative expression of key myogenic genes between different clusters as indicated in Fig 6B. Myo = MyoD1, Col = Collision, Con = Control.
D Log2 fold change of myogenic gene expression upon Ascl1 & MyoD1 (blue) and mAscl1 & MyoD1 (orange) collision as compared to MyoD1 only expressing cells. The

number of data points per violin plot is the number of cells per matched condition shown in Fig 6B. For each violin, the center dot represents the median, the
centerline defines the range and the solid box marks the interquartile range (IQR).

E Fraction of cells for each experimental condition among the different Louvain clusters.
F Visualization of assignment outcome (see Computational demultiplexing section in Materials and Methods for further details) for individual cells superimposed on a

UMAP embedding of the scATAC-seq part of the experiment. Depicted are cells positive for the indicated conditions using all cells (top panels) and the top 500 highest
transgene expressing cells (bottom panels). Bottom right panel depicts grouped Louvain clustering based on the factors present MyoD1 = MyoD1, Colli-
sion = Ascl1 & MyoD1 and mAscl1 & MyoD1, Control = Control vector carrying fibroblasts.

G Number of CUT&RUN peaks from a condition on the y-axis overlapping with CUT&RUN peaks from a condition on the x-axis. The presented number of overlapping
peaks is the average over two CUT&RUN replicates of both conditions. (M = MyoD1, +A = Ascl1 & MyoD1, +mA = mAscl1 & MyoD1).

H CUT&RUN peak classification averaged between two independent biological replicates depicted as a fraction of the total number of CUT&RUN peaks (Enh.,
Enhancers; Prom., Promoters). For each barplot, the 95% confidence interval is shown as error bars.

I Representative Integrative Genome Browser (IGV, see CUT&RUN peak visualization in Materials and Methods for further details; Robinson et al, 2011) tracks for the
indicated samples in CUT&RUN replicate 1 out of 2.

J Bar plot showing the number of averaged CUT&RUN peaks (blue) over two independent biological replicates that are covered by scATAC-seq (orange).
K CUT&RUN (left panel), scATAC (middle panel), and scRNA-seq (right panel) signal for key myogenic marker genes for the indicated conditions. CUT&RUN signal is aver-

aged for two biological replicates. The number of data points per barplot of the CUT&RUN data is two replicates, and per box plot of ATAC and RNA data is the num-
ber of cells per matched condition shown in Fig 6B. For each barplot, the 95% confidence interval is shown as error bars. For each box, the centerline defines the
median, the height of the box is given by the interquartile range (IQR), the whiskers are given by 1.5 * IQR, and the outliers are given as points beyond the minimum
or maximum whisker.
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indicating that MyoD1’s potency might be indeed dependent on the

cell of origin (Davis et al, 1987; Weintraub et al, 1989). Taken

together, our results support the hypothesis that transdifferentiation

into more closely related cell types might be more thorough and/or

efficient (Hochedlinger & Plath, 2009; Morris & Daley, 2013). There-

fore, therapeutic cell conversions may best be limited to related cell

types if possible (Morris & Daley, 2013).

Interestingly, the strong reprogramming ability of MyoD1 on its

own did not hold in competitive conditions. We discovered this sur-

prising sensitivity of the pioneer factor through simultaneous induc-

tion of multiple divergent fates. MyoD1’s program was effectively

perturbed by all other factors, except Oct4, and this effect was

largely independent of the expression levels of MyoD1 and the col-

liding factors (Fig 4E). Although we generally found antagonistic

effects of colliding factors more frequently than synergism, one of

the factors tested, Ascl1, was particularly disruptive and the only

one capable of hindering MyoD1’s potential to erase the fibroblast

identity (Fig 4A). To our knowledge, these experiments are the first

to systematically position different reprogramming factors against

each other. Some of our findings are, however, reminiscent of the

previously proposed “seesaw model” (Shu et al, 2013), in which

opposing lineage factors are thought to cancel each other out, stabi-

lizing a pluripotent stem cell identity. Conceptually close as well are

cell fusion experiments (Cowan et al, 2005; Brown & Fisher, 2021).

Such experiments showed that pluripotency is often dominant over

somatic cell identities. However, our fate collision showed no domi-

nance of pluripotency programs, nor did we detect any hierarchy

that would reflect a developmental order. This indicates that compe-

tition is probably resolved on the factor rather than the lineage

level. Similarly, several studies have suggested that induction of

pluripotency factors might be an effective way to remodel the

epigenome and make differentiated cells more amenable to fate

changes (Deleidi et al, 2011; Kim et al, 2011; Peskova et al, 2019;

Sharma et al, 2019). However, our data shows that Oct4 and Sox2

do not act as immediate cell fate enablers enhancing the transcrip-

tional effects of the somatic reprogramming factors (Figs 4C, and

EV2A and B). Instead, Oct4 affected the individual somatic repro-

gramming trajectories very little during fate collision. These findings

are in line with studies showing that, during the early phases of

iPSC reprogramming, Oct4 overexpression mostly leads to off-target

gene expression patterns (Velychko et al, 2019). Moreover, the

same authors also found that, when using the Yamanaka factors,

Oct4 has a neglectable role in cell fate erasure, writing “loss of

fibroblast identity [. . .] appears to be independent of exogenous

Oct4.” This also fits with the concept that Oct4 might create a more

open and instable chromatin environment that facilitates the actions

of other factors (Kim et al, 2011), a process that could be rather

slow (Taberlay et al, 2011) and hence not detectable during the first

72 h examined here. This would also explain why Sox2 and Oct4

double-positive cells show only few regulated targets associated

with pluripotency, although two-factor iPS reprogramming of fibrob-

lasts has been conducted before (Huangfu et al, 2008; Kim et

al, 2008; Nemajerova et al, 2012).

Collide-seq also enabled us to quantify the influence of repro-

gramming factor expression levels on cell conversion. Leveraging

this with a machine learning approach, we were able to reveal a

high degree of determinism in this system by demonstrating that the

induced perturbations yield predictable cell states. We also charac-

terized transcription factor abundance-dependent fate choices with

fate titration analysis, showing that Collide-seq can be used to titrate

transcription factors against each other to screen fate outcomes.

Interestingly, the resulting transcriptomic states were found to be a

nonlinear function of the reprogramming factor expression levels,

which is both highlighted by the emergence of collision states in fate

titration analyses and the step-like saturating dependency of gene

activation of transcription factor induction (“binary switch”). In

other words, cell fate conversion does not scale gradually with

increasing reprogramming factor expression levels but instead

depends on whether a critical expression threshold is reached. This

observation is highly reminiscent of a previously described switch

system in blood cell differentiation, where transcriptomic changes

corresponding to cell fate decisions also occur abruptly rather than
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Figure 7. Proposed model.

A Schematic summary of factor hierarchies deducted from our experiments. Strength of interaction between factors is reflected by the line width. Nature of interaction
(occurrence of collision state or dominance) is depicted by arrowheads (collision state) or bar ends (dominance).

B Schematic overview of the possible mechanisms for Ascl1 and MyoD1 collision. (i) collision between transcriptional programs, (ii) competition between (shared)
binding sites, (iii) formation of an inactive heterodimer, and (iv) cofactor competition.
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gradually (Huang et al, 2007). Taken together, this finding indicates

that an optimal level of reprogramming factors expression exists,

which is sufficient for reprogramming but also minimizes the risk of

failure due to cellular stress as a result of transcription factor over-

expression. Thus, identifying optimal reprogramming factor expres-

sion levels could significantly improve existing reprogramming

protocols. Furthermore, the cell-wise perturbation effects described

here may also be leveraged for gene regulatory network modeling,

as they tend to be stronger than available data based on single-cell

knock-out data. Hence, they may facilitate the development of

bottom-up models for fate collision on the chromatin and transcrip-

tome level in the future (preprint: Kamimoto et al, 2020).

Overall, our study unraveled several key principles of cellular

reprogramming by systematically comparing reprogramming factors

and applying collisions between them, thereby revealing a determin-

istic system that mapped the dominance or comparable strength of

the different factors (Fig 7A). For example, the ability of Ascl1 to

induce its lineage and remove fibroblast identity was similar to

FoxA2 and Sox2 (Fig 3A and E). MyoD1, on the other hand, was

found to be considerably more potent (Fig 3A and E). However, this

potency of MyoD1 was not reflected under competitive conditions,

as their relative strengths reversed, making Ascl1 the strongest driver

that directed the majority of cells towards an Ascl1-like intermediate

(Fig 5E). Correspondingly, we also observed a clear loss of MyoD1

pioneer activity upon collision with Ascl1 (Fig 6G, J and K).

Together, these results revealed a profound effect of competition on

MyoD1 function and prompted us to further investigate how Ascl1

achieves this. To this end, it is important to note that Ascl1 and

MyoD1 are both basic helix loop–helix (bHLH) factors, which can

function as either homo- or heterodimers (Massari & Murre, 2000;

Wang & Baker, 2015; Murre, 2019; de Martin et al, 2021). Conse-

quently, we considered four molecular mechanisms to explain these

effects: (i) collision between transcriptional programs, (ii) competi-

tion between (shared) binding sites, (iii) formation of an inactive

heterodimer, and (iv) cofactor competition (Fig 7B). Interestingly,

we found that collision is hardly diminished by employing mutAscl1

(Figs 5F and EV3H), indicating that fate collision is likely not a result

of transcriptional competition or DNA binding site competition. An

alternative explanation might therefore be that Ascl1 and MyoD1

form nonfunctional heterodimers that bind DNA but do not activate

transcription. Our CUT&RUN data, however, shows that many

MyoD1 binding sites are lost upon collision with Ascl1, making this

option also improbable. Thus, competition for possible dimerization

partners appears to be the most plausible explanation for the

observed effects (Fig 7B). Indeed, competition on this level has

already been suggested for MyoD1 and the bHLH factor Twist (Spicer

et al, 1996). The finding that the fate collision between MyoD1 and

Ascl1 is triggered by competition between the factors themselves

rather than their interaction with DNA or their programs is highly

relevant for the design of novel reprogramming approaches since it

indicates that the master transcription factors expressed in the cell of

origin rather than the molecular abilities of the expressed reprogram-

ming factors might define whether certain factors possess reprogram-

ming potential in certain settings. It is important to note, however,

that not all detected fate collisions might be caused by the same

mechanism and that we unfortunately know very little about the fac-

tors that protect and define fibroblast identity. Taken together, we

investigated fundamental concepts of cell identity conversions using

a combination of novel machine learning and molecular biology

approaches. These results exposed the underlying principles of cell

identity acquisition that could be used to improve current repro-

gramming strategies through the informed selection of starter cells,

cell fate factors, and reprogramming factor expression levels.

Materials and Methods

Animals

R26-M2rtTA knock-in mice were obtained from Jackson Laboratory

(RRID:IMSR_JAX:006965) and maintained in pathogen-free condi-

tions with 12 h light/dark cycles. Mice were housed in groups of 2–
5 animals and had free access to water (acidified and desalinated)

and standard rodent chow (Altromin, 1,310 M). Mice were kept as

homozygous for the knock-in. All experimental procedures in this

study, performed at the LMU Munich, were in accordance with Ger-

man and European Union guidelines and approved by the govern-

ment of Upper Bavaria (Germany) where necessary.

Mouse embryonic fibroblasts isolation and culture

Mouse embryonic fibroblasts were obtained from E14.5 embryos of

R26-M2rtTA knock-in mice. Using a dissection microscope (Leica),

heads, limbs, vertebral columns, and internal organs were removed

to make certain no multipotent cells were present in cultures. After

dissection, 2–3 embryos were pooled, and tissue was dissociated in

0.15% Trypsin (Gibco) for 10–15 min to obtain single-cell suspen-

sions. Cells were plated in a single T75 tissue culture flask per

embryo in MEF medium at 37°C and 5% CO2 (Dulbecco’s Modified

Eagle Medium (Gibco #61965) supplemented with 10% FBS (Pan

Biotech or Gibco), 1% Sodium Pyruvate (Gibco), 1% HEPES (Gibco)

and 1% Penicillin/Streptomycin). Cells were split once at a 1:3 ratio

when confluent before freezing. After thawing, cells were grown in

T75 culture flasks until confluent before nucleofection.

Nucleofection

Nucleofections were performed according to the manufacturer’s

instructions (Lonza, P3 Primary Cell 4D-Nucleofector™ X). Briefly,

5.0 × 105 cells were counted and spun down at 200 × g for 10 min,

the supernatant was discarded, and cells were resuspended in

100 μl nucleofection solution master mix (82 μl P3 Primary Cell

Nucleofector Solution + 18 μl Supplement 1). Upon resuspension,

cells were immediately transferred to previously prepared 1.5-ml

tubes containing DNA mixtures and subsequently transferred to

100 μl Nucleocuvettes. Nucleofection was performed using the CZ-

167 program and 500 μl of prewarmed RPMI 1640 was added imme-

diately after nucleofection (Gibco; 1% Penicillin/Streptomycin).

Cells were transferred to a 37°C and 5% CO2 incubator for 10 min

to recover. Finally, cells were plated in a single well of a 0.1%

Gelatin in PBS (ROTI®Cell, Carl Roth) coated 12-well plate with

1 ml of preconditioned MEF medium and cultured at 37°C and 5%

CO2. In general, 1 μg of DNA per transcription factor and 2 μg of

transposase construct were used for nucleofections. However, for

qRT–PCR experiments aimed at quantification of Ascl1 and

mutAscl1 downstream targets, transposase was omitted. For
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expansion, cells were subcultured on 0.1% Gelatin culture vessels

at 37°C and 5% CO2 until the appropriate cell number for the experi-

ment was reached. For immunocytochemistry experiments, cells

were plated directly onto Poly-D-Lysine coated glass coverslips.

Piggybac vector generation

To generate TetOn inducible Piggybac expression vectors for trans-

gene expression, first, a dCas9 expression cassette was removed from

PB-dCas9-T2A-GFP-PolyA-Blasticidin (A. Köferle, unpublished)

through cutting with SpeI and Bsu36I (New England Biolabs). Next, a

Tet Response Element (TRE) followed by a minimal CMV promoter

was amplified from pLV-TetO-Oct4 (pLV-tetO-Oct4 was a gift from

Konrad Hochedlinger, Addgene plasmid # 19766; http://n2t.net/

addgene:19766; RRID:Addgene_19766) using the primers TetOn Fwd

and TetOn Rev (Appendix Table S4). Combining insert and back-

bone at a ratio of 3:1 in combination with the Gibson Assembly

Mastermix (NEB, E2611S) for 30 min at 50°C, PB TetO PolyA was

generated. Subsequently, a CMV enhancer element and CMV pro-

moter driving the expression of either acGFP1 or EBFP2 were ampli-

fied from AcGFP1-C1 (AcGFP1-C1, was a gift from Michael

Davidson, Addgene plasmid #54607, http://n2t.net/addgene:54607;

RRID: Addgene_54607) and EBFP2-C1 (EBFP2-C1 was a gift from

Michael Davidson, Addgene plasmid #54665, http://n2t.net/

addgene:54665, RRID: Addgene_54,665) using Colors Fwd in combi-

nation with acGFP Rev or EBFP2 Rev, respectively (Appendix Table

S4). Using the same Gibson Assembly procedure as described above,

both inserts were combined with PB TetO PolyA to generate PB TetO

acGFP PolyA and PB TetO EBFP2 PolyA. DsRed Express 2 was ampli-

fied from pCAG-Ascl1-IRES-DsRed (Heinrich et al, 2010) using the

primers DsRed Fwd and DsRed Rev, and the CMV enhancer and pro-

moter were amplified from EBFP2-C (described above) using the

primers CMV Fwd and CMV Rev and combined with PB TetO PolyA

to generate PB TetO DsRed PolyA (Appendix Table S4). Next, an

SV40 polyadenylation cassette was amplified from the AcGFP1-C1

plasmid using the primers SV40 Fwd (DsRed) or SV40 Fwd (acGFP

and EBFP2) with SV40 Rev and combined with all the respective flu-

orescent reporter backbones to generate PB TetO PolyA acGFP

PolyA, PB TetO PolyA EBFP2 PolyA and PB TetO PolyA DsRed PolyA

through Gibson assembly (Appendix Table S4). Finally, Ascl1 was

amplified from pCAG-Ascl1-IRES-DsRed (Heinrich et al, 2010),

MyoD1 was amplified from pCAG-MyoD1-IRES-GFP (in-house), Oct4

was amplified from pLV-TetO-Oct4 (see above), Sox2 was amplified

from pCAG-Sox2-IRES-GFP (in-house), FoxA2 was amplified from

pLV-PGK-FoxA2 (pLV.PGK.mFoxa2 was a gift from Malin Parmar,

Addgene plasmid # 33014; http://n2t.net/addgene:33014; RRID:

Addgene_33,014) and Hnf1a was amplified from E14.5 mouse liver

cDNA. E14.5 mouse liver cDNA was obtained by tissue digestion in

TRIzol (Invitrogen) according to manufacturer’s instructions and

subsequently performing a reverse transcription of 100 ng input total

mRNA using the Maxima First Strand cDNA Synthesis Kit (Thermo

Fisher Scientific; Appendix Table S4). The inserts of the respective

factors were combined with all three fluorescent reporters carrying

PiggyBac backbones, predigested with Mfe1 (New England Biolabs),

to generate PB TetO TF PolyA acGFP/EBFP2/DsRed PolyA, for all

transcription factors using Gibson Assembly. For FoxA2 and Sox2,

two AU-rich elements were cloned in between the cDNA and polyA

site by digesting both backbones with Mlu1 (New England Biolabs)

and combining it with a PCR-amplified insert of AU-repetitive

sequences (Appendix Table S4) generated by amplification with AU

Fwd and AU Rev from a custom DNA oligo (Appendix Table S4). To

generate a 3xFLAG tagged MyoD1 construct, MyoD1 was amplified

from PB TetO MyoD1 acGFP after digestion with Hpa1 and Kpn1

(New England Biolabs) using the MyoD1 FLAG Fwd and MyoD1

FLAG Rev primers (Appendix Table S4). A 3xFLAG repeat was

amplified from a custom-ordered DNA oligo using the FLAG Fwd and

Flag Rev primers (Appendix Table S4). Combining both inserts with

the digested fluorescent reporter PiggyBac backbones mentioned

above yielded PB TetO 3xFLAG MyoD1 PolyA acGFP/EFBP2/DsRed

PolyA. To generate mutAscl1, point mutations E131R132 to

A131Q132 were introduced in PB TetO Ascl1 acGFP using the site-

directed mutagenesis kit (New England Biolabs). All cloning primer

sequences are provided in Appendix Table S4.

Transgene induction

Transgene expression was induced by the administration of doxycy-

cline (2 μg/ml) every 24 h until the indicated time points, consider-

ing its �22 h half-life (Cunha et al, 2000). The culture medium was

replaced by fresh doxycycline-containing medium for each treat-

ment. For immunocytochemistry experiments, transgene expression

was induced the day after nucleofection, and a nontreated sample of

the same condition was used as a control. For single-cell experiments

and quantitative polymerase chain reaction (qRT–PCR) experiments

aimed at determining reprogramming factor expression levels, cells

were first expanded to at T75-T175 before sorting (see below) and

induction of transgene expression. A nontreated sample of the same

condition was used as a control. For qRT–PCR experiments aimed at

quantification of Ascl1 and mutAscl1 downstream targets, transgene

expression was induced the day after nucleofection and a treated

sample of untransfected cells was used as a control.

Immunocytochemistry and image acquisition

For immunocytochemistry, cells were fixed at the indicated time

points with 4% paraformaldehyde in phosphate-buffered saline

(PBS) for 10–15 min. Cells were permeabilized by incubation with a

blocking solution (3% BSA, 0.5% Triton-X 100 in PBS) for 30 min.

Primary antibodies were incubated in a blocking solution at 4°C
overnight or for 2 h at room temperature (Appendix Table S3). Cells

were thoroughly washed with PBS to rinse off the primary antibody

solution. Secondary antibodies (including DAPI) were incubated in

the dark at room temperature for 1 h in a blocking solution followed

by thorough washing with PBS (Appendix Table S3). For cells

plated on coverslips, coverslips were mounted on glass slides using

a water-based nonfluorescent mounting medium (Aqua Poly/Mount

(Polysciences, Warrington, PA)). Stained cells were analyzed using

an AxioM2 or Axio Observer epifluorescence microscope (Carl

Zeiss) for coverslips and culture plates, respectively. Images were

obtained using the ZEN2 Software (Carl Zeiss).

Fluorescence intensity quantification

To compare Desmin protein expression levels between conditions,

images were acquired as described above using identical exposure

times within an experiment. Intensities were quantified by loading
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images with Fiji (Schindelin et al, 2012) and generating a mask for

each cell using Image > Adjust > Threshold. Next, the mean inten-

sity within the masked area was measured using Analyze > Mea-

sure. For each image, a total of five equally sized regions without

any clear Desmin signal were used to determine background levels

and their mean was subtracted from the average measured intensity.

To compare different experiments, intensity levels were normalized

with respect to the MyoD1 only condition.

Fluorescence-activated cell sorting

Cells were trypsinized, collected in prewarmed MEF medium, and

washed once in PBS. The supernatant was discarded, and cells were

resuspended in 1 ml PBS supplemented with 10% FBS before being

transferred to FACS tubes by passing through a 40 μm cell strainer.

Cells were sorted using a BD FACSARIAIIIu cell sorter (BD Bio-

sciences). Gates were set using untransfected MEFs as a reference.

Cells were sorted at flow rates between 2 and 3 (arbitrary units, cor-

responding to ∼17–25 μl/min) and collected in 1.5-ml tubes contain-

ing 300 μl MEF medium supplemented with 10% additional FBS.

For quantification of reprogramming factor levels, 37,500–100,000
cells were sorted per condition and plated in a single well of a 24-

well plate before inducing transgene induction with doxycycline the

next day (see above). For single-cell experiments, 7,000/10,000 cells

for each transfected condition and 5,000/7,500 untransfected MEFs

were sorted. After sorting, all cells were pooled in a single 15-ml

conical tube and centrifuged at 300 × g for 5 min. One milliliter of

supernatant was left and supplemented with fresh MEF medium.

Cells were plated by taking 1 ml of this suspension containing

between 50–60,000 cells in a single 24-well. For quantification of

Ascl1 and mutAscl1 target expression levels, 50,000–100,000 cells

per condition were sorted 48 h after induction and immediately pro-

cessed for RNA isolation (see below).

RNA extraction and quantitative polymerase chain
reaction (qRT–PCR)

For RNA extraction, cells were collected 48 h after transgene induc-

tion and RNA was isolated using the ARCTURUS® PicoPure® RNA

Isolation Kit (Applied Biosystems) according to the manufacturer’s

instructions. Genomic DNA was removed using the On-Column

DNase I Digestion Set (Sigma-Aldrich). For retrotranscription, equal

amounts (between 50–100 ng) of total RNA were retrotranscribed

using the Maxima First Strand cDNA Synthesis Kit (Thermo Fisher

Scientific). First-strand cDNA was diluted 1:5 in RNAse-free water

and 5 μl was used for each qRT–PCR reaction. qRT–PCR experi-

ments were performed on a QuantStudio 6 (Applied Biosystems)

using PowerUp™ SYBR™ Green Master Mix (Applied Biosystems).

The expression of each gene was determined in triplicate and rela-

tive expression determined using the ΔΔCt method (Livak & Sch-

mittgen, 2001). qRT–PCR Primers are listed in Appendix Table S2.

In vitro reprogramming

For reprogramming experiments, cells were nucleofected as

described above and expanded on 0.1% gelatin-coated culture ves-

sels. After expansions, single- (Ascl1, mAscl1, and MyoD1) and

double-positive cells (Ascl1 and MyoD1, mAscl1 and MyoD1) were

sorted and plated at a density of ∼12,500 cells per well in a 96-well

plate. The next day, the medium was changed and transgene expres-

sion induced as described above. Cells were treated with doxycy-

cline every 24 h and fixed 3 days postinduction for

immunochemistry (see above).

Droplet-based scRNA-seq and scATAC-seq

For scRNA-seq only samples, cells were trypsinized and collected in

a prewarmed MEF medium at the indicated time points. Cells were

centrifuged at 300 × g for 5 min to remove debris and resuspended

in 50–100 μl PBS for cell counting. Cell suspensions were counted,

and suspension volume was adjusted to contain approximately

1,000 cells per μl. For a targeted retrieval of 10,000 cells, ∼17,500
cells were loaded, and libraries were prepared using the Chromium

Single Cell 30 Reagent Kits v2 (24, 48, 72 h data with Ascl1, MyoD1,

Hnf1a, and Oct4) or v3 (72 h data with Ascl1, MyoD1, FoxA2, Sox2,

and Oct4) according to the manufacturer’s instructions. Libraries

prepared with v2 chemistry were sequenced on a HiSeq4000

whereas v3 libraries were sequenced on a NovaSeq6000. All

libraries were sequenced with a 100 bp paired-end configuration.

For scMultiome (scRNA-seq + ATAC-seq) samples, cells were

trypsinized and collected in a prewarmed MEF medium 72 h after

induction. The cell suspension was centrifuged at 300 × g for 5 min

at 4°C and resuspended in 50 μl of PBS + 0.04% BSA (Miltenyi

Biotec). Cells were pelleted once more by centrifugation at 300 × g

for 5 min at 4°C. Forty-five microliter of supernatant was removed

and an equal amount of lysis buffer (10 mM Tris–HCl pH 7.4,

10 mM NaCl, 3 mM MgCl2, 0.1% Tween-20, 0.1% Nonidet P40 Sub-

stitute, 0.01% Digitonin, 1% BSA, 1 mM DTT, 1 U/ul H2O) was

added. Cells were lysed on ice and after 5 min 50 μl of wash buffer

(10 mM Tris–HCl pH 7.4, 10 mM NaCl, 3 mM MgCl2, 1% BSA,

0.1% Tween-20, 1 mM DTT, 1 U/μl RNAse inhibitor) was added

without mixing. Nuclei were pelleted by centrifugation at 500 × g

for 5 min at 4°C. Ninety-five microliter of supernatant was removed,

taking care not to disturb the pellet, and 45 μl of diluted nuclei

buffer (1× Nuclei Buffer (10× Genomics), 1 mM DTT, 1 U/μl RNAse
inhibitor) was added without mixing. Nuclei were spun down once

more at 500 × g for 5 min at 4°C and all supernatant was removed.

Nuclei were resuspended in 7 μl of ice-cold nuclei buffer and 2 μl of
nuclei suspension was mixed with 8 μl of diluted nuclei buffer and

10 μl Trypan Blue to determine nuclei concentration. For a targeted

retrieval of 10,000 nuclei, the nuclei suspension was diluted to a

concentration between 3,280 and 8,060 nuclei per μl. Libraries were

prepared using the Chromium Next GEM Single Cell Multiome

ATAC + Gene Expression kit according to the manufacturer’s

instructions and sequenced on an Illumina NovaSeq 6000

sequencer.

Cleavage under targets and release using nuclease (CUT&RUN)

For CUT&RUN assays, 3xFLAG-MyoD1 (see above) was used to

allow MyoD1 pulldown and DNA binding assessment. The assay

was performed using the CUT&RUN assay kit (Cell Signaling Tech-

nologies, 86652) according to the manufacturer’s instructions.

Briefly, 100,000 cells per reaction were collected and bound to Con-

canavalin A Magnetic beads. Cells were permeabilized and incu-

bated with a primary antibody against FLAG for 2 h at 4°C
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(Appendix Table S3). Subsequently, cells were incubated with pAG-

MNase for 1 h at 4°C. pAG-MNase was activated by adding calcium

chloride and a 30 min incubation at 4°C. Stop buffer (Cell Signaling

Technologies) with 10 pg of Spike-In DNA (Cell Signaling Technolo-

gies) was added to each sample to stop the reaction and obtain nor-

malization reads after sequencing. DNA was purified using phenol/

chloroform extraction and ethanol precipitation as described in the

manufacturer’s protocol. Input samples were generated by collecting

100,000 cells per condition and incubating with DNA extraction

buffer (Cell Signaling Technologies) at 55°C for 1 h shaking at

∼750 rpm on a ThermoMixer. Afterwards, samples were cooled

down and sonicated with a BioRuptor® Pico (Diagenode) using 10

sets of 30-s pulses. Fragmented chromatin was isolated together

with CUT&RUN samples as described above.

CUT&RUN Library preparation

DNA sequencing libraries were generated using the SimpleChIP®

ChIP-seq DNA Library Prep Kit for Illumina (Cell Signaling Tech-

nologies, 56795) and SimpleChIP® ChIP-seq Multiplex Oligos for

Illumina® (Dual Index Primers, Cell Signaling Technologies, 46538)

following the manufacturer’s instructions and adapting the protocol

where needed as instructed by the manufacturer in the CUT&RUN

Assay kit protocol. Briefly, an equal amount of DNA was used for

all CUT&RUN and input samples and DNA ends were prepared for

adaptor ligation. Note that here incubation temperature was low-

ered from 65 to 50°C according to the manufacturer’s instructions.

Next, adapters were ligated to the DNA. Finally, DNA was amplified

using PCR and Dual Index primers for Illumina® (Cell Signaling

Technologies, 47538). Importantly, anneal and extension time was

reduced from 75 to 15 s to avoid amplification of large library frag-

ments per the manufacturer’s instructions. Furthermore, all clean-

up steps were performed with 1.1× volume of SPRIselect® beads to

increase the capture of smaller DNA fragments. Generated libraries

were pooled and sequenced using the MiSeq Reagent Kit v3 and a

2 × 75 bp paired-end sequencing strategy on an Illumina® MiSeq

sequencer.

Preprocessing of sequencing data

For the alignment of reads, we used the sequences and annotation

files for the Mouse genome (GRCm38) from Ensembl (release 97).

The synthetic transcription factors and reporter sequences and a

custom-generated annotation were appended to the genome

sequence and annotation. The Cell Ranger software (version 3.1.0)

run with the command “cellranger mkref” created an index of the

genome. The Cell Ranger pipeline run with the command “cell-

ranger count” aligned the reads, generated QC metrics, estimated

the number of valid barcodes, and created the count matrices. The

command was executed with standard parameters, except that we

adjusted the number of expected cells and the chemistry parameter

accordingly. AnnData objects of the raw and filtered count matri-

ces were created using the Python package Scanpy (Wolf et

al, 2018, version 1.4.4). The alignment files (bam) were sorted by

barcode using samtools (Li et al, 2009, version 1.10) and Velocyto

(la Manno et al, 2018, version 0.17.17) was run using the “velo-

cyto run” command with the filtered barcodes list from the Cell

Ranger run.

Processing of CUT&RUN data

The CUT&RUN data were processed using the Nextflow-based ChIP-

seq workflow from nf-core (version 1.2.2). For the different sam-

ples, a single pseudo antibody was defined and the samples of the

same conditions sequenced in multiple experiments were defined as

replicates. The computational pipeline was run in two independent

executions to align against the yeast genome (R64-1-1) and against

the mouse genome (GRCm38). The aligned reads from the yeast

alignment were used for normalization as per the manufacturer’s

instructions found here: https://www.cellsignal.com/learn-and-

support/protocols/cut-and-run-protocol.

CUT&RUN peak visualization

For visualization of CUT&RUN peaks, CUT&RUN data were pro-

cessed as described above. Processed data were loaded into Integra-

tive Genomics Viewer (IGV, version 2.11.4; Robinson et al, 2011).

To compare several samples, each sample was loaded as an individ-

ual track. For exporting images, y-axes were set to the same scale

before exporting.

Processing of single-cell multiome data

The single-cell Multiome-Seq data were processed using the soft-

ware cellranger-arc (version 2.0.0), run with the cellranger-arc

count command with standard parameters and the corresponding

genome. To build the reference genome index for mice, GRCm38

the annotation from Ensembl (release 97) was used. The sequences

and custom annotations of the synthetic transcription factors and

fluorophores were appended to the genome fasta and annotation

files. The samples processed with cellranger-arc count were aggre-

gated using the cellranger-arc aggr command with the --

normalize = none parameter.

Generation of a modified gene annotation

The sequences of the overexpressed reprogramming factors differ

from the endogenous loci in only a short interval in their UTRs. To

distinguish between endogenous and transgene expression, we cre-

ated synthetic versions of the endogenous genes by replacing their

UTRs with the UTR sequences of the transgenes (from Gencode ver-

sion vM20, https://www.gencodegenes.org), and appended them to

the gene annotation. This modified annotation was then used for

reading alignment by the Cell Ranger pipeline as described above

(Preprocessing of sequencing data). The Cell Ranger pipeline only

considers reads that are compatible with a single gene annotation,

and therefore, only reads specific to the UTRs of the endogenous

genes or of the transgenes are used for UMI counting.

Computational demultiplexing

The exact analysis is documented in Notebooks I-1, II-1, and III-1 on

GitHub (https://github.com/theislab/collideseq_reproducibility).

We first grouped cells into induced and noninduced for each trans-

gene and fluorophore by defining an expression threshold for each

factor (maximum likelihood assignment of cells to centroids).

Secondly, we assigned cells to the condition of their posterior
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probability, using the initial assignments to define the prior distribu-

tion of transgene counts in induced cells (Appendix Fig S2B, the

posterior membership probability). This second step allowed us to

incorporate the prior knowledge that only a subset of all possible

transgene combinations was included in this setup.

We defined condition centroids with two separate models, that

yielded similar results in the end. Firstly, we used a gradient-free

optimization algorithm to infer optimal decision boundaries θ

between the active and inactive component for each transgene in a

joint optimization problem, using the deviation between the inferred

distribution of cells over conditions f and the input distribution x as

an objective l:

l ¼ f θð Þ�xj j

Here, the maximum likelihood assignment of a cell to a condition

c consists of its classification based on the decision boundaries:

ĉ ¼ 1ifθ> xelse0

Secondly, we defined centroids with a 2-component Gaussian

mixture model for each transgene separately. Here, the maximum

likelihood assignment of a cell to a condition consists of its assign-

ment to a mixture k:

ĉ ¼ argmax
k

P xjμk; σkð Þ ¼ argmax
k

�log σkð Þ�log 2πð Þ� 1

2

x�μkð Þ2
σk2

These mixture models showed the collapse of the inactive com-

ponent to zero in a couple of cases, in which we then augmented

the inferred threshold to achieve similar results to the gradient-free

optimization method.

Posterior membership probability: The maximum likelihood

assignments proposed above cannot guard against the assignment

of cells into conditions that do not exist, such as a condition with all

transcription factors active and all colors inactive. Due to noise in

the data, such conditions may indeed be the maximum likelihood

estimator of condition membership. However, we have the prior

knowledge that only a subset of all transgene conditions exists in

the data. We defined a partition function containing only the input

conditions  and defined a posterior probability distribution over

input conditions using this partition function and Gaussian likeli-

hoods P to then assign cells to their maximum a posteriori estimate

of membership:

ĉ ¼ argmax
k

P xjμk; σkð Þ
∑

k⊂

P xjμk; σkð Þ

Unsupervised analysis of single-cell RNA-seq data

The exact analysis is documented in code in Notebooks I-1,

II-1, and III-1 on GitHub (https://github.com/theislab/collideseq_

reproducibility). We removed cells with high mitochondrial content

(> 20% of UMIs are from mitochondrial genes) or low total mRNA

counts (< 1,000 expressed genes). We then filtered nonhighly vari-

able genes, normalized the mRNA counts within each cell, log

(x + 1) transformed the counts, computed PCA with 50 compo-

nents, computed a k-nearest neighbor graph with k = 100, and

computed UMAP embeddings and Louvain clustering on the graph.

We used SoupX (Young & Behjati, 2020) for ambient RNA correc-

tion (Notebooks I-1a, II-1a, III-1a on GitHub (https://github.com/

theislab/collideseq_reproducibility)). We defined the cell-cycle score

as a z-score over cells on the sum of the G2M-phase score and S-

phase score computed with Scanpy (Wolf et al, 2018). We com-

puted the fibroblast score as a z-score defined over cells in the Lou-

vain clusters annotated as noncycling fibroblasts on the sum of log-

normalized fibroblast marker genes per cell: Thy1, Col1a1, Postn,

Vim, Prrx1, Timp3, Ccn2, Col5a1, Col1a2, Glipr2, Itgb5, Sh3kbp1,

Tex264, Tnc, Cnn1, Fn1, S100a4, Twist2, Snai2, Cav1, Ecm1, Acta2,

Col4a1, Col5a2, Mmp2, Mmp14, Mmp23, Col3a1, Cav2, Timp1,

Timp2, Fgf7, Vcl, Itgb8.

Cellular doublet simulation

We considered a doublet simulation between Ascl1 single-positive

cells and MyoD1 single-positive cells to establish whether this speci-

fic doublet could explain the Ascl1 & MyoD1 double-positive cellu-

lar state. As both source distributions are defined by cells from the

respective single-positive conditions, we sampled (n = 200) random

pairs of simulated doublets, added their transcriptomic states (un-

processed counts), and divided these counts by two to receive simu-

lated doublet cells in the range of total counts of the single-positive

cells. We then performed an unsupervised analysis workflow as

described in (Unsupervised analysis of single-cell RNA-seq data) on

the union of these simulated cells and the real cells under all condi-

tions (Fig EV3E and F). To map the simulated cells into the anno-

tated clusters defined on the real cells, we used the nearest neighbor

classifier, only using the real cells with the minimal distance

observed to each simulated cell.

Differential expression analysis

The exact analysis is documented in Notebook I-3 on GitHub

(https://github.com/theislab/collideseq_reproducibility). We used

Wald tests on a negative binomial generalized linear model (GitHub -

theislab/diffxpy: Differential expression analysis for single-cell RNA-

seq data., no date) fit on cell cycle, condition, and normalization

factors testing the condition effect to determine differentially

expressed genes along the individual lineages. To restrict the setting

to each lineage, we only considered cells from the single-positive

condition of the lineage and the control vector expressing cells for

the test. P-values were corrected for multiple testing using Ben-

jamini–Hochberg correction. We declared genes as differentially

expressed if they had a corrected P-value of less than 0.01, a fold

change of less than 2/3 or more than 3/2, and a mean expression

level of at least 0.05 counts. We added the label up- or downregu-

lated in multiple places for those differentially expressed genes with

positive (up) and negative (down) log fold change. We inferred syn-

ergism and antagonism in a differential test on cells from the control

condition, two considered single-positive conditions, and the

double-positive condition of these two, modeling each transgene’s

effect individually and their interaction and tested and reported the

interaction effect to yield synergism and antagonism labels: We

defined synergistic effects as positive transgene interaction effects in

a differential expression model if the log fold change in the double-

positive condition was positive (a gene is upregulated more strongly
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in the double-positive condition than would be expected based on

the sum of both transgenes in their individual single-positive condi-

tions). Additionally, we defined negative transgene interaction

effects in a differential expression model as synergistic if the log fold

change in the double-positive condition was negative (stronger

downregulation than expected). Conversely, we defined weaker

upregulation and weaker downregulation as antagonistic. We

defined differential expression magnitude as the L2 norm over all

gene-wise parameter estimators for an individual coefficient defined

in the model, only using genes for which this coefficient was signifi-

cant (FDR-corrected P-values < 0.01) and which were likely not

overfitted (defined as an L1 norm of significant effects within a gene

< 100).

Gene ontology analysis

Gene ontology enrichment analysis was performed using the g:Pro-

filer Python client (Raudvere et al, 2019). Differentially expressed

genes (Up: log-2-foldchange > 2/3, Down: log-2-foldchange < −2/3,
log-normalized mean expression > 0.1, and adjusted P-value

< 0.01) for each condition were provided as input, and all expressed

genes in the dataset were used as background. For the downregu-

lated genes, gene ontology analysis was performed using the cellular

component annotations whereas for upregulated genes the annota-

tion biological process was used. The top 20 enriched GO terms

were ranked based on P-value and visualized using a custom graph-

ing function.

ChIP-seq data analysis and synergism and
antagonism annotation

The exact analysis is documented in Notebook I-3 on GitHub

(https://github.com/theislab/collideseq_reproducibility). We used

published peak files for both Ascl1 and MyoD1 ChIP (Lee et

al, 2020). We overlapped these peaks against 50 ends of gene anno-

tations (GRCm38), extending the annotated interval 50 end 10 kb

upstream and 2 kb downstream.

RNA velocity and Cellrank analysis

The exact analysis for scVelo (Bergen et al, 2020) and CellRank

(Lange et al, 2022) workflows are documented in code in Note-

books I-2 and II-2 on GitHub (https://github.com/theislab/

collideseq_reproducibility). The RNA velocities mentioned in the

main text are based on the dynamical RNA velocity model imple-

mented in scVelo. Additionally, we fit the dynamical model with

lenient gene filtering and a steady-state model with standard gene

filtering. We ran CellRank (Lange et al, 2022) on the dynamical

RNA velocity model fits separately for each inferred condition using

the CFLARE model on a kernel consisting of 50% transcriptomic

connectivity and 50% RNA velocities. The attractors were assigned

to fates by cell rank and are colored according to the annotated Lou-

vain clusters established in the unsupervised analysis section.

Neurogenic and myogenic scores

The exact analysis is documented in Notebook II-4 on

GitHub (https://github.com/theislab/collideseq_reproducibility).

We defined the neurogenic score as 1-diffusion pseudotime from the

most mature neurogenic cell: We defined the most mature neuro-

genic cell as the cell with the highest latent time assigned by scVelo

during dynamical RNA velocity inference in the Ascl1 single-

positive condition. The scored cells presented are all cells in neuro-

genic or myogenic states excluding the cycling cluster. Similarly, we

defined the myogenic score within the MyoD1 single-positive condi-

tion. The myogenic score presented in Fig EV3G is computed as

above but computed on the set excluding cells in the mature myo-

genic cluster to compare intermediate myogenic and neurogenic

states.

Fate titration analysis

The exact analysis is documented in Notebooks I-2 and II-2 on

GitHub (https://github.com/theislab/collideseq_reproducibility).

We scaled transgene counts into an active range between the mini-

mum transgene count observed in the positive condition and the

99th percentile of transgene counts in the single-positive condition

(maximum): xscaled ¼ x�xmin

xmax�xmin
. We visually compared two groups of

cells (cell rank attractor groups or Louvain cluster groups) using 2D

kernel density estimators of the joint distribution of each group over

both transgenes and using the respective marginal distributions of

each group. We fit a weighted logistic regression model with class-

balancing weights between both groups on the scaled transgene

counts. We report the accuracy of this classifier on a held-out test

partition of 20% of the data.

Supervised modeling

All model and analysis code is also documented in Notebook I-4 on

GitHub (https://github.com/theislab/collideseq_reproducibility) and

Dataset EV1. We used linear and nonlinear models both for the

classification of categorical cluster assignments and regressive pre-

diction of the log-normalized RNA observations of each cell. We

accounted for confounding in all models: We corrected for the

sample through a one-hot encoded predictor and for the cell size

through a log-transformed size factor in the input. In all cases, the

input to these models is either the one-hot encoded condition

assignment (categorical model, Fig 4F and G), the binary presence

of transgenic transcription factors (binary models, Fig 4H and I),

or the log transgenic transcription factor expression per cell (ex-

pression models, Fig 4F–I). The nonlinear model was a neural net-

work of fully connected layers with two hidden layers of 64 units

each and tanh activation function. We used 1e-6 L1 and L2 penal-

ties on linear layers. The hyperparameters of all models are also

described in the supplied code. We trained all networks until con-

vergence and evaluated performance on 10% of randomly selected

test cells (Fig 4F and G) or on entirely held-out cell sets corre-

sponding to inferred conditions (Fig 4H and I). We trained on all

cells that were not in the test set, except in Fig 4I where we tested

models trained on only single- or single- and double-positive con-

ditions on selected triple-positive conditions. We used the area

under the curve of the receiver–operator characteristic (AUC ROC),

accuracy, top-3 accuracy, and condition class-balanced accuracy to

evaluate classification models and used R2 per cell between

observed and predicted log-normalized expression for regression

models.
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Data availability

Raw sequencing data as well as annotated single-cell matrices and

CUT&RUN peaks are publicly available through the NCBI Gene

Expression Omnibus (GEO) under accession number GSE211864.

This accession contains all sRNA-seq data (GSE211862), scMultiome

data (GSE211863) and CUT&RUN data (GSE210181) generated dur-

ing this study. Furthermore, all notebooks used for data analysis are

available on GitHub (https://github.com/theislab/collideseq_

reproducibility) with generalizable code related to analyzing single

cell reprogramming data available as a python package in Dataset

EV1 (“tftools”, “fatevision”).

Expanded View for this article is available online.
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